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Abstract. Within the general framework of C*-algebra approach to mathe-
matical foundation of statistical mechanics, we prove a theorem which gives
a natural explanation for the appearance of the chemical potential (as a
thermodynamical parameter labelling equilibrium states) in the presence
of a symmetry (under gauge transformations of the first kind). As a symmetry,
we consider a compact abelian group G acting as *-automorphisms of a
C*-algebra 9Ϊ (quasi-local field algebra) and commuting (elementwise) with
the time translation automorphisms ρt of 91. Under a technical assumption
which is satisfied by examples of physical interest, we prove that the set of all
extremal ρΓKMS states φ (pure phases) of G-fixed-point subalgebra 9lG

(quasi-local observable algebra) of 51 satisfying a certain faithfulness condition
is in one-to-one correspondence with the set of all extremal G-invariant
^•o -̂KMS states φ~ of 9ί with α varying over one-parameter subgroups of G
(the specification of α being the specification of the chemical potential), where
the correspondence is that the restriction of φ~ to 9IG is φ.

§ 1. Introduction

In equilibrium statistical mechanics, one of basic problems is how to understand
the number of independent thermodynamic variables for equilibrium states of a
given system. In the Heisenberg picture, a mathematical description of a system
is given in terms of observables and its time translation. So-called KMS condition
picks out states labelled by a real parameter β; they are interpreted as equilibrium
states at inverse temperature β. The justification for such an interpretation has
been given by Haag et al. [2], who characterize KMS states by stability under
dynamical perturbation and then show that the stability condition is equivalent
to the KMS condition under some assumptions.

For given β, there may be many KMS states which can be labelled by ad-
ditional macroscopic variables. It is also useful to consider a family of time-
translations labelled by some external parameters (such as external magnetic
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field), which yields KMS-states parametrized by β and external parameters, in
general. However, there are examples such as gas in infinite continuum, where
text-books teach us that equilibrium states are parametrized not only by β but
also by other parameters such as the chemical potential μ. Moreover, the usual
prescription for equilibrium states with given β and μ does not give states satisfying
the KMS condition relative to a given time translation: it rather gives states
satisfying the KMS condition relative to a modified time translation, the modifica-
tion being given by a gauge transformation.

The purpose of this paper is to give a natural explanation for the chemical
potential as a label of equilibrium states. We consider a system with a symmetry
group G, which we assume to be compact and abelian. A typical example is the
additive group of real numbers modulo 2π, which acts as gauge transformations
of the first kind, changing a field ψ(x) to eιΘψ(x). The system is described by the
algebra 21 generated by quasi-local fields; its dynamics is described by one-
parameter group ρt of time translations, which commute with any symmetry
transformation geG.

Under some circumstances, one can take the view-point that only those
elements of 9Ϊ, which are invariant under the (gauge) symmetry transformations,
correspond to physical observables, the rest of 91 being a mathematical device.
The set 9IG of such elements is invariant (as a set) under the translations ρt and
the restriction of ρf to 9IG is the physical time translations. In this view-point,
equilibrium states should be KMS states of 9ΪG relative to the restriction of ρt to
9lG. (We call them simply ρ Γ KMS states of 9ϊG.) In particular, extremal ρ Γ KMS
states of 9IG are interpreted as pure phases.

In order to study ρf-KMS states of 9IG, we are entitled to discuss mathematically
their extentions to 91 as states. It is an immediate consequence of the compactness
of G that each state φ of 9IG has a unique extention to a G-invariant state φ~of 91.
It is also immediate that if a state φ~ of 91 satisfies the KMS condition relative to
ρf αt for some one-parameter subgroup αf of G, then the restriction φ of φ~to 9ίG

is a ρ Γ KMS state of 9lG.
Our main result is that the extention φ~oϊ a pure phase φ of 9IG is an extremal

G-in variant ρt αt-KMS state for some one-parameter subgroup at of G and that the
restriction φ of an extremal G-in variant ρt α Γ KMS state φ~ of 91 to 9IG is a pure
phase. As a consequence, pure phases of 9IG are in one-to-one correspondence with
extremal G-in variant ρf αf states of 91 with αf varying over one-parameter sub-
groups of G, the correspondence being given by restriction and extension. If G is a
one-parameter group, say yt with y2π

 = identity, then at = yμt where the real param-
eter μ labelling different one-parameter subgroups is the chemical potential.

It may happen that the extremal G-invariant ρf α Γ KMS state φ~is not extremal
Qt'O^-KMS state. In that case, the central decomposition of φ~ yields extremal
ρt αf-KMS states whose restriction to 9IG are all equal to the extremal ρf-KMS
state φ. Conversely, if φΛ is an extremal ρt αt-KMS state, then its restriction φ
to 9ίG is an extremal ρ Γ KMS state of 9IG and φ" is in the central decomposition
of the G-invariant extention φ~ of φ to 91. This describes the situation of a broken
symmetry.

Our results described above depends on an assumption on the algebra 91 and
its time translation ρt. The main assumption which is described in detail in the
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next section will be satisfied if the field asymptotically commutes with observables
at large space separation and contains non-trivial elements on which G acts as a
multiplication of its character such that characters associated with such elements
generates the dual of G. In addition to these assumptions on the algebra, we also
assume a certain faithfulness condition on the state φ of 9ίG. When this assumption
for φ is violated, G has one-sided spectrum on the cyclic space associated with φ",
as is discussed in the last section.

A generalization of the present result to a compact non-abelian symmetry
group G will be given in a subsequent paper.

Independently the same problem has been studied in [4]. In [4], main as-
sumption on the algebra is asymptotic abelianness relative to automorphisms τ"
commuting with the time translation and gauge transformations.

Our Assumption A has a somewhat stronger requirement in the sense that
it requires the existence of an operator b{p) satisfying b ( p )*b ( p ) + b ( p ) b ( p ) *^l and
transforming under gauge group G as an irreducible representation p for a set
of p generating the dual of G. [b{

n

p) in Assumption (A) is then taken to be τn(b{p)) ]
In a given model, however, such assumption is easy to check.

On the other hand our Assumption A has a somewhat weaker requirement in
the sense that the asymptotic abelianness needed here is between an observable
(elements of 9lG) and an arbitrary element and not between arbitrary elements.
This point is the first advantage of the present approach over that in [4].

Our Assumption B is to exclude the case of one-sided«spectrum [cf.
Section 9 (2)]. In [4], the case where Assumption B is not satisfied is fully analyzed.

In [4], the state under consideration (restricted to the observable algebra)
is assumed to be invariant under τn mentioned above. If τ is time translation, this
is automatic but the asymptotic abelianness relative to time is hard to prove in a
given model. If τ is not time translation, then the invariance of the state under τn

is an assumption. In the present approach, the case of non-invariant state is
included. This is the second advantage of the present approach over that in [4].

In [4], the gauge group G is any compact group, while we assumed G to be
an abelian compact group here.

§ 2. Main Theorems

We consider a C*-dynamical system, namely a C*-algebra 91 with an identity 1
and a one-parameter group of ^-automorphisms qt(teW) of 91 such that t-+ρt(x)
is continuous for each xe 9Ϊ. Let G be a compact abelian group of *-automorphisms
of 91 commuting with ρp ί e R The set of all elements x of 9ί satisfying g(χ) = χ
for all geG is denoted by 9ίG. It is a C*-subalgebra of 91 containing 1. For each
unitary character p of G (i.e. peG\ we define

where dg is the normalized Haar measure. For the identity p = l , we have 9IG

βi(9ί).

We make the following assumption.
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Assumption A. There exists a sequence b^e εp(3l) for each peA for some generating
subset Δ of G", with the following properties:

(a) sup||ί>W||<oo.

(b) (b\w + Wψ»)*}tl.
(c) lim ||[&<?>, x] || = Ofor all xe'Ά0.

(d) lim || Wn

p))*Qt(bl!>\ x]|| = lim | | I Q M ^ W / Y , X]|| = 0, for all xe<Ά.
n n

(e) fe(bi,p)); w=l, 2,...} is αw equicontinuous family of continuous functions
of t for each pe A.

For technical reason we also assume the following:

Assumption B. For each pεA,

where πφ is the cyclic representation of 9IG associated with φ and sc denotes the
central support in πφ(9ίG)".

Our main result is summarized in the following theorem :

Theorem 1. Under Assumption A, the following holds:
(1) // φ is an extremal ρ Γ KMS state of 9IG satisfying Assumption B, then

φ~=φo£ι is an extremal G-ίnvariant Qt-at-KMS state of 91 for a one-parameter
subgroup αr of G.

(2) If φ" is a ρf αf-KMS state of 91 for a one-parameter subgroup oct of G, then
the restriction φ of φΛ to 9IG is a ρ Γ KMS state of 9IG satisfying Assumption B.
If φΛ is primary, then φ is an extremal ρ Γ KMS state of 9IG. / / φ " is G-invariant, then
φ"=φ°sί. If φ" is extremal among G-invarίant ρ^αj-KMS states of % then φ is
an extremal ρ Γ KMS state of 9ίG.

(3) Extremal ρ Γ KMS states of 9ίG satisfying Assumption B are in one-to-one
correspondence with extremal G-invariant ρ^α^KMS states of 91 with a varying
over one-parameter subgroups of G, where the correspondence is through restriction
and G-invariant extension.

(4) For any extremal ρ Γ KMS state φ of 9IG satisfying Assumption B, there
exists an extremal ρ foαΓKMS state φ" for some one-parameter subgroup (xt of G
such that its restriction to 9IG is φ. If φ"°gιz¥φ"°g2 for Qi and Qie^ then the
cyclic representations associated with φΛ°g1 and φΛ°g2 are disjoint. The central
decomposition of the G-invariant extension φ~ of φ to 91 is given by

Remark 1. It is well-known that a KMS state φ of a C*-algebra 91 relative to a
continuous one-parameter group of *-automorphisms is extremal if and only
if it is primary [i.e. the center of the weak closure π(9I)" of the cyclic representation
πφ associated with φ is trivial].

Remark 2. An example of the case satisfying the Assumption A is given by quantum
spin lattice system, where we may take (mathematically) G to be the (spin) rotation
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group around the z-axis. Let in be lattice sites tending to infinity as n->oo, A
consist of just one character eiθ and bn (for this character) be the spin operator
σx + iσy at in-th lattice site. Then Assumption A is clearly satisfied and hence the
conclusion of Theorem 1 holds.

Remark 3. The items (c) and (d) in Assumption A obviously follow from the
following stronger but simpler assumption: lim \\[b{

n

p), x] || = 0 for all xeSΆ. How-
n

ever, we want to avoid the assumption of such a kind that amounts to assuming
asymptotic commutativity of fields at large space distance. In the stated form of
Assumption A, it follows from asymptotic commutativity of observables with
fields. The assumption (e) along with other assumptions are satisfied in
asymptotically abelian system, i.e. if there exists a sequence of automorphisms
τn of 21 commuting with ρt and G such that lim ||[τM(α), b ] | | = 0 for any αe?l G

n

and be<Ά and if there exists b{p)eεp(<Ά) for pen such that bipψpψ + (bip))*b{p)^L

Remark 4. If φ is an extremal ρ Γ KMS state, Assumption B is equivalent to the
requirement that πφ((b{

n

p))*b{

n

p)) and π^bί^bί^)*) are non-zero for some n and m.
[It can be weakened to the requirement that πφ(α*α)+0 for some αeεp(9I) for
each p e z l u z F 1 . ] The situation where Assumption B is violated is discussed in
Section 9. It leads to a one-sided spectrum (temperature 0) for the representation
of G associated with φ~ when G is one-dimensional torus.

Remark5. φΛ of Theorem 1(4) might be non-invariant under time translation,
possibly periodic or aperiodic.

The situation for a general ρ Γ KMS state of $lG is contained in the following
theorem:

Theorem 2. Under Assumption A, the following holds for any G-invariant state φ~
of 91, whose restriction to UtG is a ρ Γ KMS state φ of 9ίG satisfying Assumption B.

(1) For M=πψ(SΆ)ff and MG = π7β(
ς$ίG)'\ the center of MG is contained in the

center of M.
(2) The cyclic vector Ω associated with φ~ is separating for M.
(3) // φ is an extremal ρ Γ KMS state, then MG is a factor.

Remark 6. The central decomposition of φ is so-to-speak the diagonalization of
the center of MG and is known to coincide with a decomposition into extremal
ρ Γ KMS states. The central decomposition

φ = $ξdμ(ξ)

of φ into extremal ρ Γ KMS states ξ of 9ίG induce a decomposition of φ~=φ°ε 1 :

which is so-to-speak a decomposition diagonalizing the center of MG. By Theorem
2(1), this will be a part of the central decomposition of φ", which can be achieved
by combining the central decompositions of ξ~ with the above decomposition.
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§ 3. Preliminaries

Theorem 1 (1) contains three assertions: φ~ is G-invariant, φ~ is a ρ^α^-KMS
state of 21 for some α and φ~is extremal among G-invariant ρf αf-KMS states.
The first assertion is immediate from the definition φ " = φ o δ l due to ει°g = ε1

for all geG. The second assertion is most important part which occupies the
main portion of Section 5. The third assertion is proved without Assumption A.
We start with the proof of the third assertion, which obviously follows from the
following two Lemmas, where

M=πΨ(W,MG = πφ(<ΆGγ. (3.1)

Lemma 1. A G-invariant ρ^o^-KMS state φ~ of 21 is extremal among such states
if and only if MGnMf is trivial.

Lemma 2. // φ~ is a G-invariant ρt at-KJΛS state of 2Ϊ and if the restriction of φ~
to 2ΪG is an extremal ρ Γ KMS state, then MGnM' is trivial

Before presenting the proof of these Lemmas, we introduce a few notations
connected with a G-invariant state φ~of 21 and the associated cyclic representation
n^. By G-in variance of φ~, there exists a continuous unitary representation U(g\
geG, of G such that

U(g)πΨ (a)Ω = π^ (ga)Ω, ae 21. (3.2)

The continuous extension of geG to M=π$ (91)" is defined by

g-(x)= U(g)xU(g)*9 xe M. (3.3)

The continuous extension of εp, peG", to M is defined by

ε" (x) = $p(g)*g-(x)dg, xeM,peG\ (3.4)

Since ε~p is continuous, πψ (εp(9I)) is dense in ε~p(M). In particular the set of G-
invariant elements of M is given by ε~1(M) = π^(9IG)// = MG. More generally,
ε~p(M) is the set of all xe M satisfying g(x) = p(g)x for all geG. Hence ε~p(M)ε~q(M) C
ε-pq(M).

Proof of Lemma 1. Let e be a projection operator in MGnM. Since e is in the
center of M,

-e ( 3 5 )

and both φ~e and φ~Ί_e are ρ ^ - K M S states, where φ~E denotes the normal
linear functional on M defined by a vector eΩ. ( φ ^ ^ φ ' a n d φ~0 = 0.) Since e is
invariant under g~for all geG, both φ~e and φ~ι-e are G-invariant. If φ~e = kφ~
for a number fc, then

Kπ^x^Ω, πφ(x2)Ω) = (πφ{xί)Ω, eπφ(x2)Ω)

due to eeM\ and hence e = k l due to the cyclicity of Ω. Hence e = l or 0. This
implies that MGr\M is trivial if φ~ is extremal among G-invariant ρf αt-KMS
states.

To prove the converse assertion, we assume that

(3 6 )
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where φ~a and φ~b are both G-invariant ρ^o^-KMS positive linear functionals.
Since φ~a<*φ~, there exists an operator aeMf such that 0<;α<Ξl and φ~a is given
as the vector linear functional by the vector aΩ. The assumption that φ""and φ~a

are both ρ^αj-KMS positive linear functionals implies that a is in the center of M.
The G-in variance of φ~a implies that g~(a) = a for all geG. Hence a is in MGnMf.
If MGr\M is trivial, then a must be a multiple of the identity and hence φ~a is a
multiple of φ~. Therefore, φ~is an extremal G-invariant ρr αf-KMS state if MGr\M
is trivial. Q.E.D.

Proof of Lemma 2 If the restriction of φ~ to 9IG is an extremal KMS-state, then
the restriction of MG = π(2lG)" to the cyclic subspace ξ>λ = MGΩ is a factor. Since Ω
is M-cyclic, (Mn M')-support of Ω is 1, namely Ω is separating for MnM and
hence for its subalgebra MGnM\ Since MGc\M is contained in the center of MG,
the restriction of MGc\M to § x is trivial. Since Ω e ^ is separating for MGr\M\
this implies that MGnM' is trivial. Q.E.D.

§ 4. Proof of Theorem 2

We first prove a technical Lemma, which is actually an implicit form of ^°a (-KMS
condition for φ~.

Lemma 3. Let $Fγ be the algebra of bounded continuous functions on the strip

region

(4.1)

which are holomorphic in the interior of T and J^ be the algebra of (MnM')-valued
entire functions which are uniformly bounded on T. For each qeGΛ, there exist Fq

and Gq in 3F such that support projections s(Fq(ή) and s(Gq(t)) satisfy

lim sup s(FJt))= lim sups(Giί))=l
ε-» + 0 | ί | < ε ε ^ + 0 | ί | < ε

x,b(t) = (Ω,x*πΦ(ρt(b))Fq(t)Ω),

and for any xeε q(M) and fceε^(2l), there exists an Fxbe^ί satisfying

c*ττ-(n(hVlF ίt\O\ ϊ

(4.2)

For each qv q2eGΛ, it is possible to choose Fs and G's 50 that FqiFq2 = Fqιq2 and

Proof. For given b{p) in Assumption A, Qt{b{p)) satisfies all conditions for b{p) and
hence

for ε > 0 also satisfies all conditions of Assumption A except for possibly (b).
Since b~(

n

p)-+b{

n

p) in norm as ε-»+0, λblp) for small ε and large λ will satisfy all
conditions for b{

n

p). In addition, ρt(b~{

n

p)) is an entire function of t. In the following,
we assume that this replacement has been made in Assumption A. We then have
Qz(b{nP)) for all complex z and Assumptions A(a), (c), (d), and (e) are satisfied even
when t is replaced by z.
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Since (bj,p))* satisfies all conditions for b%\ q = p~ί, we assume that p~ιeA
if peA and use (b^p))* for b(

n

p - 1 ) if necessary. [This will be used in particular in
the proof of Theorem 2(1).]

By Assumption A and compactness argument, there exists a subnet n(v) such
that

exist (simultaneously for a finite number of p's if necessary). By Assumption A(d),
both fp{t) and gp(t) belong to MGnM'. By our choice of b(

n

p) and Assumption A(e),
both fp(t) and gp(t) are entire functions of ί. By Assumption A(b), we have /p(0) +

Let α,ί?6εβ(9I), g = Pi ..pn, PjeA. By ρ Γ KMS condition for φ, there exists
# Ί such that

F. ,(ί + 0 = φ~(ρt{b*b\!!i\...b{

nft\\*{a*b\Sl\...b&M),

for all real t. By taking limits successively for nets n(vn\ ..., n ^ ) and using As-
sumption A(c), we obtain

,(ί) = ( f t ^ ( α * # ) ) Π j

J
j = 1

By Assumption A(e), the limit is uniform over a compact set of t and the net is
uniformly bounded by Assumption A(a). By a standard argument, we obtain
[as the limit of F{v j}(z)] the desired Fabe^ satisfying (4.2) for χ = πφ(a) with

W = Π /P/Z)' W = Π ^P/2)

It is obvious from (4.4) that the decompositions qι=Πpp q2 = Πpf

p

(Πp'r)(ΠPj) will yield F s and G's satisfying_FβlFβ2 = F M 2 , GqιGq2 = Gqιq2.
As a net πφ (αα) tends *-strongly to xeε q{M), (4.2) approaches to

FXfb(t) = (β, x*π^ (QjtbWJβΩ) 1

J l '
uniformly over ί, and hence Fx<χih(z\ xa = 7iφ(aa), tends to FXib(z) in ^ satisfying
(4.5). [Note that Gg(ί)e MnM'.] Let q = peA,ebea. projection operator in MGr\M
such that efp(t) is zero in a neighbourhood of ί = 0, b = bi

fξ
) and x = eπφ (b). Then

Fx,b(z) is identically 0. Hence

II {^,j(0)π^(fcfe*)1/2β||2 = ̂ ( 0 = 0.

Since Ω is separating for the restriction of MG to the weak closure of MGΩ due to
ρ Γ KMS condition for φ, we obtain
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for all m, where ly~\ί denotes the restriction of yeMG to the weak closure of MGΩ.
Hence [,egp(0)']1 = 0 due to Assumption B. Since Ω is separating for M'DMGr\M',
we have egp{0) = 0. Hence e(fp(0) + gp(0)) = 0. Since fp(0) + gp(0)^l, we obtain
e = 0. This proves

lim sups(FJί)) = l (4.6)
ε-> + 0 |ί| <ε

for q — peΔ. The same proof works for Gq(ή.
The proof will be completed if we show that (4.6) for qx and q2 imply (4.6) for

9 l J t l J
Suppose that there exists a projection e in MGnM' such that eFqiq2(t) = 0 for

all | ί | ^ ε for some ε>0. Let ej{t) = e{i-s{Fqj{t))}. If e - e ^ φ O for ί = t0, then
there exists a non-zero e^e — e^if) such that eorge —^(ί) for all ί in some neigh-
bourhood of t=t0 due to the norm-continuity of Fqi(t). Hence e0Fq2(t)=0 for the
same neighbourhood and hence e0Fq2(t)=Q for all t by the analyticity. This
contradicts with (4.6) for q = q2. Hence e = ex(t) ̂  1 - s(Fqι(t)). This implies eFqι(t)=0
and hence ^ = 0 by (4.6) for q = qv Hence (4.6) holds for q = qiq2- The same proof
holds for G's. Q.E.D.

Proof of Theorem 2(1). It is enough to prove that xeMGn(MG)f commutes with

πφ(y)eπφ(εp(Wι) for all peA. Let aeεp(βί\ besq(W). Since y{b^*e^LG and

xe(MG)\ we have

(β, π^ (α)*xπ^

By Lemma 3, the analytic continuation in the variable t by an amount i yields

By taking v-limit and using Assumption A(c) and (e), we obtain an F e # Ί such
that

F(t) = (β, π^ (α)*xπ^ {yQt(b)}F(p-ψ)Fpq(t)Ω),

By Lemma 3, we obtain by our convention F(p-ί)Fpq = Fq and Gip-i)Gpq=Gφ the
following equality

(β, πψ (α*)[x, π^ (y)]πφ (ρt(fe))f β(ί)β) = 0,

for all real ί. Since b is an arbitrary element of εβ(9I), which is ρΓinvariant as a set
we may replace ρt(b) by b for each ί.

Hence

(πψ (α)β, [x, π^ (y)]F,(ί)^ (&)β) = 0 . (4.7)

The Equation (4.7) holds for αeεβl(2l) and ί7eεq2(3I) by G-invariance of φ~ if
^1^2 X + P a n d by the above argument if q1q21=P- Since π^(εr(8ϊ))β, reGΛ, is
total, we obtain [x, π$ (y)] Fq(t) = 0. By (4.6), we obtain [x, πφ (y)] = 0. Q.E.D.
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Remark. Assumption A(c) implies

w-lim[x,π 9(6^)*] = 0 (4.8)
n

for all xeMG. If (4.8) holds in the *-strong operator topology (instead of the weak
operator topology), then Theorem 2(1) has the following easy proof: For xeMGn
(MG)', we have

for any yeπψ (εp(9l)). By taking limit, we obtain [x, y']fp(Q)= [x, y]gp(0) = 0. Hence
fp(0)+gp(0)^l implies [x,y] = 0.

Proof of Theorem 2(2). Let Ω be the cyclic vector associated with φ~. The (MnM1)-
support of Ω is 1 because of the cyclicity of Ω. By Theorem 2(1), the center of MG

is contained in Mr\M and hence (MGn(MG)')-support of Ω is also 1. This implies
that MG is isomorphic to its restriction to the cyclic subspace

§ ! = the closure of π$ {SΆG)Ω . (4.9)

Since the normal extension of a KMS-state to the weak closure of the associated
cyclic representation is known to be faithful, Ω must be separating for the restric-
tion of MG to § 1 ? hence for MG itself.

Let xΩ = 0 and xeM. We have to prove x = 0. Since g~(x)Ω = U(g)xΩ = 0,
ε~p{x)Ω = 0 for all peG\ Hence

ε-p(x)*ε-p(x)Ω = 0

for ε~p(x)*ε~p(x)eMG. By (2), we obtain ε~p(x)*ε~p(x) = 0 and hence ε~p(x) = 0 for
ll

For aeε~p(M), we have

U(g)aΩ=U(g)aU(grΩ =

Hence for aeε~p(M) and beε~q(M), we have

(aΩ,xbΩ) = (aΩ, U(g)xU(g)*r(g)*bΩ)

= {aΩ,ε~r(x)bΩ) = 0

where r = pq~ί. Since {ε~p(M)Ω;peG"}is total, we obtain x = 0.

Proof of Theorem 2(3). A KMS state is extremal if and only if it is primary. Hence
the restriction of MG to § l 5 must be a factor if the restriction of φ~~to 9IG is an
extremal ρ Γ KMS state. By the above proof of (2), MG itself is a factor.

§ 5. Proof of Theorem 1 (1)

By Theorem 2(3), MG is a factor. In the following proof, we use Assumption A
and B only through the property that MG is a factor, except Lemma 5 where we
use Assumption A. We will not use Lemma 5 until the very end of Proof of
Theorem 1(1) where it is used in a trivial way.
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Lemma 4. // MG is a factor, then the set H of peGΛ such that ε~p(M)Φθ is a sub-
group of G".

Proof We know that M G = ε"1(M)Φ0. Let xeε~p(M) and xφO. Then x*eε~(M)
for q=p~ί. Hence ε~p(M)Φ0 and ε~q(M)Φθ are equivalent iϊ pq=l. Next, let
XιEε~p(M) and x^φO, ί = 1, 2. Then xfxιeMG and xμfeM0. Since M G is a factor,
there exists ueMG such that ( x f x J w ^ x D + O Then x 1 wx 2 +0 and x1ux2eε~q(M)
for q = p1p2. Q.E.D.

Lemma 5. H=GΛ.

Proof. Assumption A implies πφ (bJ,p))Φ0 for any φ~and peA. Q.E.D.

Lemma 6. // MG is a factor and ε~p(M)Φθ, then there exists either isometric or
co-isometric operator u in ε~p(M).

Proof Let xeε~p(M\x Φ 0. Then Λ e MG and hence |x| e MG. The polar decomposi-
tion X = M|X| gives a partially isometric operator u= lim ^(ε + l x ^ ^ ^ M )

Since xφO, w is non-zero. Let u*u = e, uu* = e'. They are projection operators
in MG. The map xeMG->xf = uxu*eMG is a *-isomorphism of MG onto MG.

First we consider the case where MG is properly infinite. Then there exist two
sets of projections {4 υ} a n < 3 {42)} with the same index set such that eψeMG,
eψeψ = Q for αφβ, ^ 4 J ' ) = 1J a ^ 4 υ a r e equivalent to e and all 4 2 ) a r e equivalent
to έ' [i.e. there exist uψeMG satisfying {u^}*uψ = e^\ tta){u£)}* = e, and
" i 2 ) M 2 ) }* = e/] where;= 1,2. Then

is a unitary operator in s~p(M).
Next we consider the case where MG is finite. We use the normalized dimension

of projections. Assume dime^dime'. Take n such that n(dime)^l and take a
projection eoeMG such that eo^e and dimβo = l/n. Take projections e%\
α = 1,..., n, j = 1,2 such that eψeMG, e{J}ef = 0 for α φ β d i m 4 υ = 1/n and dim4 2 )

= {dimef){ndime}~1. Then there exist uψeMG such that W i ^ Γ ^ ^ ^ ,
^1){w5t

1)}* = e0 and u{£){u{a)}* = ueou*. Then the operator U defined as before is
an isometry in ε~p(M). If dim e:§ dim e\ the same construction for u*eε~q(M) with
q = p~ί yields an isometry Ueε~q(M) and hence the co-isometry L7* is in ε~p(M).

Q.E.D.
We now present proof of Theorem 1(1). Since geG commutes with ρf, εp also

commutes with QV Since φ is ρΓinvariant, φ~ is also ρ^invariant. Let ρ~f be the
continuous extension of ρt to M, σf be the modular automorphisms of M [because
we know that φ~ is faithful on M due to Theorem 2(2)] relative to (the normal
extension of) φ~and

yt=Q--sof (5.1)

Since φ~ is ρΓinvariant, σf commutes with ρ~. Hence yt is a continuous one-
parameter group of ^-automorphisms of M.

By definition φ~=φ>εu
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holds for xe2ί and ye9lG. Since φ is a ρ Γ KMS state, ρt(y) satisfies the KMS
condition for φ~and hence

Hence yt is an identity automorphism on MG.
Let ε~p(M)Φ0. Then ε~β(M) = ε~p(M)*+0 for q=p~1. By Lemma 6, either

ε~p(M) or ε~q(M) has an isometry U. Suppose Ueε~p{M). Let xeε~p(M). Then

yt(x) = y ί(xl7* (7) = yf(xl7*)yt(l/) = xl/*yf(l/) = xut (5.2)

where i^ = U*yt(U). (We have used xl/*e MG.)
Since φ~is G-invariant, σf commutes with #~for all geG. Hence yt commutes

with g~"for all geG. Hence yt(U)eε~p(M\ which implies uteMG. Since UU*eMG,
we have UU* = yt{UU*\ which implies

yt(U) = l , (5.3)

utu* = U*yt(U)yt(U*)U = U*yt(UU*)U=U*(UU*)U=l. (5.4)

Hence ut is unitary. We also have

utus = utyt(us)= U*yt(UU*)yt+s(U) = ut+s, (5.5)

due to useMG. Hence ut is a continuous one-parameter group.
For xeM G , we have Uxeε~p(M) and hence

Uxut = γt(Ux) = yt(U)x = Uutx, (5.6)

where the last equality is due to Ueε~p(M), for example. By multiplying I/* from
the left, we obtain xut = utx for all xeMG. Hence ut is in the center of MG, which
means that ut = yt(p)l. Therefore

= TUP)*, xe ε~p(M). (5.7)

The Equation (5.7) defines yt(p) for each peH. If xeε~p(M) and peH, then
x*eε~q(M) for q = p~1 and /yί(p~1) = 'yί(p)*. If xeε~p(M) and yeε"g(M) are both
non-zero, then xuy in the proof of Lemma 4 is a non-zero element of ε~pq(M) and

yt(pq)xuy=yt(x)yt(u)yt(y) = yt{p)yt{q)xuy

and hence

Therefore yiei/: The dual /Γ of i/ can be identified with G/Go where Go is the
subgroup of G consisting of all geG on which peH takes the value 1. (G0 = H1.)
By Lemma 5, H = G". Hence there exists a continuous one-parameter subgroup
ateG satisfying

on εp(9I) for all p. Hence σf πφ =πφ ρtoct and hence φ~is ρt°oct-KMS. Q.E.D.
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§6. Proof of Theorem 1 (2) and (3)

We first prove that φ satisfies Assumption B. For any ae 5ΪG, pe A and n, there
exists jF f l f l Ie#i satisfying

(6.1)

Y, (6.2)

by ρf°αt-KMS condition for φ". By Assumption A, there exists a subnet n(v) such
that limits in (4.3) exists. Then there exists Fxe^ satisfying

Fx(t) = (Ω,xfp(t)Ω)p(at)\

Fx(t + ί) = (Ω,xgp(t)Ω)p(oιt)*,

for x = πφ (a) and hence for any xe MG.
For positive elements xe MG n M\ Fx(t) and Fx(t + ί) are positive type functions

of t because (6.1) and (6.2) are positive type functions. Hence they vanish identically
if they vanish at ί = 0. Since Ω is separating for M by ρt°αt-KMS condition for φ",
we have the equivalence of xfp(0)=0 and xgp(0) = 0. Since /p(O) + 0p(O)§:l, these
are equivalent to x = 0. Hence the supports of fp(0) and gp(0) are both 1.

Since Ω is separating for M, M° is isomorphic to its restriction to the closure
of MGΩ. If a central projection e of MG satisfies eπφi(b<

n

pψbi

n

p))=0 for all n, then
efp(0)=0 and hence e = 0. The same holds for b{Pψn

p))*. Therefore Assumption B
holds for the restriction φ of φ" to 9lG.

On ?tG, the action of ρ^α, is the same as that of ρt. Hence the statements of
KMS condition relative to ρ ^ and relative to ρt coincide for elements in 9ίG.
Therefore a restriction φ of a ρjoαj-KMS state φ~ of 21 to 9tG is a ρ Γ KMS state.
If φΛ is primary, then M G is a factor by Theorem 2(1). Hence φ is an extremal
ρ Γ KMS state. If φΛ is G-invariant, then φ" = φ"og for all geG and hence φ"=
φ"o£ί = φogv If φΛis extremal among G-invariant ρ^^-KMS states, then MGr\M
is trivial by Lemma 1. By Theorem 2(1), MG is a factor and hence φ is an extremal
ρ Γ KMS state. (3) follows from (1) and (2).

§ 7. The Structure of the Cyclic Representation Associated with φ

Let φ be an extremal ρ Γ KMS state of 9ίG, φ~ be its unique extention to a G-
invariant state of 91, M=πφ-(9I)" and M G = πφ-(2lG)''.

Theorem 3. Assume that MG is a factor. Let H be the set of peGΛ such that
ε"p(MnM')Φ0. Then H is a subgroup.

Let I be a subset of GΛ containing 1 such that IngΉ consists of one point for
every gΛeG". Let E be the projection operator on the subspace J] ξ>q where

ξ>q = the closure o/ε"(M)Ω, qeI (7.1)

Ω being the cyclic vector associated with φ~. Then there exists a unitary map U
from ξ>φ- onto L2{HΛ)® Eξ>φ~such that

UΦ=ΣPvcc®EU*Φ, (7.2)
peH

(7.3)

X Pop®EU*xE,xeM, (7.4)
peH
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where p v e c is p(h\ heH", as a vector in L2(ΐί\ p o p is the same function as a multiplica-
tion operator and Up is a unitary representation of H satisfying Upeέ~p(Mr\M'\
which exists.

Proof. We divide the proof into several steps.

Step i. The center MnM' is isomorphic to L°°(/Γ) with ^"acting as the translation
by [cβ e G/Go ~/Γ and a unitary representation Up of H corresponding to p o p :

Since M n M ' is G-invariant as a set, ε~p{MnM') is in M n M ' for all p. Since
MG is a factor, any u and v in ε~p(MnMf) have the property that uv* and v*u,
being in the center of MG, must be multiples of the identity. Hence each non-zero
ε~p(MnM') is a set of the form (Cup where up is unitary and C denotes the complex
numbers. Since 1 is in ε'^MnM'), we take uί = U1 = l. Since upiu*2eε~q(MnM')
and upιu*2 φ θ for q = PιP2 S the set if is a subgroup of GΛ.

Using the commutativity of wp, peH, we can find complex numbers θp of
modulus 1 such that Up = θpup is a unitary representation of H as follows. Suppose
we have been able to choose θp for all p in a subgroup f/t of H. We shall prove
that we can extend the choice θp (such that Up is a representation) for all p in a
subgroup H2 generated by H1 and an element h of H. Since the obvious choice
θί = 1 works for H x = {1}, this will prove the existence of desired θp for all peH
by induction. To extend θp from Hι to i/2> tet ^ i o be the intersection of Hx and
hΈ={hn;n = 0, ± 1,...}. Obviously i / 1 0 is a subgroup of /i\ and /zz and is a set
of the form hmΈ. If m = 0, we can choose Upk=Up{uh)

n for p e i ^ and /c=/z". If
m>0, we can choose Upk= UpU\ for peHi and fc=/z" where Uh is chosen so that
(Uh)

m=U{hm), Uihm) being already defined due to hmeHv The consistency and
representation property are immediate.

Since MnM' is generated by a faithful unitary representation of H, it is
isomorphic to ^(W) with Up corresponding to po p, where H" can be identified
with the compact group G/Go, Go being closed as the annihilator of H. Since
9~(Up) = p{g)Up, g~acts as the translation p(k)-^p(k-[g]) where [^] = ^G oeG/G o .

Step 2. The convergence of the sum in (7.2) and unitarity of U.

For x, ye M and p, ge G", we have

; U(g-1g')yΩ)dgdg'

Γ 1)yΩ)dg1dg', (7.5)

which vanishes for p + q. Hence the subspaces (7.1) are mutually orthogonal.
Since εp(2l), peG", is total in 21 and Ω is cyclic, we have

Let Φ = Σ Φq with Φqeξ>q. Each ge G^ has a unique decomposition g = p{q)r{q)
qeG~

with p{q)eH and r(q)eL Since £C/*Φ^=0 unless p{q) = p, the summation on the
right hand side of (7.2) can be written as

peiϊ
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Since (7*Φ p r e§ r , re/, are mutually orthogonal for each fixed p, and since p v e c ,
peH, are mutually orthogonal, we obtain the absolute convergence of

\\UΦ\\2=Σ Z l l ^ p r l l ^ i l * ! ! 2 . (7 8)
peH rel

Hence the summation in (7.2) is strongly convergent for any Φ. A similar calcula-
tion shows that U is isometric:

(UΨ, UΦ)= Σ Σ (tfJTpr, U*pΦpr) = (Ψ, Φ). (7.9)
peH rel

The vector p v e c is a complete orthonormal basis in L2(Hy For each fixed p, any
vector Φ0eE9)φ- can be written as Φ o = ^ Φ O r ,Φ O r G§ r , and hence the choice

Φ=ΣUPΦor (with | |Φ | | 2 = Σ l|Φ0,ll2=l|ΦollΓconvergent) yields t/Φ=p v e c(x)Φ 0 .

Hence the image of U contains a total set and hence U is a unitary map onto

Step 3. Proof of (73) and (7A). The Equation (7.3) is a special case of (7.2). The
Equation (7.4) follows from the following computation for Φ = ]

{UxU*){UΦ)=UxΦ= Σ Pvec®EU*xΦ

peH

peH p'eH rel

= Σ (PP'~1)oVPvec®EU*Up,χΣ U$Φp,r
P,p' rel

= Σ(P'όv®EUΐ"xE)(tiec®P"P' \

P" °P P Q.E.D.

Corollary. IfH = G\ then Eξ>ψ- = ξ)xand UMU* = L°°(H0® M%

Proof. By definition of E, Eξ>φ-=9)1. From (7.4). UxU* for xeM is clearly in
L^{HΛ)®EME. Since M is generated by ε~q(M), qeG\ and Eε~q(M)E = 0 unless
^ = 1, we have EME = Eε~1(M)E = MGE. Q.E.D.

We note that MGE is isomorphic to MG by the assumption that MG is a factor
and Ee(MG)f.

§ 8. Proof of Theorem 1(4)

The existence of an extension of an extremal ρ Γ KMS state φ of 2IG to an extremal
ρt α Γ KMS state φΛ of 91 is proved first in several steps:

Step 1. The case H=G", where H is defined for φ~ in Theorem 3.

Let M and MG be as in Section 7. There exists a conditional expectation ε
from M onto its center relative to the normal extension of φ~: For xeM,
E(X)EMΓΛM is uniquely defined by

(Ω, φc)zΩ) = (Ω, xzΩ), zeMnM'. (8.1)



226 H. Araki and A. Kishimoto

For a®b in Corollary to Theorem 3, with α e L 0 0 ^ " ) and beM% we have

ε(ί7*(fl(8)ft)l/)= l/*(α(g) l)l/(Ω, bΩ). (8.2)

In particular, for xeMG, we have UxU* = l o p ® xE and hence

ε{x) = (Ω,xΩ)l. (8.3)

Any element geH"~G (H = GΛ in the present case) defines a pure state χ^ on
C(G) which has an extension to a pure state χ~̂  of [/(MnM')[/*(χ9(pop) =
We define

^ (8.4)

From (8.4), φΛ is clearly a state of 21. By (8.3),

φXa) = φ{a\aeKG. (8.5)

Next we prove that φΛ is primary. Let M o be the *-subalgebra of M generated
by ε"g(M), geG'. [It is the linear hull of ε~q(M\ qeG".~] For xeM0, let

π(x) = X ££/*x£eAfg, (8.6)

where the sum converges because it reduces to a single term p = q for
For Xj eε^.ίA/), i = 1,2, we have

π(xί)π{x2) = 17*^! L/*2

πfo)* = x? I7β l£ = UqίxΐE = π(x*),

and hence π is a ^representation. Obviously

(Ω,π(x)Ω)= £ {Ω,EU*pxEΩ)
peH

= χ-1(Uε(x)U*). (8.7)

Since π(MG)Ω = M^β is dense in E § = § l 5 π oπφ- and ί2 are the cyclic representation
and the cyclic vector associated with the restriction of φΛ defined by (8.4) to the
subalgebra 2I0 of 91 generated by ε^(9ϊ), qeG\ Since φ" is a state of 2t and 2ί0 is
dense in 9ϊ, π °πφ- has a continuous extension to the cyclic representation of 91
associated with φ". We already know by (8.6) that π{π^-(9ί0)} is in M% Since
π{πφ-{(ΆG)) = πφ-{SΆG)E, we have π(πflΓ(2ίG))// = Aίf, which is a factor. Hence φΛ is
primary.

Finally, we prove that φΛ is a ρt°αt-KMS state. Since φ~is a ρ^Ot-KMS state
of 21, the modular automorphisms of L^(HΛ)®M% relative to l v e c ®ί2 induces
the automorphisms Uπφ-(a)U*-> Uπφ-(ρt oat(a))U*. On the other hand, the modular
operator for lvec(g)Ω is l(χMΩ where zlΩ is the modular operator for Ω and MG,
because L^iH") is commutative. Since φ is a ρ Γ KMS state, JβXJβ ί ί = ρ"ί(x) =
ρ"ία"t(x) for JCGMG. Since zl£ induces the modular automorphisms of φ\ we have
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for xeε~p(M). Since [7* is in the center and φ~is a ρf °α(-KMS state, ρ~ta~t(U*) = U*.
Hence

σf(π(x)) = t/*ρ-a~t{x)E = π(ρ~α"(x)). (8.8)

This shows that φ" is a ρ t°αΓKMS state. Since it is primary, we have shown the
existence of an extremal ρt °αΓKMS state ψΓ, whose restriction to 5IG is the given φ,
for the case H = G\

Step 2. The general case.

Let G0 = Hλ [the set of geG such that p{g) = l for all p e # ] . Let 9IGo be the
set of ae 91 satisfying g(a)=a for all geG0. It is G-invariant as a set. The G-invariant
extension of φ to 9ϊGo is the restriction of φ~ to 9IGo and the associated cyclic
representation is obtained by restricting πφ-(a), αe9IG o, to the subspace Eoξ> =
Σ § p . Obviously 9IGo is generated by εp(2l), pe H, and hence π^-(2ϊGo)" is generated

peH

by [7p5 p e H and 9ίG. Hence by Step 1, there exists an extremal ρ f°αfKMS state
φΛ

0 of 9lGo whose restriction to 9ίG is φ.
We now show that the unique G0-invariant extension

φ\a) = φ\(\ gadg), ae91, (8.9)
Go

is an extremal ρtooct-KMS state of 21, whose restriction to 9ΪG is φ.
Since ρtoαt commutes with all geG, ε4i(9ί) is ρt°αΓinvariant as a set. Let

αieεβl(9ϊ), ρί°αί(α2) = α2(ί). We have

= 0 if ί i f c ^

(8.10)

The G-in variant extension φ~0 oϊφ to 9IGo is obviously the restriction (to 9ίGo)
of the G-in variant extension φ~ (to 9ί) of φ. Hence the restriction of πφ- to the
cyclic subspace {πφ-(9ίGo)ί2}" is the cyclic representation associated with φ~0.
Hence by (8.7) we obtain for

= (Ω, U*pπφ-(ai)σf(πφ-(a2))Ω). (8.11)

Similarly

φ-(α2))l/*π^( f l l)Ω). (8.12)

Hence φ\a1ρt°at(a2)) satisfies the statement of the KMS-condition for all ax

and a2 in a dense *-subalgebra 9l0 of 91. By a standard argument, φΛ satisfies the
KMS-condition relative to ρ^α^

We prove that φ~ is extremal by showing that it is primary in the next step.

Step 3. φΛ is primary.

We use the notation of Theorem 3 and its proof. For xeM0, we define

π(x)= X EU*xE. (8.13)
peH
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For xeε~q(M\ the convergence of the sum is seen by the following computation:

II X EU*pxEΦ\\2=Σ\\U${q,rμΦΛ2S\\x\\2\\Φ\\2

II peH || rel

where EΦ = YdΦr, Φreξ>r and p(q,r)eH is uniquely determined by p(q,r)~ίqrel.
Since Up is in the center of M and Up-i = U*, π(x)* = π(x*) follows. We also have

Φ i ) Φ 2 ) = Σ EU*ίx1EU*2x2E

= X EU*pXlUp2EU*P2x2E
P>P2

P

for x1 ? x 2 e M where Up2EU*2 is the projection operator onto X jr>rp2 and its
rel

sum over p2eH is 1. Hence π is a ^representation of M o .
Since π(ε~(Λί))β = ε~(M)β, re/, Ώ is cyclic for π(M0) in Eξ> and hence cyclic

for π °πφ (9ΪO) in £ § . Since

(Ω,π(x)Ω)= X (Q,t/*xO) (8.14)
peH

which vanishes for xeε~q(M), qφH and coincides with φ"0(
f l) f° r x = πφ-(α),

αeεp(9I), pe// [or αe(9lG o)0], π°π^ has a continuous extension to a cyclic re-
presentation of 91 with the cyclic vector Ω associated with φΛ.

For xGε~^(M), we have π{xf%{x) = π{x^x) = x^xE. Since MG is isomorphic to
Mf and X*XG M G , π is faithful on each ε~q(M) and ||π(x) || = || x \\. Let xα be a uniformly
bounded net in ε~q(M) such that π(xj is weakly convergent. Then π(xa)Ω=U*xaΩ
is weakly convergent for a fixed p satisfying p~1qel. Hence xayΩ is weakly
convergent for all j eM'. Since Ω is separating for M due to Theorem 2(2), M Ώ
is dense and hence the uniformly bounded net xα is convergent. Hence w-limxα =
xes~q(M) and π(xα) is weakly convergent to π(x). This shows that the unit ball
of π(ε~q(M)) is weakly closed. Since π(ε~q(M)) is linear, it is weakly closed.

Let

80

s(ά)=$ g(a)s(g)*dg, (8.15)
Go

hg, (8.16)
Go

where seG"0, ae% xeM. In particular ε?(9ϊ) = 9ίGo and ε"?(M) = π^ (9lGo)" = MG o.
The dual G"o of G0 = Hλ can be identified with G"/H, the restriction of geG" to
Go being the corresponding element of G"o. Each ε̂ (91) and ε"^(M) are generated
by εβ(3l), qH = s, and ε~ (̂M), qH = s, respectively. Since π(ε~β(M)) = π(ε"βp(M))5 p e H
[because ε~^p(M)= l/pε~^(M)], we see that the weak closure of π°πφ-(ε^(yi)) is
π(έ~q(M)) for any one q satisfying q{g) = s(g) for geG0.

For g £ //, ε~q(M) does not contain non-zero central element. Hence for any
xeε~q(M\ there exists q'e GΛ and yeε~q(M) such that [x, y] is a non-zero element
of ε~qq{M). Hence [π(x), π(y)]=π([x, y]) is a non-zero element of π(ε"M/(M)).
Hence the weak closure of π°π^-(ε^(9I)) for s + 1 does not contain any non-zero
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central element. We already know that π °πφ-(2lGo)" is a factor [and is equal to
π(MG)]. By the analysis of the center of M in the proof of Theorem 3, applied to
the G0-invariant extension φΛ of an extremal ρjO^-KMS state φ"0 of 2ϊGo to 21,
shows then that the cyclic representation πoπφ- associated with φΛ is primary,
i.e. its weak closure is a factor. Q.E.D.

The rest of Theorem 1(4) is proved as follows: Since the restriction of φ"
to 2IG is φ, it is immediate that φ~=\φΛogdg. Let ε be the conditional expectation
from M onto its center relative to Ω. Since (7.4) implies UUpU* = pop(g)l, the
center of M is mapped onto L0^//")® 1 by the unitary map U. From (7.4), it is
then immediately seen that for xe Mo

φc)= U*ί Σ (O, U*pxΩ)(pop® 1)1 U. (8.17)
[peH J

By comparing (8.17) with (8.14), we see that

= φXa), (8.18)

which shows that φ~=\φ"°gdg is the central decomposition of a state in usual
sense.

Both φ"°#i and φ"°g2 are extremal ρt°cct-KMS states. It is known that two
extremal KMS states are disjoint unless they are the same. Since φΛ is not
identically zero on εp(2ϊ), peH, φ^°gί and φ"°g2 are different unless p(gι) = p(g2)
for all peH, i.e. unless g^g^^G^. On the other hand φ" is G0-invariant. Hence
φΛ°gγ and φΛ°g2 are equal if gf1gf^1GG0 and are disjoint otherwise.

§ 9. Additional Remarks

ί. Sectors. By Lemma 6, there exists either isometric or co-isometric operator in
each ε~q(M). If MG is properly infinite, then there exists a unitary operator in
each ε~q(M). If MG is finite, then this is not the case in general, as is known for
homogeneous states of type IΠ λ factors [3,1]. For a non-zero partial isometry u
in e"g(M), the ratio

dgΞdimww*/dimw*w>0 (9.1)

is independent of u and depends only on q. From u1vu2eε~qίq2(M) for Mfeε~€.(M)
and veMG, it easily follows that dqιdq2 = dqιqr Hence qeG"-^>dq>0 is a group
homomorphism. A special situation arises if G is a one-dimensional torus. Then
GΛ is the group of integers. Hence either dq= 1 for all q or dq +1 for all gΦ 1. The
condition dq=\ is obviously necessary and sufficient for ε~q{M) to contain a
unitary operator.

Since πφ-(2IG)" = MG is a factor, representations of 2ίG in different sectors
§ 4 , qeG^ are all quasi-equivalent. If there exists a unitary wq in ε"g(M), geG", then
representations of 2ίG in sectors § β l and § g 2 are unitarily equivalent through
jΩ(uq)eM' if q2 = qq1 [because the modular conjugation operator JΩ and U(g)
defined in Section 3 commute]. Thus representations of 2ίG in all sectors are
unitarily equivalent if MG is properly infinite, while representations of 2IG in
sectors with the same d(q) are unitarily equivalent if MG is finite. In the case of
finite MG, the restriction of MG to § x has a cyclic and separating vector Ω and
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hence has the coupling number 1. If d(q)>l, then there exists a co-isometry u
in ε~*q(M) and dimu*u = d(q)~1. By the transformation w*, ξ>q is mapped to w*w§1?

the restriction of MG to ξ>q and its commutant are mapped to the restriction of
MG to u^uξ)1 and its commutant and hence MG on ξ>q has the coupling number
d(q). This implies that representations of 9lG in sectors with different d(q) are not
unitarily equivalent.

2. Tht case where Assumption B is violated. We first give typical examples:

Example 1. Let 91 be the CAR algebra for a non-relativistic Fermion. Let ρt be
trivial. Let G be the group T = IRmod2π of gauge transformations aΘ(ψ) = eίθψ.
Assumption A is satisfied by asymptotic abelian property under spatial transla-
tions, A consisting of one character p1(ocθ) = eiθ and b(

n

p) for p = p± being bn = ψ{fn)
with support of fn tending to infinity. Consider the Fock vacuum state ω. The
restriction ω0 of ω to 9IG is a character of 9IG yielding one-dimensional representa-
tion of 9tG. Hence ω0 is tracial and is an extremal ρ Γ KMS state (for any tem-
perature) of 9ΪG. However Assumption B is violated because ω 0 vanishes on
b*bn for all n. ω is not faithful on 9t and has a one sided spectrum as far as the
associated representation of G=T is concerned.

Example 2. Let J* be a C*-algebra with a continuous one-parameter group ηt of
*-automorphisms and an extremal j/ r KMS state ωv Consider the algebra 91® J*
with ρt=ι®ηt and G=T®ι. Assumption A is satisfied with fcn®l playing the
role of b^p) for p = pv The state φ = ω 0 ® ω1 is an extremal ρ Γ KMS state of (91 ® £fi)G

T

At least some aspect of these examples is quite general. Consider the case
where G=T, Assumption A is satisfied by some bn = b(

n

p) for p = Pι and φ is an
extremal ρ r K M S state of 9lG. Let ξ>q be defined by (7.1) for the G-invariant exten-
sion φ~oϊφ to 9ί. Let Eq be the orthogonal projection on ξ>q, qe GΛ. The set of qe GΛ

satisfying § β + 0 is called the spectrum of (the representation of) G on ξ>φ-.
If Assumption B is satisfied, then this spectrum is GΛ consisting oϊ pn(θίθ) = eιnθ,

neΈ. We now prove the following assertion:
If Assumption B is violated, then the spectrum of G on 9)φ- consists of pn with

n^O alone or pn with n^O alone. Furthermore EqeM and M is a factor.
Proof of this assertion is as follows: From Assumption A, fp(t) and gp(ή of

(4.3) are in MGnM', which must be multiples of the identity operator by Lemma 2.
Since φ is primary, Assumption B is violated only if φ(b*bn)=0 for all n or

φψnb*) = 0 for all n. Hence gPi(t)=O or fPί(t) = O. By Assumption A, / p l (0)Φ0 or

Consider the case gpl{t) = O9 / p l (0)φ0. By the same argument as proof of
Lemma 3, we obtain φ(a*a)=0 for any αeεp(9I) with p=pn, n>0. Hence the
spectrum of G on ξ>φ- is one-sided, consisting of pn with n^O alone.

If yeM and xeM, we have

for p = pn, n<0 because έ~p(x)*Ωeξ>p_n = 0. Hence yΩeξ>po for all yeM. This
implies

U(g)yU{g)*Ω = U(g)yΩ = yΩ9 yeM'
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where U(g) is defined by (3.2). Since U(g)ylHg)*eMf for yeM and since Ω is
separating for M (being cyclic for M), we have [_U{g\ y] = 0. Hence U(g)eM and
EqeM.

Since φ is an extremal KMS state, the restriction of M to ξ>po is a factor. Hence
the restriction of M to ξ)po is also a factor, due to (M')Ep =(MEpJ. Since Ω is
separating for M', the restriction of M' to § p o is isomorphic to M. Hence M is a
factor, which implies that M is a factor.

The other alternative/pi(0) = 0 can be discussed similarly.

3. Uniqueness up to gauge for extension to clustering state.

If a state is invariant and ergodic (i.e. an extremal invariant state) under a
group of automorphisms such as τt, teR, or τπ, ne% then it satisfies a weak
clustering property:

rj(ψ(xτt(y))-ψ(x)ψ(y)} = 0, (9.2)
T N

where η(At) = lim Γ " 1 J" At or lim N ~x £ y4nίo.
0 n = l

If a sequence of ^-automorphisms τn of 9ί satisfies

(9.3)

then any primary state ψ of 31 satisfies

lim {ιp(xτn(y))-ψ(x)ψ(y)} = 0 (9.4)

Let us call φ satisfying (9.2) or (9.4) clustering.
If every geG commutes with ρt or τn above, then the following holds:

Proposition (Haag-Kastler). // clustering states ψx and ψ2 of 2t have the same
restriction to 9IG, then ψ2 = Ψι°g for some geG.

Proof. Let ϋaΓ£ be the subset of GΛ consisting of all p satisfying ψ.(χ)φθ for some
). Since x* G

^*τM(x))} = |φ 2 (x) | 2 . (9.5)

Hence Hί=H2 = H.
If ψΛe^+O for an βpeεp(2l), we define

By(9.5),|Cjl| = l.
Let xeεp(Sί). Then

Hence

ψ2(x) = cpψ1(xlxeεp(SΆ\peH1( = H2). (9.6)

For p l 5 p2eHu we have

2) * 0 .
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Hence

q = PΪίp2eH,(cpιy
1cP2 = cq. (9.7)

This shows that H is a subgroup of G" and cpeH". Hence there exists ge G satisfying
cp=p(g)ϊoτpeH.

We now have

Ψi(x) = P<9)Ψi(x) = Ψi(g{x)) ( 9 8)

firstly for xeεp(9ϊ), peH, by (9.6), secondly for xeεβ(SΪ), qφH, because ψι(x) =
xp2(x) = 0, and hence for all xe 91. Q.E.D.

If φ" of Theorem 1(4) turns out to be either ρt (or ρnto) ergodic or τn invariant
for some sequence of ^-automorphisms commuting with G and satisfying (9.3)
(such as ^-automorphisms of spatial translations), then this proposition is
applicable and φ"°g, geG, are only clustering extensions of φ to 91.

Let Gx be the closure of {αt;ίeIR} in G andφ~= j" φΛogdxg where dxg is
Gl

the normalized Haar measure on Gv If the time translation ρt has an asymptotic
abelianness, then this φ ~ is ergodic and the above result is applicable, namely
φ~°g, geG, are unique extensions of φ to clustering states of 91.
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