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Abstract. We study two Bianchi type VIII analogues of Taub space and max-
imal analytic extensions of them. The first one has SL(2, R) as an isometry
group, which acts transitively on spacelike hypersurfaces. The maximal ex-
tension has all of the pathological features of Taub-NUT space. The second
one has the universal covering group of SL(2, R) as an isometry group. The
maximal extension of the latter does not have these pathological properties
and is geodesically complete.

1. Local Solutions of the Einstein-Maxwell Equations

Local solutions of the Einstein-Max well vacuum field equations have been de-
rived by Carter [1] under the condition that the metrics admit a two-dimensional
abelian isometry group and that the Hamilton-Jacobi equation for the geodesies
and the Schrodinger equation separate in certain coordinate systems. The metrics
contain several parameters and when some of the parameters are zero, the metrics
admit a four-dimensional local isometry group. It is our aim to study two of
these metrics that admit a four-dimensional local isometry group and show that
they are special Bianchi type VIII spatially homogeneous cosmologies. Bianchi's
classification of three-dimensional real Lie algebras into nine types is given by
Taub [2]. Since the two metrics are Bianchi type VIII analogues of the Bianchi
type IX metric discovered by Taub [2], we first review the known facts about the
latter metric [3]. We will compare Taub space with the two Bianchi type VIII
metrics throughout the paper.

The three metrics under consideration in this paper are all special cases of
Carter's [1] metrics listed in class [#( + )]. We first consider the "charged" Taub-
Nut metric [4] given by

g = (t2 +1 2 ) (dθ2 + sin2 θdφ2) - 4l2A(t2 + 12)'1 (dip + cos θdφ)2

+ (t2 + l2)A~1dt2, (1)
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where

A = t2_2mt-l2 + e2 (2)

and m and / are the Schwarzschild and NUT parameters, respectively, and e is
the electromagnetic parameter. The electromagnetic field tensor is obtained from
the vector potential

A = e (sin α + 2lt(t2 + 12)'1 cos α) (dip + cos θdφ) , (3)

where α is the complexion angle of the electromagnetic field. Linearly independent
Killing vector fields are given by

γί = cosφdθ—cotθ sinφdφ + cscθ sinφdψ ,

Y2 =

and satisfy commutation relations

[iΐ,r,]=-cί;n, [x3,Ή=o, (5)
where

C 2 3 =— C32 = l, C 3 1 =— C13 = l, C 1 2 =— C21 = l (6)

are the structure constants of SO (3) or SU(2). The action of the local isometry
group generated by Yί9 Y2, and Y3 is transitive on surfaces of constant t.

There are coordinate singularities at 0 = 0, π, where the determinant of the
metric components is zero, and at the zeros of A given by

t±=m±(m2 + l2-e2y12. (7)

We assume that e2 < m2 + 12 so that the roots are real and distinct.
The second metric is given by

g = (t2 + /2) (dθ2 + sinh2 θdφ2) + 412A (t2 + 12)'1 (dψ + cosh θdφ)2

-(t2 + l2)A~idt2, (8)

where

l2-e2 (9)

and the vector potential for the electromagnetic field is given by

A = e(sin α + 2/ί (t2 + 12) ~ * cos <ή(dιp + cosh θdφ). (10)

Linearly independent Killing vector fields are given by

7t = cosφdθ — coth θ smφdφ + csch# sinφdφ ,

Y2 = sin φ dθ + coth 0 cos φdφ — csch θ cos φ <9φ ,
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and satisfy commutation relations

lY^Yj]=-C^ [*3,iί] = 0, (12)

where

C 2 3 =— C32 = l, C31 = — C13 = l, C 1 2 =— C 2 1 =— 1 (13)

are the structure constants of the Lorentz group in three dimensions. The local
isometry group generated by Yl9 Y2 and Y3 is transitive on surfaces of constant t.
There are coordinate singularities at θ = 0, π and the zeros of Δ given by

t±=m±(m2 + l2 + e2)112. (14)

In this case, there is no restriction on e and the roots are always real and distinct.
The third metric is given by

g = (t2 + 12) (dθ2 + cosh2 θdφ2) -f 4l2 A (t2 + 12Γ1 (dip - sinh θdφ)2

~(t2 + l2)A-ίdt2, (15)

where A is given by (9) and

A = e(sin α + 2lt (t2 + /2)'1 cos α)(dφ- sinh θdψ). (16)

Linearly independent Killing vector fields are given by

72 = cosh </> δθ — tanh θ sinh φ dφ + sech θ sinh φ δφ ,

73 = sinh φdθ — tanh θ cosh φ dφ + sech θ cosh φ dψ ,

and the satisfy the same commutation relations as (11). Likewise, the local isome-
try group generated by Yi9 72, and 73 is transitive on surfaces of constant t.
Metric (15) has coordinate singularities only at the zeros of A given by (14). All
three metrics are of type D in the Petrov classification [1]. Having discussed the
local properties of these metrics, we now turn to their global properties.

2. Global Solutions

We will consider the three metrics (1), (8), and (15) in turn. The Taub-NUT metric
[Eq. (1)] has been discussed extensively in the literature [3, 5-7]. It is customary
to take the surfaces of constant t as three spheres, the topology of SU(2), and
obtain all other possibilities by identification [5]. SU(2) is the two-fold universal
covering group of SO(3). SU(2) is given by the set of matrices

/w-f ix iy — z

\iy + z w — ίx
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with w2 + x2 + y2 + z2 = l. Euler angle coordinates on SU(2) are defined by

w = cos 0/2 cos (φ = ψ)/2 ,

x=smθ/2cos(φ-ψ)/2,
(loj

y = sin 0/2 sin (φ - ιp)/2 ,

z = cos 0/2 sin ((/> = \p)/2

and left-invariant 1-forms on SU(2) in Euler angle coordinates are given by

α)1 = cos ψdθ + sin 0 sin ψdφ ,

ω2 = — sin ψdθ + sin 0 cos ψdφ , (19)

These 1-forms satisfy dωfc= — ̂  C^ ω' Λ ω 7, where the Cy are the same as in (6).
We can now express metric (1) and vector potential (3) in the global basis ωl

and obtain
2 + l2Γ'(ω3)2 + (t2 + l2)A-ίdt2 (20)

and
3 . (21)

When zl<0, the homogeneous surfaces of constant t are spacelike and when
A>0, they are timelike. The Yi in (4) are right-invariant vector fields on SU(2),
so Ly.ω

J = 0, and X3 is a Killing vector field because the functions of t before
(ω1)2 and (ω2)2 are equal. If we let Xi be the left-invariant vector fields on SU(2)
that are dual to the ω1', then in Euler angle coordinates

X1 = cosψdθ + cscθ sinψdφ — cot 0 sinφδφ ,

X2= — sinφ<30 + csc0 cosψdφ — cotθcosψdψ , (22)

The singularities in metric (1) at 0 = 0, π are just the degeneracies of Euler angle
coordinates on S3. We will denote the three disjoint regions of metric (20) by

I, when ί>ί+,

II, when ί_<ί<ί + , (23)

III, when ί<ί_.

We are now left with the coordinate singularities at the zeros of A. These
singularities have been dealt with by Hawking and Ellis [3] by means of a prin-
cipal fibre bundle closely related to the Hopf fibering of S3 over S2. Since SO(2)
is a closed subgroup of SU(2), SU(2)^S3 is a principal fibre bundle over SU(2)/
SO(2)^S2 with fibre SO(2)«S1. The canonical projection map π:S3->S2 is given
by (w, x, y, z)~*(2(wx — yz\ 2(wy + xz), w2 — x2 — y2 + z2) = (sin0 cosφ, sinθ sinφ,
cos0) and the vertical vector field X3 is a fundamental vector field [8].

Hawking and Ellis considered S3 x R as a principal fibre bundle over S2 with
fibre S1 x R and we denote the canonical projection map again by π:S3 x R-»S2.
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Fig. 1. The Penrose diagram for the maximal extension of metric (1), (8), and (15). The (u+,v+) co-
ordinate system covers the squares consisting of two blocks labeled I and two blocks labeled II and
the (M_, ι>_) coordinate system covers the squares consisting of two blocks labeled II and two blocks
labeled III. Every null cone in the two-dimensional surface represented by the Penrose diagram is
±45° with the horizontal direction. The dashed lines are timelike and spacelike orbits of X3 and
the solid lines are bifurcate Killing horizons (null orbits of X3). For metric (1), time flows from left
to right and region II is a Bianchi type IX spatially homogeneous cosmology (Taub space). For metric
(8) and (15), time flows from bottom to top and regions I and III are Bianchi type VIII spatially
homogeneous cosmologies. For metrics (1) and (8), the orbits of X3 are closed because of the identi-
fication Uλ(p)= £/λ+4π(p)> where Uλ is the flow of X2. For metric (15), the orbits of X3 are open and
the extended manifold is geodesically complete

Then X3 and X4=dt are fundamental vector fields on S3x#, where ί is the
coordinate on jR. A connection in S3 x R was defined by taking X± and X2 as
horizontal vector fields. If we also let ψ be the coordinate on S1 with period 4π,
then the connection form ω is given by

ω(X4)=dt (24)

where dφ and dt are left-invariant vector fields on S1 x R. The connection form is an
equivariant, Lie algebra valued 1-form that annihilates the horizontal subspaces.
Hawking and Ellis decomposed the Taub-NUT metric (20) as follows:

g(X, Y) = (ω(X), ω(Y)) , (25)

where X and Y are tangent vectors to S3 x -R, gH is the metric of constant positive
curvature on S2 which in spherical coordinates is given by

(26)

(27)

and gv is the metric on S1 x R given by
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The type of singularity at the zeros of Δ in metric (27) is well known and
corresponds to bifurcate Killing horizons. We consider Kruskal-like trans-
formations [9]

u± = |ί-ί+|1/2 |ί-f τ |
κ ± / 2 κ* eκ±t cosh2lκ±ιp,

v± = \t-t±\1/2(t-t + \κ±/2κ*eκ±tsίnh2lκ±ψ,

where

2κ±Ξ(ί±-ίτ)/(ί±(ί±-£τ) + e2). (29)

Each transformation maps region II (t_<t<t+) onto the quadrant \υ±\<u±.Ίn
Kruskal-like coordinates, metric (27) becomes

gv = fϊ(dυ2

±-du2

±), (30)

where

fϊ = κl2(t2 + l2Γ^\t-t^-κ*lκ- έΓ2 κ ± t (31)

is an analytic function of u2+ —v+. Both metrics (30) immediately extend analyti-
cally to the entire (u±9v±) plane, where £ _ < £ < o o for the upper sign and
— oo < t < t + for the lower sign. The bifurcate Killing horizon corresponding to the
£+ zero of Δ is given by v+ = ±u+ and the bifurcate horizon corresponding to £_
is given by ι?_ = ±w_. These metrics patch together as indicated in the Penrose
diagram (Fig. 1) to give a maximal analytic extension of metric (27) and (25). The
orbits of dψ=2lκ±(v±du±+u±dv±) are hyperbolas in the (u±9v±) plane. Since ψ
is periodic with period 4π, the points in the (u±9v±) plane are identified according
to 'Uλ(p)=Uλ+4π(p\ where Uλ is the flow of 2κ+(v±du±+u±dvJ. This identifi-
cation means that the extended manifold is non-Hausdorff and that the points
(tt±,.ϋ±) = (0,0) are not regular points of the manifold [3,7].

We now discuss the second metric (8). The Lie group SL(2, R) is the Bianchi
type VIII analogue of the Bianchi type IX group SU(2). SL(2, R) is the two-fold
covering group of the identity component of the Lorentz group in three dimen-
sions. SL(2, R) is given by the set of matrices

/w+x y—z
\y+z w — x

with w2 — x2 — y2-\-z2 = \ and coordinates similar to Euler angle coordinates are
given by

w=cosh θ/2 cos (φ -f ψ)/2,

x=smhθ/2cos(φ-ιp)/2,

y = sinh θ/2 sin (φ — ψ)/2,

z = cosh θ/2 sin (φ + φ)/2.

Left-invariant 1-forms on SL(2, R) in these coordinates are given by

ω1 = cos ψdθ + sinh θ sinψdφ ,

ω2= — sin \pdθ + sinh θ cos ψdφ , (33)

ω3 = dip + cosh θdφ .
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These 1-forms satisfy dωk= - \ C^ω1 Λ ωs, where the C j are the structure constants
of SL(2, R) and are given by (13). We now express metric (8) and vector potential
(10) in the global basis ωl and find that

0 = (ί2 + /2)((ωT + (ω2)2) + 4^ (34)

and

A = e(sma + 2lt(2 + l2Γίcosa)ω3. (35)

When zl>0, the homogeneous hypersurfaces of constant t are spacelike and
when J<0, they are timelike. The Yt in (11) are right-invariant vector fields on
SL(2, R). If we let Xt be the left-invariant vector fields on S£(2, R) dual to the
ω\ then

X± = cosφδ0 + cschθ sinψdφ — cothθ sinφ<3ψ,

X2 = — sinφ<30 + csch# cosψdφ — cothθ cosψdψ, (36)

*3=Λ

The coordinate singularities at Θ = Q, π are due to degeneracies in the coordinate
system. We will denote the three disjoint regions of metric (34) by (23), where t±

is now given by (14) instead of (7).
We are now left with coordinate singularities at the zeros of A. Since SO(2)

is a closed subgroup of SL(2,R),SL(2,R)^L3Ξ{(w,x?^z)eR4|w2-x2-y2 + z2 = l}
is a principal fibre bundle over $L(2,R)/SO(2)&H2 = {(χί,χ2,χ3)eR3\x2

L-f x^ —
x2= — 1} with fibre SO(2)«S1. The canonical projection map π:L?-+H2 is given
by (w, x, y, z)*~>(2(wx - yz\ 2(wy + xz), w2 + x2 + y2 + z2) = (sinhθ cos φ, sinθ sin φ,
coshθ) and the vertical field X3 is a fundamental vector field.

We consider L3 x R as a principal fibre bundle over H2 with fibre S1 xR and
we denote the canonical projection map again by π:L3 xR-+H2. Now X3 and
X4= 4 are fundamental vector fields on L3 x R, where ί is the coordinate on R,
and a connection in L3 x R is defined by taking Xl and X2 as horizontal vector
fields. We decompose metric (34) as follows:

g(X9 Y) = gH(π*X, π* Y) = gv(ω(X), ω(Y)), (37)

where X and Y are tangent vectors to L3 x R, ω is the connection 1-form, gH is
the metric of constant negative curvature on H2 which in pseudo-spherical
coordinates is given by

gH = (t2 +1 2 ) (dθ2 + sinh2 θdφ2) (38)

and gv is the metric on S1 x R given by

gv = 4l2Δ(t2 + l2Γ1dιp2-(t2 + l2)A-ίdt2. (39)

We again consider transformation (28) with ί+ given by (14) and κ± given by

2κ±=(ί±-ίτ)/(ί±(ί±-ίτ)-β2). (40)

Each transformation (28) maps region II (ί_ <t<t+) onto the quadrant | f ± |<w+.
In Kruskal-like coordinates, metric (39) becomes

0F = /±

2(A4-*4), (41)
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where /+ is given by (31) with the appropriate t± and κ+. Both metrics (41)
extend analytically to the entire (u±,v+) plane and patch together as indicated
in the Penrose diagram (Fig. 1) to give a maximal extension of metric (39) and
(37). The orbits of X3 are periodic with period 4π and the extension is non-
Hausdorff.

We now discuss the third metric (15). It turns out that this metric is already
expressed in what is called canonical coordinates of the second kind [10] on
SL(2, R), which are given by

w = cosh 0/2 cosh φ/2 cos φ/2 -f sinh 0/2 sinh φ/2 sin ψ/2 ,

x = cosh 0/2 sinh φ/2 cos φ/2 + sinh 0/2 cosh^/2 sin ψ/2 ,

y = sinh 0/2 cosh φ/2 cos φ/2 - cosh 0/2 sinh φ/2 sin ψ/2 ,

z= cosh 0/2 cosh φ/2 sin φ/2— sinh 0/2 sinh φ/2 cos φ/2 .

The left-invariant 1-forms (33) in these coordinates are given by

ω1 = sin ψdθ + cosh 0 cosψdφ ,

ω2 = cos ψdθ — cosh 0 sin ψdφ , (43)

co3 — d\p — sinh θdφ

and dual left-invariant vector fields (36) by

Xl = sinφ<30 + sech0 cosφc^H- tanh0 cosφ<5φ ,

X2 = cos φ 30 — sech 0 sin φ dφ — tanh 0 sin φ dψ , (44)

The right-invariant vector fields (11) in these coordinates are given by (17). The
range of the coordinates in (42) is — oo< 0 < oo, — oo<φ<oo, 0<φ<4π and φ
is periodic with period 4π. The fibre bundle L3 x R&H2 x S1 x R-^H2 is trivial
and the Lie group SL(2, R)&L3 is not simply connected. Instead of coordinates
on SL(2, R), we take (0, φ, φ) as a global coordinate system on SL(2, R)~^R3,
the universal covering group of SL(2, R). The range of φ is then from minus
infinity to plus infinity. Metric (15) is defined on the Cartesian product of
SL(2,R)~«R3 with the disjoint intervals of the real line, — oo<f<ί_, t_<t<t+

and t+ <t<oo. Metric (15) and vector potential (16) can be expressed in terms
of the global basis ω1 on SL(2, R)~ given by (43).

We consider again transformation (28) with t+ given by (14) and κ+ by (40).
In Kurskal-like coordinates metric (15) becomes

g = f2_(du2

± —dv2+ +4lκ± sinh0(w±(ίί;± —υ±du+)dφ

-4/24 sinh20(4 -4)J02) + (ί2 + /2)(rf02 + cosh20^2), (45)

where /+ is given by (31). Both metrics extend analytically to the entire (u±9 v±)
plane and patch together as indicated in the Penrose diagram (Fig. 1) to give a
geodesically complete Hausdorff extension of metric (15). The orbits of X3 are
open in this extension.
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3. Geodesic Completeness

Having found appropriate maximal extensions of the three local metrics, we now
turn to the question of geodesic completeness. The extensions of metric (1) and
(8) are incomplete with geodesies "approaching" (u±, v±) = (Q,0) with finite affine
length. Thus we consider only the geodesies of metric (15) and prove that the
extension is geodesically complete as claimed in Section 2. A Hamiltonian for
the geodesic equations of metric (15) is given by

PΘ , vrφ —""-fψ/ , - * _2 " ~21 /4g\

ΛO

The Hamilton-Jacobi equation — + H = 0 separates in this coordinate system
CM

and we find that the action S is given by

S=-eλ/2 + αφ + j8φ+fβ <91/2<ίθ + J'T1'2^-1*, (47)

where

6) ΞΞ K - (α + β sin 0)2/cosh2 0 ,

T = β2 (t2 + 12)2/412 + A (K - ε(t2 + 12))

and ε, α, /? and K: are constants. We obtain the geodesies by quadratures:

A=-J t T" 1 / 2 ( i 2 + /2)di, (49)

n

' (50)

f θ-il2dθ=-fT-i/2dt< (52)

The boundary at ί = ± oo in the Penrose diagram is at infinity in the sense
that every geodesic that approaches this boundary has infinite affine length. This
follows directly from (49) and the fact that λ is an affine parameter. The incomplete
geodesies in the (θ, φ9 ψ, t) coordinate system are approaching a zero of A and
can be continued across a horizon. Hence the extension of metric (15) is geo-
desically complete.

4. Conclusion

We have studied two Bianchi type VIII analogues of Taub space. The one in
which SL(2, R) is an isometry group is very similar to Taub space and the maximal
analytic extension has the same pathological properties as Taub-NUT space
[3,11]. The maximal analytic extension of the other Bianchi type VIII cosmology
with SL(2, R)~ as an isometry group does not exhibit any of these pathologies
and is geodesically complete. Of course, SL(2, R) = SL(2, R)~/N, where N is a
discrete normal subgroup of SL(2, R)~ and there are other discrete normal sub-
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groups of SL(2, R)~ which we could have considered. What we have established
is that metric (15) with ψ periodic with period 4π is globally isometric to metric (8)
with (θ, φ, φ) as coordinates on SL(2, R) given by (32). An identification imposed
on metric (15) by considering SL(29R)~/N for some normal subgroup N of
SL(2, R)~ will lead to the same pathological properties of metric (8) if the orbits
of X3 become closed.

Very few geodesically complete solutions of the Einstein-Maxwell vacuum
field equations are known. Many of the plane wave solutions are geodesically
complete, but Penrose [12] has shown that they do not admit a global Cauchy
hypersurface. The Killing horizons in the Bianchi type VIII cosmologies are also
Cauchy horizons for the homogeneous spacelike hypersurfaces. The existence of
a global Cauchy hypersurface has not been investigated for the geodesically
complete extension.

The metrics (1), (8), and (15) have generalizations to include a Kerr parameter
[1] and the Kerr-Taub-NUT metric has already been studied [13]. We expect
similar results for the generalizations of metric (8) and (15).
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Note Added in Proof

S. T. C. Siklos has also considered metric (15) in a paper submitted to Physics Letters and has obtained
the same maximal extension.




