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Abstract. Using dilation invariance and dilation analytic techniques, and with
the help of a new virial theorem, we give a detailed description of the spectral
properties of the operator (p2 + m2)112 — Ze2/r. In the process the norm of the
operator |*|~α |/>|~α is calculated explicitly in LP(1RN).

I. Introduction

The classical Hamiltonian describing the interaction of a relativistic particle of
charge e and mass m with an electromagnetic field [vector potential A(x) and scalar
potential φ(x)~] is given by [1]

[_(p-eA(x))2 + m2γl2 + eφ(x). (1.1)

To make the transition to quantum mechanics, the usual procedure (which is of
course fraught with ambiguities) is to change the classical Hamiltonian into an
operator on the Hubert space L2(IR3) by replacing p by —zY. Because of the
troublesome square root in (1.1), the standard procedure just described-has received
very little attention in treating a relativistic particle in an electromagnetic field.
Historically, an alternative procedure was followed resulting in the Klein-Gordon
(K.G.) equation [2]. Calling the energy function of (1.1) £, one finds

(E - eφ(x))2 -(p- eA(x)}2 - m2 = 0.

One now makes the Ansatz p= — ΊV and tries to solve the implicit eigenvalue
problem

{(E-eφ(X))2-(p-eA(x))2-m2}ψ(X) = Q (1.2)

subject to "appropriate" boundary conditions. The K.G. equation has a definite
virtue when the interaction is the Coulomb potential (4=0, φ(x) = —Ze/\x\): The
equation can be solved explicitly. It seems to us that this explicit solvability is the
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main reason for the comparative neglect of the more difficult operator

H = (p2 + m2)1/2-Ze2/\x\. (1.3)

This operator describes the same system as the K.G. equation, namely a spin zero
particle in the Coulomb field of an infinitely heavy nucleus of charge Z. However,
the theory of operator (1.3) does not suffer from the difficulties of interpretation of
the K.G. theory [2] which are connected with the fact that the latter is not really a
Hamiltonian theory. The operator (1.3) also has the virtue that it is stable over a
larger range of Z's than the K.G. theory: The operator H is non-negative if Ze2

^2/π (see Theorem 2.1 below) while the energy of the ground state in the K.G.
theory becomes complex when Ze2 >^ [2]. (This is to be compared with the Dirac
equation for a spin| particle in a Coulomb field which is unstable ΊϊZe2 > 1 [2, 3].)

It is thus clear that there is a range of atomic number over which the K.G.
energies will differ appreciably from the eigenvalues of the operator in (1.3). It
would be very interesting if Nature's preference could be seen experimentally.
Unfortunately, this question is clouded by other effects which play an important
role in π and K mesic atoms [4] and it may be on the borderline of being untestable.

In this paper we examine the spectral properties of the operator of Equation
(1.3) from an abstract point of view. Our results are summarized in Theorems 2.1
through 2.5.

II. Spectral Properties

In this section we first state and then prove Theorems 2.1 through 2.5. We use the
notation Q(A) = @(\A\l/2} for any self-adjoint operator A. We work on L2(1R3) unless
otherwise stated.

(2.1)

Theorem 2.1. Let HQ = (p2 + m2)1/2, m^O.
a) // Ze2 ^ 2/π, then as a form on Q(H0)

b) // Ze2 > 2/π, then H0 — Ze2/\x\ is unbounded below as a form on Q(H0).
c) || |x| ~ l(HQ + 1) " 1 1| = 2 and thus in particular 2(\x\ ~l}2 ®(H0) and H0 - Ze2/

is essentially self-adjoint on @(H0) if Ze2^.

Remark, a) Of Theorem 2.1 is stated in Kato [5] (without proof) c) is a well known
result [5, 6]. Theorem 2.1 will follow from a more general result proved in Theorem
2.5 below.

Definition. We define the operator H = H0-Ze2/\x\ for Ze2<^2/π to be the
Friedrichs extension of (HQ — Ze2/\x\)\@(Ho). We remark that because of Theorem
2.1c), if Zβ2 <2/π, the Friedrichs extension coincides with the form sum of H0 and
- Ze2/\x\.

Theorem 2.2. Suppose Ze2 < 2/π. Then the spectrum of H in [0, m) is discrete
(consisting of eigenvalues of finite multiplicity with no points of accumulation). We
have the lower bound

2)112. (2.2)
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Remark. The ground state energy for the Klein-Gordon equation is
E0 = (έ+ l/i-(Ze2)2)1/2m and for the Dirac equation E0 = m(l-(Ze2}2)112.

Theorem 2.3. Suppose Ze2 < 2/π. Then σ(H) 2 [m, oo) and ίfee spectrum ofH in [m, oo)
zs purely absolutely continuous.

Remark. To prove Theorem 2.3 we will use dilation analytic techniques developed
by Aguilar and Combes [7] and applied by them to handle certain perturbations of
the Laplacian. Their techniques have also been applied to operators of the form

for /?e(0, 1) by Weder [8]. Evidently Weder could not handle the case β = 1 because
of the more severe singularity. We fill this gap.

Theorem 2.4 (Virial theorem). Suppose m > 0, Ze2 < 2/π and ψ is an eigenstate of H
with eigenvalue E and norm 1. Then if

we have

E = m2(ψ,H-lιp), (2.3)

(2.4)

Remark. Equation (2.4) is also true when (p2 + m2) is replaced by p2/2m if in addition
v is replaced by p/m. In this case it is the usual non-relativistic virial theorem.

We begin the proof of Theorem 2.1 with a calculation of the norm of a certain
operator :

Theorem 2.5. Define the operator Ca on &(RN) by

CΛ = \xΓ*\pΓΛ,p=-ir (2.5)

and let p ~ 1 -h q ~ 1 = 1 . Suppose α > 0 and Net ~ 1 > p > 1 . Then Cα extends to a bounded
operator on LP(]RN) with

ί - ί - ± - ί )

' ( '

If P^Nu'1 or p—1, then Ca is unbounded.

Before embarking on a proof of Theorem 2.5 we make a few remarks. We
restrict ourselves to the case p = 2. First note that the operator

has the same norm as Cα. To prove this we can do a unitary scale transformation
(dilation) of C™ to get the operator (λ>0) C%\ so it follows that | |C£Ί|=y is
independent of m for m>0. We clearly have y g ||Cα|| and in addition since C™λ-^Cα

as λ-+Q
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Thus
II Γ* II II /~w II /Ό H\
l l ^ α l l = l l ^ α l l (2 7)

We mention the special case α = 1 : From Equation (2.7) we have for N ̂  3 and
any w^O

| | |jcΓV + 'w 2Γ 1 / 2 l l=2(N-2Γ 1 . (2.8)

We also derive Hardy's inequality. For N ̂  3

((ΛΓ-2)/2)2|*Γ2:g|/>|2. (2.9)

Another application of Equation (2.6) is given in [9] where the local singularities
of the eigen functions of

-Δ + V(x)

are discussed for a potential V(x) which behaves like — /l2/|jc|2 near :c = 0.

Proof of Theorem 2.5. Define the isometric dilation on Z/(1RN) :

(- 00,00). (2.10)

The idea of the computation is that Ca commutes with dilations and thus in a
representation where dilations are simply translations (in the variable 0), Ca is a
convolution operator (at least in one of the variables). It will turn out that it is
convolution by a positive function. The norm of such an operator is just the integral
of the function. (The author thanks Barry Simon for pointing out the simple fact
that this holds on all Lp spaces.) This idea needs only minor modifications due to the
presence of other variables.

Thus let U : Z/(IRN, Λ)->Z/(IR xSN_1, dxdω) be given by

([//) (x, ω) = eNp~ ΐχf(exω) , (2. 1 ί)

where ω runs over SN_l9 the surface of the unit ball in IRN and dω is the invariant
surface measure (dNx = \x\N~1dxdώ) U is an isometry and satisfies

(UUeU-1f)(x9ω) = f(x + θ9ω). (2.12)

We now transform the operator Cα. First note that \p\ ~α is convolution with the
function

(2πΓNS\pΓΛeip'xdNp = y\x\-(N-*>, (2.13)

where y = y(N, α) - (2απ]V/2Γ(α/2))~ x Γ(^(AΓ - α)) [10]. Thus Cα is an integral operator
with kernel

y|*1-
α|*1-*2Γ<*-β). (2.14)

The kernel of (7CαL/~1 is then easily computed. It is

G(x1-x2;ω1,ω2)-y^ (Xl-χ2)(2cosh(x1-x2)-2ω1 ω2)-(]V"α)/2, (2.15)

where β = N(p~l -±)-±ot.
Let C=UCaU'1 and Q = LP(1R x Sn _ l , dxdω). We claim that

ιω,e). (2.16)
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Denote the right-hand side of (2.16) by A. (Note that A is independent of e because
of rotation invariance.) It is easy to see that \\C\\Q_+Q^A: An easy estimate shows
that C is bounded on L°°(IR x SN_ t dxdω) and on Z/fΊR x Sn_ ^ dxdω) by A, and the
Riesz-Thorin interpolation theorem then gives \\C\\Q_Q^A. To show the opposite
inequality, let C0 = C[Qo where Q0 is the set of rotation invariant vectors in
Z/(IR x Sn_ ί dxdω) Q0 ̂ Z/(IR; Λc). Then

(C0/) (x) =lg(x- x')f(x')dx', (2.17)

where

g(χ) = j G(x ω, e) dω.

We have

\\C0\\LP(^LP(K}=sup\(f,C0h)\/\\f\\q\\h\\p

^ ] dx \ dyg(x-y)(2λΓί

-λ -λ

2λ

— j dx(l — \x\(2λ)~1)g(x). (2.18)
-2λ

The first inequality follows by taking/ = h = χ[_λίλ] and (2.18) by integrating over x
+ y. As A->oo, (2.18) converges to 1101^ by the Lebesgue dominated convergence
theorem. This gives

which is (2.16). It follows from the fact that U maps LP(IRN dNx) onto
LP(IR x Sn_ ΐ dxdω) isometrically that

In an appendix we compute J dxdωG(x α>, e) and show that it is the right side
of Equation (2.6). The fact that Cα is unbounded if p^Na'1 or p=l follows by
inspection.

Proof of Theorem 2.1. This theorem is essentially a corollary of Theorem 2.5. From
Equations (2.6) and (2.7) it follows that in L2(1R3)

IIHo^Γ^ό^lHIIC^H^π^. (2.19)

Thus Q ( H Q ) g Q ( \ x \ ~ l ) and if Ze2^2/π, 7(jc)= -Ze2/l*l satisfies

which implies H0 + V = Hί

0

l2(l +H^ II2VH~ 1I2)H1

Q

/2^0. Conversely if

H0 + V^-E

then by performing a dilation we find for any λ>0

(p2 + (m,λ)2)ll2 + V^-Eλ

so that taking /ί-»0 gives
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which gives

By Equation (2.19) this can only be true if Ze2^2/π.
This completes the proof of Parts a) and b). Part c) follows from Equation (2.8)

and the scaling arguments used in proving Equation (2.7).

Proof of Theorem 2.4. We follow a method developed by Weidmann [11] which
skirts possible domain problems.

Temporarily we write Hm = (p2 -j-ra2)1/2 — Ze2/\x\ indicating the dependence on
m explicitly. It is easy to see that

) (2.20)

and in fact

Hmι=Hm2+Bmi:m2, (2.21)

where J3mι m2 is a bounded operator:

1/2)'1- (2-22)

Let U(a)ιp(x) — a3/2ψ(ax}. U(a) is unitary and satisfies

and in fact

U(a)HmU-\a) = a-1Hma. (2.23)

Suppose Hmιp = Eιp with || Ψ\\ 2 = 1. Denote ψa = U(a)ιp. We have by Equation (2.23)

HmaΨa = aEψa (2.24)

and thus taking the complex conjugate of the inner product of (2.24) with ψ and
subtracting from the equation (ψa, Hm\p) — E(ψa, ψ) results in

(1 - aΓ\ιpa, (Hm - Hma)ιp) = E(ψ9 ιpa) .

Since (l-aΓ1(Hm-Hma) = (l + a)m2((p2 + m2Y12 + (p2 + (ma)2}1/2Γ1 converges
strongly on ψ to m2HQ1ψ as α-»l, we have

m2(ιp,Hΰ1ιp) = E. (2.25)

This is Equation (2.3). Equation (2.4) follows from

(φ, Vψ) = (ψ, (E - H0)ψ) = (ψ, (m2H- l - H0)ψ) .

Lemma 2.6. Suppose Ze2 <2/π. Then (H+l)"1 -(//o + l)"1 is compact.

Remark. Ideas very similar to those used in the proof of Lemma 2.6 can be
found in [12] which also contains references to original contributions.
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Proof. LetJR = (#+l)Λ ^oHΉo + iΓ1 and V = -Ze2/\x\. We have

£ maps L2(IR3) into @(H)g@(H1/2) = @(H1

Q

/2)ζ@(\V\1/2) so that by the closed
graph theorem, |F|1/2,R is bounded. Thus we need only show that R0\V\112 is
compact. We give an elementary argument: Let χ be multiplication by the
characteristic function of the unit ball. Then R0 |F|1 / 2 is compact because it is the
norm convergent limit of the Hubert-Schmidt operators

as (5,εjO. [Note \\e-εp2R^2-R^2\\-^0, #J/2|F|1/2 is bounded, and

Proof of Theorem 2.2. Let ρ = Ze2π/2<\, and suppose O^A<m. Then if V
— Ze2 /r we have that

satisfies

= ni(m2-λ2Γ1/2ρ.

Thus if

m(m2-λ2Γ1/2Q<l (2.26)

so that λ is not in the spectrum of//. Condition (2.26) is however the same as the
condition

λ<m(l-ρ2)ί/2.

Thus H^m(l— ρ2)1/2. The proof is completed after noting that Lemma 2.6
guarantees the equality of the essential spectra of H and H0. Thus σessential(//)
= [m, oo).

Proof of Theorem 2.3. The virial theorem guarantees the absence of discrete
spectrum in [m, oo) while Lemma 2.6 shows that σ(//)^[m, oo) so that it only
remains to show the absence of singular continuous spectrum. This we do using a
technique invented by Aguilar and Combes [7] for perturbations of the Laplacian
and applied by Weder [8] to operators of the form (p2 + m2)1/2 + λ\x\~β for β<L

Define H'0(z) = (p2 + (me~z)2)1/2 where ze<C, |Imz| <π/2 and Re(/?2 + (me~z)2)ΐ/2

^0. Note that H'0(z) is a normal operator whose spectrum in the complex λ plane is
the curve

-2z\
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Consider the family of operators

JΪ'0(z)+7 = H'(z), (2.27)

where since H'Q(z) ~ H0 is bounded, H'(z) = H + (H'Q(z) — H0) is a holomorphic family
of type A [5], analytic in the region |Imz|<^π.

We define σdiscreteG4) for a closed operator A to be the set of all λeσ(A) which are
isolated and have the property that for all small enough ε>0, the projection

| λ-μ |=ε

is finite dimensional. We define σessential(^)Ξσ(/l)\σdiscrete(^4).
By methods similar to those used in proving Lemma 2.6, it is easy to see that for

is compact. Thus by the theorems of Section XIII.3 of [12] (see references given
there for original contributions) jFΓ0(z) and H '(z) have the same essential spectrum.
Consider now the operator family (H(z) : |Imz| <^π}, given by

H(z) = ezH'(z). (2.28)

Note that for z real, H(z)=UzHU~1 and that Equation (2.28) thus provides an
analytic continuation of H(θ) from real θ to the strip indicated. The essential
spectrum is a curve in the complex λ plane given by

{/l = (ίe2z + m 2 ) 1 / 2 :Re/l>0,f^O}. (2.29)

It is shown in [7] that under these circumstances, the eigenvalues of H(z) all lie
between the real axis and the curve (2.29) and are independent of z. Suppose Imz > 0.
LetJ> be the set of eigenvalues of H(z) on the real axis. S is a discrete set. (Presumably
S = 0 [7], but we do not need this result.) Let 2 = {ψ : Uzιp is entire}. Suppose ε >0,
λeΊR\S. Then for

and this is uniformly bounded as εj,0 uniformly in λ for λ in compacts of IRXS. This
proves σsingtCθnt(H) = 0 (by standard arguments), and thus the proof of Theorem 2.3
is complete.
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Appendix. The Integral J dxdωG(x; ω, e)

We begin by noting the equality

y-λ = (Γ(λ))~l]dte-tytλ~l. (Al)
o

Substituting y = cosh x — ω e and abbreviating λ = ̂ (N — α), β = N(p ~ 1 — |) — ^α, we
can rewrite the integral in Equation (2.16) as

(2**Γ(fy)(2π)N / 2)"x J dίί^1 j ώcΛ?~ίcosh {Jdω£ί<y e} . (A2)
0 l-oo J

The integrals in curly brackets can be recognized as Bessel functions [13] :

OO

J dxeβxe-tcoshx = 2Kβ(t}, (A3)
— OO

2Γ-N+1I±N_1(t). (A4)

Substituting in (A 2) we find

f ώαfωG(x;ω, e) = 2(2^Γ(^)Γ1 ] dtΓ 'a/2 K β(t)I ,N _ x(ί) . (A5)
o

The integral above is expressible in terms of Γ functions [13]

where we have used β = N(p~l — i) — iα and set q = p/(p— 1). Finally

^ ._J(UNp~l-a))r£Nq-i)
; «»,*) = 2 - - i - (AT)
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