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Abstract. Within the general framework of C*-algebra approach to mathe-
matical foundation of statistical mechanics, we prove a theorem which gives
a natural explanation for the appearance of the chemical potential (as a
thermodynamical parameter labelling equilibrium states) in the presence
of a symmetry (under gauge transformations of the first kind). As a symmetry,
we consider a compact abelian group G acting as *-automorphisms of a
C*-algebra U (quasi-local field algebra) and commuting (elementwise) with
the time translation automorphisms g, of 2. Under a technical assumption
which is satisfied by examples of physical interest, we prove that the set of all
extremal ¢,-KMS states ¢ (pure phases) of G-fixed-point subalgebra A€
(quasi-local observable algebra) of U satisfying a certain faithfulness condition
is in one-to-one correspondence with the set of all extremal G-invariant
0, 0~ KMS states ¢~ of U with a varying over one-parameter subgroups of G
(the specification of o being the specification of the chemical potential), where
the correspondence is that the restriction of ¢~ to A€ is o.

§ 1. Introduction

In equilibrium statistical mechanics, one of basic problems is how to understand
the number of independent thermodynamic variables for equilibrium states of a
given system. In the Heisenberg picture, a mathematical description of a system
is given in terms of observables and its time translation. So-called KMS condition
picks out states labelled by a real parameter §; they are interpreted as equilibrium
states at inverse temperature . The justification for such an interpretation has
been given by Haag et al. [2], who characterize KMS states by stability under
dynamical perturbation and then show that the stability condition is equivalent
to the KMS condition under some assumptions.

For given f, there may be many KMS states which can be labelled by ad-
ditional macroscopic variables. It is also useful to consider a family of time-
translations labelled by some external parameters (such as external magnetic
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field), which yields KMS-states parametrized by  and external parameters, in
general. However, there are examples such as gas in infinite continuum, where
text-books teach us that equilibrium states are parametrized not only by f but
also by other parameters such as the chemical potential 4. Moreover, the usual
prescription for equilibrium states with given § and u does not give states satisfying
the KMS condition relative to a given time translation: it rather gives states
satisfying the KMS condition relative to a modified time translation, the modifica-
tion being given by a gauge transformation.

The purpose of this paper is to give a natural explanation for the chemical
potential as a label of equilibrium states. We consider a system with a symmetry
group G, which we assume to be compact and abelian. A typical example is the
additive group of real numbers modulo 27, which acts as gauge transformations
of the first kind, changing a field y(x) to e“y(x). The system is described by the
algebra A generated by quasi-local fields; its dynamics is described by one-
parameter group @, of time translations, which commute with any symmetry
transformation geG.

Under some circumstances, one can take the view-point that only those
elements of A, which are invariant under the (gauge) symmetry transformations,
correspond to physical observables, the rest of 2 being a mathematical device.
The set A€ of such elements is invariant (as a set) under the translations g, and
the restriction of g, to AC is the physical time translations. In this view-point,
equilibrium states should be KMS states of A€ relative to the restriction of g, to
AC. (We call them simply o,-KMS states of A%) In particular, extremal g,-KMS
states of AC are interpreted as pure phases.

In order to study g,-KMS states of A%, we are entitled to discuss mathematically
their extentions to U as states. It is an immediate consequence of the compactness’
of G that each state @ of UAC has a unique extention to a G-invariant state ¢~ of 2.
It is also immediate that if a state ¢~ of U satisfies the KMS condition relative to
0+, for some one-parameter subgroup o, of G, then the restriction ¢ of ¢~ to A€
is a 9,-KMS state of AC.

Our main result is that the extention ¢~ of a pure phase ¢ of U is an extremal
G-invariant g, -o,-KMS state for some one-parameter subgroup «, of G and that the
restriction ¢ of an extremal G-invariant g,-o,-KMS state ¢~ of 2 to A¢ is a pure
phase. As a consequence, pure phases of ¢ are in one-to-one correspondence with
extremal G-invariant g,-o, states of 2 with «, varying over one-parameter sub-
groups of G, the correspondence being given by restriction and extension. If G is a
one-parameter group, say y, with y,, =identity, then o, =7y,, where the real param-
eter u labelling different one-parameter subgroups is the chemical potential.

It may happen that the extremal G-invariant g,- o-KMS state ¢~ is not extremal
0, 0-KMS state. In that case, the central decomposition of ¢~ yields extremal
0, %-KMS states whose restriction to A€ are all equal to the extremal g-KMS
state @. Conversely, if ¢ " is an extremal g,-,-KMS state, then its restriction ¢
to AC is an extremal g,-KMS state of A and ¢ " is in the central decomposition
of the G-invariant extention ¢~ of ¢ to 2. This describes the situation of a broken
symmetry.

Our results described above depends on an assumption on the algebra 2 and
its time translation g, The main assumption which is described in detail in the
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next section will be satisfied if the field asymptotically commutes with observables
at large space separation and contains non-trivial elements on which G acts as a
multiplication of its character such that characters associated with such elements
generates the dual of G. In addition to these assumptions on the algebra, we also
assume a certain faithfulness condition on the state ¢ of 2. When this assumption
for ¢ is violated, G has one-sided spectrum on the cyclic space associated with ¢~
as is discussed in the last section.

A generalization of the present result to a compact non-abelian symmetry
group G will be given in a subsequent paper.

Independently the same problem has been studied in [4]. In [4], main as-
sumption on the algebra is asymptotic abelianness relative to automorphisms 7"
commuting with the time translation and gauge transformations.

Our Assumption A has a somewhat stronger requirement in the sense that
it requires the existence of an operator b'"® satisfying bP*p® + p(PpP* >1 and
transforming under gauge group G as an irreducible representation p for a set
of p generating the dual of G. [b? in Assumption (A) is then taken to be t"(b?) ]
In a given model, however, such assumption is easy to check.

On the other hand our Assumption A has a somewhat weaker requirement in
the sense that the asymptotic abelianness needed here is between an observable
(elements of ;) and an arbitrary element and not between arbitrary elements.
This point is the first advantage of the present approach over that in [4].

Our Assumption B is to exclude the case of one-sided 4spectrum [cf.
Section 9 (2)]. In [4], the case where Assumption B is not satisfied is fully analyzed.

In [4], the state under consideration (restricted to the observable algebra)
is assumed to be invariant under " mentioned above. If 7 is time translation, this
is automatic but the asymptotic abelianness relative to time is hard to prove in a
given model. If 7 is not time translation, then the invariance of the state under 7"
is an assumption. In the present approach, the case of non-invariant state is
included. This is the second advantage of the present approach over that in [4].

In [4], the gauge group G is any compact group, while we assumed G to be
an abelian compact group here.

§ 2. Main Theorems

We consider a C*-dynamical system, namely a C*-algebra 9 with an identity 1
and a one-parameter group of *-automorphisms g,(teIR) of A such that t—g,(x)
is continuous for each xe . Let G be a compact abelian group of *-automorphisms
of A commuting with g, teR. The set of all elements x of A satisfying g(x)=x
for all ge G is denoted by UC. It is a C*-subalgebra of A containing 1. For each
unitary character p of G (i.e. pe G”), we define

&,(x)= [ p(g)*g(x)dg
G
where dg is the normalized Haar measure. For the identity p=1, we have A%=

£,(20).
We make the following assumption.
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Assumption A. There exists a sequence b e ¢ (W) for each pe A for some generating
subset A of G”, with the following properties:
(@) sup [|bP|| < co.
n

(b) (BPYBP+BPBP) 2 1.
(©) lim |[b%, x]||=0 for all xeAC.

(d) lim L&) *eb?), X1l =lim [[[e,(b”)b)*, x][| =0, for all xeA.

(€) {0bP);n=1,2,...} is an equicontinuous family of continuous functions
of t for each pe A.

For technical reason we also assume the following:
Assumption B. For each pe 4,
sups, {7, (bP)*bP)} =sups {m (P (bP)*)} =1

where T, is the cyclic representation of N° associated with ¢ and s, denotes the
central support in 7 (A°)".

Our main result is summarized in the following theorem:

Theorem 1. Under Assumption A, the following holds:

(1) If ¢ is an extremal ¢-KMS state of AC satisfying Assumption B, then
@ =@og, is an extremal G-invariant g,-0,-KMS state of W for a one-parameter
subgroup o, of G.

(2) If ¢ is a g,-0-KMS state of A for a one-parameter subgroup o, of G, then
the restriction ¢ of ¢” to C is a o, -KMS state of WC satisfying Assumption B.
If " is primary, then @ is an extremal 9,-KMS state of WC. If ¢ " is G-invariant, then
@ "=@og.. If @ is extremal among G-invariant g, -o-KMS states of U, then ¢ is
an extremal 0-KMS state of U°.

(3) Extremal o, -KMS states of N satisfying Assumption B are in one-to-one
correspondence with extremal G-invariant g,-o-KMS states of U with o varying
over one-parameter subgroups of G, where the correspondence is through restriction
and G-invariant extension.

(4) For any extremal o-KMS state ¢ of NS satisfying Assumption B, there
exists an extremal g,o0-KMS state ¢” for some one-parameter subgroup o, of G
such that its restriction to W€ is @. If ¢ og,+ @ °g, for g, and g,€G, then the
cyclic representations associated with ¢ og, and @ g, are disjoint. The central
decomposition of the G-invariant extension ¢~ of ¢ to W is given by

¢ =[p ogdg.

Remark 1. Tt is well-known that a KMS state ¢ of a C*-algebra U relative to a
continuous one-parameter group of *-automorphisms is extremal if and only
if it is primary [i.e. the center of the weak closure 7(2)” of the cyclic representation
7, associated with ¢ is trivial].

Remark 2. An example of the case satisfying the Assumption A is given by quantum
spin lattice system, where we may take (mathematically) G to be the (spin) rotation
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group around the z-axis. Let i, be lattice sites tending to infinity as n—oo, 4
consist of just one character e? and b, (for this character) be the spin operator
o, +io, at i,-th lattice site. Then Assumption A is clearly satisfied and hence the
conclusion of Theorem 1 holds.

Remark 3. The items (c) and (d) in Assumption A obviously follow from the
following stronger but simpler assumption: lim [, x]||=0 for all xe 2. How-

ever, we want to avoid the assumption of such a kind that amounts to assuming
asymptotic commutativity of fields at large space distance. In the stated form of
Assumption A, it follows from asymptotic commutativity of observables with
fields. The assumption (¢) along with other assumptions are satisfied in
asymptotically abelian system, i.c. if there exists a sequence of automorphisms
7, of A commuting with g, and G such that Ii'lln I[t.(a), b]] =0 for any ae A€

and be W and if there exists bPee(A) for pe 4 such that bP(HP)* +(bP)*bP > 1.

Remark 4. If ¢ is an extremal ¢,-KMS state, Assumption B is equivalent to the
requirement that 7, (b?)*b?) and 7, (bP(b?)*) are non-zero for some n and m.
[It can be weakened to the requirement that n(a*a)=+0 for some ace,(A) for
each pe Au471.] The situation where Assumption B is violated is discussed in
Section 9. It leads to a one-sided spectrum (temperature 0) for the representation
of G associated with ¢~, when G is one-dimensional torus.

Remark 5. ¢~ of Theorem 1(4) might be non-invariant under time translation,
possibly periodic or aperiodic.

The situation for a general o,-KMS state of AC is contained in the following
theorem:

Theorem 2. Under Assumption A, the following holds for any G-invariant state ¢~
of W, whose restriction to NC is a 9-KMS state ¢ of NC satisfying Assumption B.

(1) For M=n ()" and M®=n(U®Y’, the center of M® is contained in the
center of M.

(2) The cyclic vector Q associated with ¢~ is separating for M.

(3) If ¢ is an extremal 9-KMS state, then M€ is a factor.

Remark 6. The central decomposition of ¢ is so-to-speak the diagonalization of
the center of M® and is known to coincide with a decomposition into extremal
0-KMS states. The central decomposition

p=[&du()
of ¢ into extremal ¢,-KMS states ¢ of A¢ induce a decomposition of ¢ ™=@, :
o =[&du(d), & =¢0¢, ,

which is so-to-speak a decomposition diagonalizing the center of MS. By Theorem
2(1), this will be a part of the central decomposition of ¢~ which can be achieved
by combining the central decompositions of £~ with the above decomposition.
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§ 3. Preliminaries

Theorem 1 (1) contains three assertions: ¢~ is G-invariant, ¢~ is a g,-¢-KMS
state of U for some o and ¢~ is extremal among G-invariant g,-«,-KMS states.
The first assertion is immediate from the definition ¢ =@og,; due to g,°g=¢,
for all geG. The second assertion is most important part which occupies the
main portion of Section 5. The third assertion is proved without Assumption A.
We start with the proof of the third assertion, which obviously follows from the
following two Lemmas, where

M= )", M® =7 (ACY" . (3.1)

Lemma 1. A G-invariant g,-a,-KMS state ¢~ of W is extremal among such states
if and only if M®~M' is trivial.

Lemma 2. If ¢~ is a G-invariant g,-o,-KMS state of W and if the restriction of ¢~
to A€ is an extremal 9-KMS state, then Mé M’ is trivial.

Before presenting the proof of these Lemmas, we introduce a few notations
connected with a G-invariant state ¢~ of 2 and the associated cyclic representation
n; . By G-invariance of ¢, there exists a continuous unitary representation U(g),
geG, of G such that

U(g)r; (a)Q=n;(ga)Q, acA . (3.2)
The continuous extension of ge G to M =n; ()" is defined by

g (x)=U(g)xU(g)*, xe M . (3.3)
The continuous extension of ¢,, pe G*, to M is defined by

e,(¥)=[p(g)*g(x)dg, xe M, pe G~ (3.4)

Since &7, is continuous, 7, (¢,(U)) is dense in &7 (M). In particular the set of G-
invariant elements of M is given by &7 (M)=m,(A¢)"=MC More generally,
¢~ (M) s the set of all xe M satisfying g(x) = p(g)x for all ge G. Hence ¢™(M)e™ (M) C
& p(M).

Proof of Lemma 1. Let e be a projection operator in M~ M'. Since e is in the
center of M,

P =0, +0 - (3.5

and both ¢, and ¢, _, are g,-a-KMS states, where ¢ denotes the normal
linear functional on M defined by a vector eQ. (¢, =¢ and ¢~,=0.) Since e is
invariant under g~ for all geG, both ¢, and ¢, _, are G-invariant. If ¢, =k~
for a number k, then

k(m ()82, 7(x2)€2) = (1o (x1)€2, em,(x2)<2)

due to ee M, and hence e=k-1 due to the cyclicity of Q. Hence e=1 or 0. This
implies that M®nM’ is trivial if ¢~ is extremal among G-invariant g, o-KMS
states.

To prove the converse assertion, we assume that

P =0,+t0% (3.6
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where ¢, and ¢, are both G-invariant g,-o¢-KMS positive linear functionals.
Since ¢, =< @7, there exists an operator ac M’ such that 0<a=<1and ¢7, is given
as the vector linear functional by the vector a2. The assumption that ¢~ and @7,
are both g,-«,-KMS positive linear functionals implies that a is in the center of M.
The G-invariance of ¢, implies that g(a)=a for all ge G. Hence a is in M~ M'.
If M6AM' is trivial, then a must be a multiple of the identity and hence ¢, is a
multiple of ¢~ Therefore, ¢ ~is an extremal G-invariant ,-«,-KMS state if M6~ M’
is trivial. Q.E.D.

Proof of Lemma 2. If the restriction of ¢~ to ¢ is an extremal KMS-state, then
the restriction of M®=n(A%)" to the cyclic subspace $, = M®Q is a factor. Since Q
is M-cyclic, (MnM’)-support of Q is 1, namely Q is separating for MnM’ and
hence for its subalgebra M®NM'. Since M®NM' is contained in the center of MY,
the restriction of MénM’ to §, is trivial. Since Qe$, is separating for M6 N M/,
this implies that M~ M’ is trivial. QE.D.

§ 4. Proof of Theorem 2

We first prove a technical Lemma, which is actually an implicit form of g, -a,-KMS
condition for ¢~

Lemma 3. Let &, be the algebra of bounded continuous functions on the strip
region

T={zeC;0<Imz<1} 4.1)
which are holomorphic in the interior of T and F be the algebra of (MnM')-valued

entire functions which are uniformly bounded on T. For each qe G, there exist F,
and G, in & such that support projections s(F(t)) and s(G(t)) satisfy

lim sups(F (t))— hm sups(Gq(t)) 1

e~ +0 |t <
and for any xee (M) and bee (), there exists an F, e F, satisfying
F o (t)= (2, x*15(0db))F (1)) , }
F oyt +10)=(8, 15 (2b)x*G (1)) ,
For each qy, 4,€G’, it is possible to choose F’s and G’s so that F, F,,=F, , and
G, G, =G

q1 492"

4.2)

q192°

Proof. For given b? in Assumption A, ¢,(b{?) satisfies all conditions for b and
hence

b= [ (me)™ ' exp(—1t*/e)o,(bP)dt

for ¢>0 also satisfies all conditions of Assumption A except for possibly (b).
Since b™P b in norm as e— +0, b™P for small ¢ and large A will satisfy all
conditions for b{?. In addition, ¢,(b~{¥)) is an entire function of z. In the following,
we assume that this replacement has been made in Assumption A. We then have
0,(b'?) for all complex z and Assumptions A(a), (c), (d), and () are satisfied even
when t is replaced by z.
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Since (b{P)* satisfies all conditions for b, g=p~!, we assume that p~'e4
if pe4 and use (bP)* for b " if necessary. [This will be used in particular in
the proof of Theorem 2(1).]
By Assumption A and compactness argument, there exists a subnet n(v) such
that

w-lim 7, (b0 (b)) %) = f,(¢),

w- hm n(p (Q:(bga))*b%)) = gp(t) s
exist (simultaneously for a finite number of p’s if necessary). By Assumption A(d),
both f(f) and g,(t) belong to M®nM'. By our choice of b and Assumption A(e),
both f (t) and g,(¢) are entire functions of t. By Assumption A(b), we have f,(0)+
9,0)= 1.

Let a,bee(W), q=p;...p, Pje4. By o-KMS condition for ¢, there exists
F, € #, such that

Fiy0)=0T{a*bify). .. bife) Je b*biky)) . bif) 1) »
Fi )t +)= 7@ Ab*bify)... bifs) Y {a*bify,... bt D,

for all real t. By taking limits successively for nets n(v,), ..., n(v;) and using As-
sumption A(c), we obtain

lim...im F, \(t)= (Q, 75 (a*o,(b)) ﬁ f pj(t)Q) ,

vi

(4.3)

lim.. . limF, ,(t+i)= (Q, 5 (b)) 1] g, j(t)Q) )
vy Vn ji=1

By Assumption A(e), the limit is uniform over a compact set of ¢ and the net is

uniformly bounded by Assumption A(a). By a standard argument, we obtain

[as the limit of Fy,,(z)] the desired F, e satisfying (4.2) for x=r; (a) with

Fi= 11 £,0.640= [T 0,0 @4

It is obvious from (4.4) that the decompositions q,=1Ip;, q,=1IIp}, q:q9,=
(ITp,)Ip;) will yield F’s and G’s satisfying F, F,,=F G, G

41" 92 q142> T q1 t12=quqz‘
As a net m; (a,) tends *-strongly to xe&e™(M), (4.2) approaches to

F o(0)=(Q, x*n5 (0b)F ()Q2) }
F (e +1)=(Q, 5 (0b))Gy()x*R2)

uniformly over ¢, and hence F,_,(z), x,=7;(a,), tends to F, ,(z) in Jq satisfying

(4.5). [Note that G (t)e MnM'.] Let g=pe A e be a projection operator in M6~ M’

such that ef (?) is zero in a neighbourhood of t=0, b= b® and x=eny (b). Then
F, (2) is 1dentlcally 0. Hence

I{eg (O)m5 (bb*)'2Q||> =F ,(i)=0.

Since  is separating for the restriction of M to the weak closure of MQ due to
0,-KMS condition for ¢, we obtain

Leg (001 [m7 (bR (B2)*)], =0

4.5)
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for all m, where [y], denotes the restriction of ye M€ to the weak closure of M¢Q.
Hence [eg,(0)]; =0 due to Assumption B. Since € is separating for M'> M®n M,
we have eg,(0)=0. Hence e(f,(0)+9g,(0)=0. Since f,(0)+g,0)=1, we obtain
e=0. This proves

lim sup s(F(t))=1 4.6)

e=+0 |t|<e

for g=pe A. The same proof works for G (t).

The proof will be completed if we show that (4.6) for g, and g, imply (4.6) for
F‘hqz(t):F'h(t)qu(t)'

Suppose that there exists a projection e in M N M’ such that eF,,,,(t)=0 for
all [f|<e for some ¢>0. Let eft)=e{l —s(F,(1)}. If e—e,()+0 for t=t,, then
there exists a non-zero e, < e—e(t) such that ey <e—e,(¢) for all ¢ in some neigh-
bourhood of t=t, due to the norm-continuity of F, (t). Hence eyF,,(t)=0 for the
same neighbourhood and hence e, F,,(t)=0 for all ¢ by the analyticity. This
contradicts with (4.6) for = g,. Hence e =e,(t) < 1 —s(F,,(¢)). This implies eF , (t)=0
and hence e=0 by (4.6) for g=¢q,. Hence (4.6) holds for g=g,g,. The same proof
holds for G’s. Q.E.D.

Proof of Theorem 2(1). It is enough to prove that xe M®n(MS) commutes with
n,(V)em, (e,(N) for all ped. Let ace,(N), begy(N). Since y(b%))*e A and
xe(M€Y, we have

(@, 75 (af*xm; {Y(bR)*0d D)D) IF (1))

=(Q, 75 (a*Y(b)*)xn; {b)b)}F ,(HQ) .

By Lemma 3, the analytic continuation in the variable ¢ by an amount i yields
(2, 75 (b)) s (a* Y(bR)*)XG (1)) -

By taking v-limit and using Assumption A(c) and (e), we obtain an Fe %, such
that

F(O)=(®, 5 (a)*x75 {y0(b)}F - (OF po(2) ,
F(t+i)=(Q, T {odb)a* y}G(p_ 1,(t)prq(t)Q) .

By Lemma 3, we obtain by our convention F,-F,=F, and G,-1G,,=G,, the
following equality

(@, 5 (@*)[x, 15 ()] 75 (QUB)F (1)) =0,

for all real ¢. Since b is an arbitrary element of ¢, (), which is g,-invariant as a set
we may replace g,(b) by b for each t.
Hence

(m5 ()R, [x, m5; (WIF (O)n5 (b)2)=0. 4.7

The Equation (4.7) holds for ace, () and bee, (W) by G-invariance of ¢~ if
419, ' #p and by the above argument if g,q;'=p. Since n;(e ()2, reG’, is
total, we obtain [x, 75 (y)]F () =0. By (4.6), we obtain [x, 5 (y)]=0. Q.E.D.
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Remark. Assumption A(c) implies

w-lim[x, 7; (b?)*]=0 4.8)

for all xe M€. If (4.8) holds in the *-strong operator topology (instead of the weak
operator topology), then Theorem 2(1) has the following easy proof: For xe M®n
(MSY, we have

[x: ynq_o (b;p))*] n(ﬁ (bﬁp)) =0 s

s (bﬁp))[x, g (bflp))*] =0,
for any yen; (e,()). By taking limit, we obtain [x, y]f,(0)=[x, y1g,(0)=0. Hence
fA0)+g,(0)=1 implies [x, y]=0.

Proof of Theorem 2(2). Let Q be the cyclic vector associated with ¢~. The (M nM')-
support of Q is 1 because of the cyclicity of Q. By Theorem 2(1), the center of M¢
is contained in MM’ and hence (M¢n(M€Y)-support of Q is also 1. This implies
that M€ is isomorphic to its restriction to the cyclic subspace

9, =the closure of 7; (A)Q. 4.9)

Since the normal extension of a KMS-state to the weak closure of the associated
cyclic representation is known to be faithful, @ must be separating for the restric-
tion of MY to §,, hence for M€ itself.

Let xQ=0 and xe M. We have to prove x=0. Since g (x)Q2= U(g)xQ2=0,
£ (x)Q2=0 for all pe G". Hence

e (x)*e (x)2=0
for &7 (x)*e"(x)e ME. By (2), we obtain £ (x)*¢”,(x)=0 and hence ¢ (x)=0 for
all pe G~

For aee™ (M), we have

U(9)al=U(g)aU(g)*Q=p(g)aQ .
Hence for ac&™(M) and be ™ (M), we have

(a2, xb2)= (a2, U(g)xU(g)*r(g9)*b€2)

=(aQ, e (x)bQ)=0

where r=pq~*. Since {¢(M)Q; pe G} is total, we obtain x=0.

Proof of Theorem 2(3). A KMS state is extremal if and only if it is primary. Hence
the restriction of M¢ to §,, must be a factor if the restriction of ¢~ to ¢ is an
extremal o-KMS state. By the above proof of (2), M€ itself is a factor.

§ 5. Proof of Theorem 1 (1)

By Theorem 2(3), M¢ is a factor. In the following proof, we use Assumption A
and B only through the property that M€ is a factor, except Lemma 5 where we
use Assumption A. We will not use Lemma 5 until the very end of Proof of
Theorem 1(1) where it is used in a trivial way.
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Lemma 4. If M is a factor, then the set H of pe G” such that ¢ (M)%0 is a sub-
group of G".

Proof. We know that M®=¢7(M)+0. Let xe¢ (M) and x=+0. Then x*e& (M)
for g=p~!'. Hence e (M)#+0 and ¢7(M)=+0 are equivalent if pg=1. Next, let
x;€€7,(M) and x;#0, i=1,2. Then x¥x;e M® and x,xfe M®. Since MY is a factor,
there exists ue M® such that (xFxJu(x,x%)=0. Then x,ux, +0 and x,ux,e& (M)
for g=p,p,. Q.ED.

Lemma 5. H=G".
Proof. Assumption A implies 7,, (b{)#0 for any ¢~ and pe 4. Q.E.D.

Lemma 6. If M° is a factor and ¢ ,(M)=+0, then there exists either isometric or
co-isometric operator u in & (M).

Proof. Let xe&™,(M),x+0. Then x*xe M and hence |x|e M. The polar decomposi-

tion x=ulx| gives a partially isometric operator u= lim x(¢+|x|)” ‘e (M).
e~>+0

Since x=0, u is non-zero. Let u*u=e, uu*=e¢'. They are projection operators
in M°. The map xe MS—x =uxu*e MS is a *-isomorphism of M¢ onto MC.

First we consider the case where M€ is properly infinite. Then there exist two
sets of projections {e'} and {e{*'} with the same index set such that e’e M€,
ede) =0 for a=p, Y e’=1, all ¢{") are equivalent to e and all €2’ are equivalent
to ¢ [ie. there exist u’e MC satisfying {uQ}*ul=el, u{uV}*=e¢, and
uP Py =’ where j=1,2. Then

U=Y {u®uull)
a

is a unitary operator in & (M).
Next we consider the case where M€ is finite. We use the normalized dimension
of projections. Assume dimez=dime'. Take n such that n(dime)=1 and take a
projection eye M such that ey<e and dime,=1/n. Take projections e,
a=1,...,n,j=1,2 such that e{’e MY, e’ =0 for o« = f, dime{"’ =1/n and dim e’
=(dime’){ndime}~!. Then there exist u’e M® such that {u{’}*ul’=e?,
UM M * =e, and u® U }*=uequ*. Then the operator U defined as before is
an isometry in ¢7(M). If dime < dime’, the same construction for u*e&™ (M) with
gq=p~ ! yields an isometry Uee™(M) and hence the co-isometry U* is in & ,(M).
Q.E.D.
We now present proof of Theorem 1(1). Since ge G commutes with g, ¢, also
commutes with g, Since ¢ is ginvariant, ¢~ is also g,-invariant. Let g7, be the
continuous extension of g, to M, ¢? be the modular automorphisms of M [because
we know that ¢~ is faithful on M due to Theorem 2(2)] relative to (the normal
extension of) ¢~ and

Y=0 _0f . (5.1)

Since ¢~ is g-invariant, ¢f commutes with ¢7. Hence y, is a continuous one-
parameter group of *-automorphisms of M.
By definition ¢ "=¢-¢,,

@ (xey) = @le1(x)edy))
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holds for xe and yeAC. Since ¢ is a o,-KMS state, ¢,(y) satisfies the KMS
condition for ¢~ and hence

5 (V) =0 ;p-(na (), ye UC .

Hence 7, is an identity automorphism on M¢.
Let £7,(M)=0. Then ¢ (M)=¢ (M)*=0 for g=p~'. By Lemma 6, either
¢ (M) or £7,(M) has an isometry U. Suppose Uee™(M). Let xee™(M). Then

20 =pxU*U)=p(xU*)p(U) = xU*p(U) = xu, (52)

where u,= U*y,(U). (We have used xU*e M€.)

Since ¢ ~is G-invariant, ¢ commutes with g~ for all ge G. Hence y, commutes
with g~ for all ge G. Hence y(U)ee (M), which implies u,e M. Since UU*e M€,
we have UU*=y,(UU¥*), which implies

ufu, =y (UNUU*p(U) =y U*p(UU*)(U)=1, (5.3)

uuF =U*y (UpUHU =U*(UUHU=UX(UU*U=1. (5.4)
Hence u, is unitary. We also have

U= ut'}’t(us) = U*Vt(U U*)Yt + s( U)=u,, s> (5-5)

due to u,e M®. Hence u, is a continuous one-parameter group.
For xe M®, we have Uxe ¢ (M) and hence

Uxu,=y(Ux)=7(U)x=Uu,x, (5.6)

where the last equality is due to Uee™ (M), for example. By multiplying U* from
the left, we obtain xu, =u,x for all xe M®. Hence u, is in the center of M€, which
means that u,=y/(p)1. Therefore

YdX)=1dp)x, x€€7,(M) . (5.7)

The Equation (5.7) defines y(p) for each peH. If xee™ (M) and peH, then
x*ee (M) for g=p~' and y(p~)=y(p)*. If xee (M) and yee (M) are both
non-zero, then xuy in the proof of Lemma 4 is a non-zero element of ¢ ,,(M) and

VAPQ)xuy = pAx)ydw)y () = yAp)yd@xuy

and hence

7{p9) =7{P)y{q) -

Therefore y,e H". The dual H" of H can be identified with G/G, where G, is the
subgroup of G consisting of all ge G on which pe H takes the value 1. (Go=H")
By Lemma 5, H=G". Hence there exists a continuous one-parameter subgroup
o€ G satisfying

Vg =Tg 0

on ¢,(2) for all p. Hence 6{ 7, =, 0,0, and hence ¢~ is g, °0,-KMS., Q.ED.



Symmetry and Equilibrium States 223

§6. Proof of Theorem 1 (2) and (3)

We first prove that ¢ satisfies Assumption B. For any ae ¢, pe4 and n, there
exists F, e 7, satisfying

Fo ()= (abi? o, (b)) *)p(or)* , (6.1)
F ot +1)= ¢ (e/(b"* abP)ple)* , (6.2)

by ¢,°0,-KMS condition for ¢". By Assumption A, there exists a subnet n(v) such
that limits in (4.3) exists. Then there exists F e %, satisfying

F(0)=(&, xf,(02)p(e)* ,
F(t+1)=(Q, xg,())p(x,)* ,

for x=m,, (a) and hence for any xe M.

For positive elements xe M9~ M, F (t) and F,(t + i) are positive type functions
of t because (6.1) and (6.2) are positive type functions. Hence they vanish identically
if they vanish at t=0. Since Q is separating for M by g,°¢,-KMS condition for ¢",
we have the equivalence of x f,(0)=0 and xg,(0)=0. Since f(0)+g,0)=1, these
are equivalent to x=0. Hence the supports of f,(0) and g,(0) are both 1.

Since Q is separating for M, M€ is isomorphic to its restriction to the closure
of M®Q. If a central projection e of M satisfies en (bP)*b{)=0 for all n, then
ef(0)=0 and hence e=0. The same holds for bP(b{?)*. Therefore Assumption B
holds for the restriction ¢ of ¢~ to AC.

On AC, the action of g,-0, is the same as that of g, Hence the statements of
KMS condition relative to g,cx, and relative to g, coincide for elements in .
Therefore a restriction ¢ of a g,ca,-KMS state ¢~ of A to AC is a g,-KMS state.
If ¢" is primary, then M€ is a factor by Theorem 2(1). Hence ¢ is an extremal
0,-KMS state. If ¢ is G-invariant, then ¢ =@ g for all geG and hence ¢ =
@ og; =@og,. If ¢”is extremal among G-invariant g, -o,-KMS states, then MM’
is trivial by Lemma 1. By Theorem 2(1), M€ is a factor and hence ¢ is an extremal
0,-KMS state. (3) follows from (1) and (2).

§ 7. The Structure of the Cyclic Representation Associated with ¢

Let @ be an extremal o-KMS state of AC, ¢~ be its unique extention to a G-
invariant state of A, M=mn,(A)" and M= (A"
Theorem 3. Assume that MC is a factor. Let H be the set of peG" such that
e (MnM')#0. Then H is a subgroup.

Let I be a subset of G" containing 1 such that Ing"H consists of one point for
every g"eG". Let E be the projection operator on the subspace y, $, where

9, =the closure of ¢ (M)Q, 2t (7.1)

Q being the cyclic vector associated with ¢~. Then there exists a unitary map U
from $ - onto L,(H)® ED,,- such that

UD=Y p.®EU*D, (7.2)
peH

UQ=1,.82, (7.3)

UxU*= Y p,,@EU%¥xE,xeM, (7.4)

peH
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where p,. is p(h), he H", as a vector in L,(H"), p,, is the same function as a multiplica-
tion operator and U, is a unitary representation of H satisfying U,ee” (MnM’),
which exists.

Proof. We divide the proof into several steps.

Step 1. The center MM’ is isomorphic to L*(H ") with g~ acting as the translation
by [g]1eG/Go~H" and a unitary representation U, of H corresponding to p,,:

Since MNM' is G-invariant as a set, & (MNM’) is in MnM' for all p. Since
M€ is a factor, any u and v in ¢ (MM’) have the property that uv* and v*u,
being in the center of MY must be multiples of the identity. Hence each non-zero
& (MnM')is a set of the form Cu, where u, is unitary and € denotes the complex
numbers. Since 1 is in ¢, (M M), we take u; = U, =1. Since u, u},ee” (MnM’)
and u,,u},+0 for g=p,p; !, the set H is a subgroup of G".

Using the commutativity of u, peH, we can find complex numbers 6, of
modulus 1 such that U ,=0,u, is a unitary representation of H as follows. Suppose
we have been able to choose 6, for all p in a subgroup H; of H. We shall prove
that we can extend the choice 6, (such that U, is a representation) for all p in a
subgroup H, generated by H; and an element h of H. Since the obvious choice
0,=1 works for H; = {1}, this will prove the existence of desired 0, for all pe H
by induction. To extend 0, from H, to H,, let H,, be the intersection of H, and
ht={h";n=0, +1,...}. Obviously H,, is a subgroup of H, and h* and is a set
of the form h"*. If m=0, we can choose U,,=U ()" for peH, and k=h" If
m>0, we can choose U = U U} for pe H, and k=h" where U, is chosen so that
(Up"=Ugm, Ugym being already defined due to h"eH,. The consistency and
representation property are immediate.

Since MnM’ is generated by a faithful unitary representation of H, it is
isomorphic to L*(H") with U, corresponding to p,,, where H" can be identified
with the compact group G/G,, G, being closed as the annihilator of H. Since
g (U,)=p@)U, g~ acts as the translation p(k)—p(k-[g]) where [g]=gG,eG/Go.

Step 2. The convergence of the sum in (7.2) and unitarity of U.

For x, ye M and p, qe G*, we have

(02, e (1) =] p(9)a(g)*(x2, Ulg™'¢")yQ)dgdg
={pg)(p” D)9 (x2, Ulgy ")yQ)dg,dg (7.5)

which vanishes for p+q. Hence the subspaces (7.1) are mutually orthogonal.
Since ¢,(A), pe G, is total in A and Q is cyclic, we have

5= 3 %5, 16

qeG”
Let o= ) &, with @ 9, Each geG"hasa unique decomposition g = p(q)r(q)

qeG"
with p(q)e H and r(q)el. Since EU%®,=0 unless p(q)=p, the summation on the
right hand side of (7.2) can be written as

Ud=Y pvec®(z Uﬁcbp,). (7.7

peH rel
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Since U%®,,€9,, rel, are mutually orthogonal for each fixed p, and since p,..,

p=pr
pe H, are mutually orthogonal, we obtain the absolute convergence of
Iuel?= 3, 3 U@, I*=lo]*. (7.8)
peH rel

Hence the summation in (7.2) is strongly convergent for any @. A similar calcula-
tion shows that U is isometric:

(UP,Ud)= ) Z (Ur¥,, Usd,)=(¥, D). (7.9)
peH rel
The vector p,., is a complete orthonormal basis in L,(H"). For each fixed p, any
vector ®oeE$,- can be written as o= P, Po,€9, and hence the choice
rel
=3 U,P,, (with [@1>=) [|Po,lI>=1DPo? convergent) yields U®=p, . ®P,.

rel r

Hence the image of U contains a total set and hence U is a unitary map onto

L(H)®ES,-

Step 3. Proof of (7.3) and (7.4). The Equation (7.3) is a special case of (7.2). The

Equation (74) follows from the following computation for ¢=5 &, ¢,€9,:
(UxUSUP)=UxP= ) p,..QEUxD

peH

= Z Puee @ EUTX Z Uy Z Up®y,

peH p'eH rel

= Z: (ppl—l)opp;ec®EU§Up'xz U:’¢p’r

rel

psp
= ¥ (¢, ® EULXE) (p;ec® > U;':,«D,,,r)
pp

rel

=Y (o ® EUAXE)U® .
2, oy ® EUZXE) QED.

Corollary. If H=G", then E$ =9, and UMU* = L*(H")® M3.

Proof. By definition of E, E9,=9,. From (7.4). UxU* for xeM is clearly in
L*(H)® EME. Since M is generated by ¢ (M), qeG", and Ee"(M)E=0 unless
q=1, we have EME = E¢™,(M)E= MCE. Q.ED.

We note that M®E is isomorphic to M® by the assumption that M is a factor
and Ee(M°Y.

§ 8. Proof of Theorem 1(4)

The existence of an extension of an extremal g,-KMS state ¢ of 2 to an extremal
0.-a,-KMS state ¢" of W is proved first in several steps:

Step 1. The case H=G", where H is defined for ¢~ in Theorem 3.

Let M and M¢ be as in Section 7. There exists a conditional expectation &
from M onto its center relative to the normal extension of ¢~ For xeM,
&(x)e MNM' is uniquely defined by

(2, &(x)zQ2)=(Q, xzQ), ze MM’ . 8.1
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For a®b in Corollary to Theorem 3, with ae L*(H") and be M¢, we have

U*a®b)U)=U*a®1)U(L, bQ) . 8.2)
In particular, for xe M€, we have UxU* = 1,,® xE and hence
a(x)=(Q, x)1 . (8.3)

Any element ge H"~G (H=G" in the present case) defines a pure state x, on
C(G) which has an extension to a pure state y~, of UMM )U*(x,(p.,)=p(9))-
We define

@)=y 1(Ue{n,(a)}U*), ac A . (8.4)
From (8.4), ¢ is clearly a state of 2. By (8.3),
@(@)=(a), ac A . (8.5)

Next we prove that ¢"is primary. Let M, be the *-subalgebra of M generated
by e7(M), qe G". [t is the linear hull of ¢ (M), ge G".] For xe M, let

n(x)= ), EU}xEe Mg, (8.6)
peH
where the sum converges because it reduces to a single term p=gq for xe&™(M).
For x;ee”, (M), i=1, 2, we have

n(x,)m(x,) = Uk x, Uk x,E

=Uy X1 X E=n(x;x,),

n(x)*=xTU,E=U, x{E=n(x}),
and hence 7 is a *-representation. Obviously

@ n(x)2)= Y (@, EU*xEQ)

peH

=1 1(Ue(x)U¥). (8.7)

Since i(M%)Q = MSQis densein EH=9,, om~and £ are the cyclic representation
and the cyclic vector associated with the restriction of ¢" defined by (8.4) to the
subalgebra U, of A generated by ¢,(A), ge G". Since ¢ is a state of A and A, is
dense in A, mwom,~ has a continuous extension to the cyclic representation of U
associated with ¢". We already know by (8.6) that n{m(2,)} is in M§. Since
T (A% =7,-(U%);, we have n(n,-(A%))" = Mg, which is a factor. Hence ¢" is
primary.

Finally, we prove that ¢"is a g,°a,-KMS state. Since ¢~ is a g,°a,-KMS state
of A, the modular automorphisms of L*(H")® M$ relative to 1,,,® induces
the automorphisms Uz, (a)U* - U 5(g, °2(a)) U*. On the other hand, the modular
operator for 1,,,®Q is 1® 4, where A, is the modular operator for Q and M€,
because L®(H") is commutative. Since ¢ is a ¢,-KMS state, A5x4, =07(x)=
0~ (x) for xe MS. Since 4% induces the modular automorphisms of ¢”, we have

of {n(x)}=A45UsxEA"
=0 (Uyx)E=0"0 (U)o 0 (x)E
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for xee™(M). Since U? is in the center and ¢ "is a g, ca,-KMS state, o0 (U%)=Uj.
Hence

of (n(x))=Ujo 0 (x)E=mn(0"a"(x)). (8.8)

This shows that ¢"is a g,°a,-KMS state. Since it is primary, we have shown the
existence of an extremal g, ca,-K MS state ¢, whose restriction to A€ is the given o,
for the case H=G".

Step 2. The general case.

Let G,=H" [the set of ge G such that p(g)=1 for all pe H]. Let A% be the
set of ae U satisfying g(a)=a for all ge G,,. It is G-invariant as a set. The G-invariant
extension of ¢ to A is the restriction of ¢~ to A% and the associated cyclic
representation is obtained by restricting 7,-(a), ae A%, to the subspace E,H=
Y. 9, Obviously A% is generated by ¢ (), pe H, and hence 7,-(A)” is generated

peH
by U,, pe H and A°. Hence by Step 1, there exists an extremal g,o0,-KMS state
@ of A% whose restriction to WS is ¢.

We now show that the unique G,-invariant extension

@”(a)=<p‘o< I gadg), ae¥, 8.9

Go

is an extremal g,-0,-KMS state of 2, whose restriction to A is ¢.

Since ¢,°x, commutes with all geG, ¢, () is g,cx-invariant as a set. Let
a;€,(W), 0,°0(az)=ay(t). We have

@aa,(t)=0 if q,q,¢H
=@ o(a1a,(t)) if giq9,=peH. (8.10)

The G-invariant extension ¢ of ¢ to 2% is obviously the restriction (to %)
of the G-invariant extension ¢~ (to ) of ¢. Hence the restriction of 7,- to the
cyclic subspace {r(A)Q}~ is the cyclic representation associated with ¢.
Hence by (8.7) we obtain for q,q,=peH

¢ olaa5(0))= @ (Uym,(a,a,(1))

=(Q, Uknz(ay)of (n,(a,))Q). 8.11)
Similarly
@ay(t)a)=(Q, Uiaf (n,(a,))m,(a,)Q)
=(Q5 07 (n,(a)Ukn,(a,)Q) . (8.12)

Hence ¢7a,0,°0(a,)) satisfies the statement of the KMS-condition for all a,
and a, in a dense *-subalgebra U, of 2. By a standard argument, ¢ " satisfies the
KMS-condition relative to g, ca,.

We prove that ¢~ is extremal by showing that it is primary in the next step.
Step 3. ¢” is primary.

We use the notation of Theorem 3 and its proof. For xe M,,, we define

n(x)= Y EU}XE. (8.13)

peH
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For xe&™(M), the convergence of the sum is seen by the following computation:

L EUPE®|*= ¥ [ Upqne > < X711

peH

where E®=) ®,, ®,€9, and p(q, r)e H is uniquely determined by p(q, )~ 'grel.
Since U, is in the center of M and U -, = U}, n(x)* = n(x*) follows. We also have

n(x)n(x,)= ), EUjx,EU}x,E
p1:p2
= Z EU;‘;xlUszU:zsz
p,p2

=Y EU¥x;x,E=mn(x,x,)
p

for x;,x,eM where U,EU¥, is the projection operator onto Y $,,, and its

rel

sum over p,€ H is 1. Hence 7 is a *-representation of M,,.
Since n(e (M))Q=¢"(M)Q, rel, Q is cyclic for n(M,) in E$ and hence cyclic
for mom, (Wp) in EH. Since

@ 10 = Y (@, U*xQ) (8.14)

peH

which vanishes for xee™ (M), ¢ H and coincides with ¢(a) for x=m,(a),

ace,(N), peH [or ae(W®),], mom; has a continuous extension to a cyclic re-
presentation of U with the cyclic vector Q associated with ¢".

For xee™ (M), we have n(x)*n(x)=mn(x*x)=x*xE. Since M€ is isomorphic to
M¢ and x*xe M€, mis faithful on each ¢ (M) and ||n(x) | = || x||. Let x, be a uniformly
bounded net in ¢7,(M) such that n(x,) is weakly convergent. Then n(x,)Q2=Ujx,Q2
is weakly convergent for a fixed p satisfying p~'qel. Hence x,yQ is weakly
convergent for all ye M'. Since Q is separating for M due to Theorem 2(2), M'Q2
is dense and hence the uniformly bounded net x, is convergent. Hence w-limx, =
xee (M) and n(x,) is weakly convergent to 7(x). This shows that the unit ball
of n(e"(M)) is weakly closed. Since n(e”,(M)) is linear, it is weakly closed.

Let
&(a)= § g(a)s(g)*dg , (8.15)

£ (%)= Gj' g (x)s(g)*dg , (8.16)

where se€ G, ae ¥, xe M. In particular ¢)(2) =A% and ¢ )(M) = (A%)"= M.
The dual G*, of Go=H" can be identified with G"/H, the restriction of ge G” to
G, being the corresponding element of G*,. Each ¢2(2) and ¢%(M) are generated
by &, (), gH =s, and (M), gH =s, respectively. Since n(e",(M)) =n(e", (M), pe H
[because &7, (M)=U & (M)], we see that the weak closure of o (e2(2)) is
n(e”,(M)) for any one g satisfying q(g) = s(g) for ge G,,.

For q ¢ H, ¢7,(M) does not contain non-zero central element. Hence for any
xe & (M), there exists ¢'e G" and ye e (M) such that [x, y] is a non-zero element
of £7,,(M). Hence [n(x), n(y)]=n([x,y]) is a non-zero element of n(e”,,(M)).
Hence the weak closure of non¢-(sg(91)) for s+1 does not contain any non-zero
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central element. We already know that mom (%) is a factor [and is equal to
n(M®)]. By the analysis of the center of M in the proof of Theorem 3, applied to
the Gy-invariant extension ¢~ of an extremal g, ca,-KMS state ¢°, of A% to U,
shows then that the cyclic representation momn,- associated with ¢ is primary,
i.e. its weak closure is a factor. Q.E.D.

The rest of Theorem 1(4) is proved as follows: Since the restriction of ¢~
to A is ¢, it is immediate that ¢ ™= ¢ ogdg. Let ¢ be the conditional expectation
from M onto its center relative to . Since (7.4) implies UU ,U*=p,,®1, the
center of M is mapped onto L*(H)®1 by the unitary map U. From (7.4), it is
then immediately seen that for xe M|,

o(x)=U* { Y (2, UEXQ)(po, ® 1)}U. (8.17)

peH

By comparing (8.17) with (8.14), we see that
1 {Ue(m(a)U*}=07(a), (8.18)

which shows that ¢ ™= [@ egdg is the central decomposition of a state in usual
sense.

Both ¢”og, and ¢"-g, are extremal g,o0,-KMS states. It is known that two
extremal KMS states are disjoint unless they are the same. Since ¢” is not
identically zero on e (), pe H, g, and ¢ g, are different unless p(g,)=p(g,)
for all peH, i.e. unless g,g; '€ G, On the other hand ¢"is G-invariant. Hence
¢ og, and ¢ og, are equal if g,g, '€ G, and are disjoint otherwise.

§ 9. Additional Remarks

1. Sectors. By Lemma 6, there exists either isometric or co-isometric operator in
each ¢ (M). If M€ is properly infinite, then there exists a unitary operator in
each ¢7(M). If MC€ is finite, then this is not the case in general, as is known for
homogeneous states of type 111, factors [3, 1]. For a non-zero partial isometry u
in £7(M), the ratio

d,=dimuy*/dimu*u>0 9.1)

is independent of u and depends only on g. From u,vu,ee, (M) for u;ee™, (M)
and ve MY, it easily follows that d,d,,=d,,,,. Hence geG">d,>0 is a group
homomorphism. A special situation arises if G is a one-dimensional torus. Then
G"is the group of integers. Hence either d,=1 for all g or d,+1 for all g=+1. The
condition d,=1 is obviously necessary and sufficient for ¢7(M) to contain a
unitary operator.

Since 7,(AY)"=MC is a factor, representations of A® in different sectors
9, g G, are all quasi-equivalent. If there exists a unitary u, in ¢”(M), ge G", then
representations of A¢ in sectors $,, and 9,, are unitarily equivalent through
Jjolu)e M" if q,=qq, [because the modular conjugation operator J, and U(g)
defined in Section 3 commute]. Thus representations of A¢ in all sectors are
unitarily equivalent if M€ is properly infinite, while representations of ¢ in
sectors with the same d(g) are unitarily equivalent if MY is finite. In the case of
finite M, the restriction of M to $, has a cyclic and separating vector Q and
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hence has the coupling number 1. If d(g)>1, then there exists a co-isometry u
in ¢7(M) and dimu*u=d(q)~'. By the transformation u*, §, is mapped to u*u$,,
the restriction of MY to $, and its commutant are mapped to the restriction of
M€ to u*u$, and its commutant and hence M on $, has the coupling number
d(g). This implies that representations of A¢ in sectors with different d(q) are not
unitarily equivalent.

2. The case where Assumption B is violated. We first give typical examples:

Example 1. Let A be the CAR algebra for a non-relativistic Fermion. Let g, be
trivial. Let G be the group T=R mod2n of gauge transformations og(ip)=e“y.
Assumption A is satisfied by asymptotic abelian property under spatial transla-
tions, 4 consisting of one character p,(o) =€ and b'? for p=p, being b,=y(f,)
with support of f, tending to infinity. Consider the Fock vacuum state w. The
restriction m, of w to A€ is a character of A yielding one-dimensional representa-
tion of AC. Hence w, is tracial and is an extremal o,-KMS state (for any tem-
perature) of A°. However Assumption B is violated because w, vanishes on
b¥b, for all n. @ is not faithful on A and has a one sided spectrum as far as the
associated representation of G=T is concerned.

Example 2. Let # be a C*-algebra with a continuous one-parameter group #, of
*-automorphisms and an extremal #,-KMS state w,. Consider the algebra AR #
with 9,=1®#, and G=T ® 1. Assumption A is satisfied with b,®1 playing the
role of b for p=p,. The state ¢ = w, ® o, is an extremal o,-KMS state of (A ® %)¢
=ATR4A.

At least some aspect of these examples is quite general. Consider the case
where G=T, Assumption A is satisfied by some b,=b{? for p=p, and ¢ is an
extremal ¢-KMS state of A°. Let §, be defined by (7.1) for the G-invariant exten-
sion ¢~ of @ to . Let E, be the orthogonal projection on $,, g€ G". The set of ge G
satisfying $,+0 is called the spectrum of (the representation of) G on $,-.

If Assumption B is satisfied, then this spectrum is G" consisting of p,(otg) = €™,
neZ. We now prove the following assertion:

If Assumption B is violated, then the spectrum of G on $,- consists of p, with
n=0 alone or p, with n<0 alone. Furthermore E,e M and M is a factor.

Proof of this assertion is as follows: From Assumption A, f,(t) and g,(t) of
(4.3) are in M A M’, which must be multiples of the identity operator by Lemma 2.
Since ¢ is primary, Assumption B is violated only if ¢(b}b,)=0 for all n or
@(b,b¥)=0 for all n. Hence g,,(t)=0 or f, (t)=0. By Assumption A, f,(0)%0 or
9,,(0)=+0.

Consider the case g,,(1)=0, f,,(0)#0. By the same argument as proof of
Lemma 3, we obtain ¢(a*a)=0 for any aee, () with p=p, n>0. Hence the
spectrum of G on §,- is one-sided, consisting of p, with n=0 alone.

If ye M’ and xe M, we have

(e75(¥)Q, y2)=(8, ye (x)*2)=0
for p=p,, n<0 because £ ,(x)*Qe$H,  =0. Hence yQe9H,, for all yeM'. This
implies

UlgyU(9)*Q=Ul(g)y2=yQ, ye M’
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where U(g) is defined by (3.2). Since U(g)yU(g)*e M’ for ye M’ and since Q is
separating for M’ (being cyclic for M), we have [U(g), y]=0. Hence U(g)e M and
EeM.

! Since ¢ is an extremal KMS state, the restriction of M to $,, is a factor. Hence
therestriction of M’ to ,, is also a factor, due to (Mg, =(Mg, ). Since Q is
separating for M’, the restriction of M’ to §,, is isomorphic to M. Hence M’ is a
factor, which implies that M is a factor.

The other alternative f, (0)=0 can be discussed similarly.

3. Uniqueness up to gauge for extension to clustering state.

If a state is invariant and ergodic (i.e. an extremal invariant state) under a
group of automorphisms such as 7, teR, or 71, neZ, then it satisfies a weak
clustering property:

nw(xety) —w(x)y(y)} =0, 0.2
where n(4)=lim T~* ? A, orlimN ™! g: Ay, -
0

n=1

If a sequence of *-automorphisms 7, of U satisfies
lim || [x, 7,(0)]1|=0, x, ye A, (9.3)

then any primary state p of U satisfies
lim {y(x7,(y)) ~p()p(y)}=0. (9.4)

Let us call y satisfying (9.2) or (9.4) clustering.
If every ge G commutes with g, or 7, above, then the following holds:

Proposition (Haag-Kastler). If clustering states vy, and v, of U have the same
restriction to NC, then p, =1, og for some geG.

Proof. Let H; be the subset of G” consisting of all p satisfying y,(x)+0 for some
xee,(A). Since x*1,(x)e AC,

1 (> =1 {1 (x*7,(x))} =1 {po(x*T,(x))} = [p(x)|* . ©.5)
Hence H,=H,=H.
If (e ) #0 for an e, e¢,(A), we define

c,=pae,)pqle,) .

By (9.5), [c,|=1.
Let xee, (). Then

pale) p(x)=n{y epT(x)}=n {U)z(ejfn(x))} =1,(e,)* P,(x) .
Hence
Wa(x)=c,p;(x), xee,(N), pe H (= H,). (9.6)
For p,, p,eH,, we have
e;‘;l’cn(epz)e Sq(‘)’[)(q = pl_ 1pZ) )
n{wie,,tle,,))} =wile, )pile,,) +0.
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Hence
q=p; 'p,eH, (c,) "¢, =¢,. 9.7)

This shows that H is a subgroup of G"and c,e H". Hence there exists ge G satisfying
¢,=plg) for peH.
We now have

Y,(x)=plghp1(x) =, (g(x)) 9.8)
firstly for xee (), peH, by (9.6), secondly for xee (), q ¢ H, because p,(x)=
w,(x)=0, and hence for all xe . Q.E.D.

If ¢ of Theorem 1(4) turns out to be either g, (or g,,) ergodic or 1, invariant
for some sequence of *-automorphisms commuting with G and satisfying (9.3)
(such as *-automorphisms of spatial translations), then this proposition is
applicable and ¢ og, ge G, are only clustering extensions of ¢ to 2.

Let G, be the closure of {n;teR} in G and ¢"= | ¢ ogd,g where d,g is

G

1
the normalized Haar measure on G,. If the time translation g, has an asymptotic
abelianness, then this ¢~ is ergodic and the above result is applicable, namely
@~°g, ge G, are unique extensions of ¢ to clustering states of U.

References

. Araki, H.: Publ. RIMS Kyoto Univ. 9, 1-—44 (1973)

. Haag,R., Kastler,D., Trych-Pohlmeyer, E. B.: Commun. math. Phys. 38, 173—193 (1974)

. Takesaki, M.: Acta Math. 131, 79—121 (1973)

. Araki, H., Kastler,D., Takesaki, M., Haag,R.: Extension of KMS states and chemical potential.
Commun. math. Phys., in press (1977)

AW N =

Communicated by G. Gallavotti

Received July 30, 1976





