© by Springer-Verlag 1976

Field Theory with an External Potential

W. J. M. A. Hochstenbach

Institut für Theoretische Physik, Universität Göttingen, D-3400 Göttingen, Federal Republic of Germany

Abstract. A quantum theory for charged spin zero particles interacting with an external potential is constructed for a certain class of time-independent potentials.

For potentials of a different class, a group of Bogoliubov transformations generated by the solutions of a classical differential equation with an external potential is defined in the free one-particle space. We give necessary and sufficient conditions on the potential for this group to be unitarily implementable in the Fock space of the free field.

1. Introduction

Although perturbation theory constitutes the basis for the practical calculations in quantum electrodynamics, a direct justification for applying perturbation theory is prevented by the existence of a Euclidean symmetry group. Generally one tries to circumvent this implication of Haag's theorem by breaking the symmetry.

For charged spin zero particles in an external time-independent potential we prove in Section 3 a conjecture of Schroer, Seiler and Swieca [1]: the interaction Hamiltonian does not exist in the Fock space of the free field if the external potential contains a three-vector part. Thus, in a field theory with an external, time-independent vector potential (0, A) the assertion of Haag's theorem is valid, although its assumptions are not fulfilled.

To be more precise, let (A^{μ}) $(\mu=0,1,2,3)$ be an element of the function class $\mathcal Q$ specified in Section 3; the time evolution of the interacting field in the Fock space of the free particles is determined by a one-parameter group of Bogoliubov transformations in the free one-particle space; at time t=0 the interacting field coincides with the free field. Then the time evolution is described by a strongly continuous, one-parameter group of unitary operators in the Fock space of the free field, if and only if A=0 on \mathbb{R}^3 and

$$Q_0(t) = \int \frac{d\mathbf{p}d\mathbf{p'}}{\omega(\mathbf{p})\omega(\mathbf{p'})} \left(\frac{\omega(\mathbf{p}) - \omega(\mathbf{p'})}{\omega(\mathbf{p}) + \omega(\mathbf{p'})} \right)^2 |\tilde{A}_0(\mathbf{p} - \mathbf{p'})|^2 \sin^2 \frac{(\omega(\mathbf{p}) + \omega(\mathbf{p'}))t}{2}$$

is finite for all times t and continuous in t at 0.

In the spin zero case, the vanishing of A stems from the presence of derivatives in the interaction part of the Hamiltonian in the free one-particle space.

In Section 2 we show the existence of a non-trivial class of potentials, for which one can construct a Fock quantization with a unique vacuum for charged spin zero particles in an external potential. Furthermore, it is shown that every quantization with a unique vacuum, whose generating functional is in the Fock sector, is unitarily equivalent to the Fock quantization.

2. Quantization of the Klein-Gordon Equation with an External Potential

Our main concern will be proving the existence of a non-trivial class \mathcal{P} of potentials, for which one can define a one-particle Hilbert space \mathcal{H}_P and a one-parameter strongly continuous group with a strictly positive generator |B|.

Let \mathscr{H}_{E_0} be the direct sum of the Sobolev space $W^1(\mathbb{R}^3)$ and the Hilbert space $L^2(\mathbb{R}^3)$. The operator B_0 in \mathscr{H}_{E_0} , with domain $D(B_0) = C_0^{\infty}(\mathbb{R}^3) \oplus C_0^{\infty}(\mathbb{R}^3)$ and defined by $B_0 = \begin{pmatrix} 0 & 1 \\ -\Delta + m^2 & 0 \end{pmatrix}$ on $D(B_0)$ (m + 0), is essentially self-adjoint on $D(B_0)$.

Its closure \bar{B}_0 has domain $D(\bar{B}_0) = W^2(\mathbb{R}^3) \oplus W^1(\mathbb{R}^3)$, and is given by $\bar{B}_0 = \begin{pmatrix} 0 & 1 \\ \omega^2 & 0 \end{pmatrix}$, where ω^2 is the closure of the operator $-\Delta + m^2$ on $C_0^\infty(\mathbb{R}^3)$ as a mapping from $W^1(\mathbb{R}^3)$ to $L^2(\mathbb{R}^3)$. We close the operator B_0 and denote this closure again by B_0 . The self-adjoint operator B_0 has the property that B_0^{-1} is bounded with $\|B_0^{-1}\| = m^{-1}$. In the space \mathscr{H}_{E_0} we introduce the perturbation $B_{\text{int}} := \begin{pmatrix} eA_0 & 0 \\ e^2A^2 + ieV \cdot A + 2ieA \cdot V & eA_0 \end{pmatrix}$ as a bounded operator for potentials (A^μ)

 $(\mu=0,1,2,3)$ in $C_B^1(\mathbb{R}^3)$, the class of real bounded continuous functions with bounded and continuous first partial derivatives.

For potentials in $C^1_B(\mathbb{R}^3)$ with the additional property $|eA_0| \leq m$ an inner product $(\cdot\,,\cdot)_E$ is defined on $C^\infty_0(\mathbb{R}^3) \oplus C^\infty_0(\mathbb{R}^3)$ by

$$\begin{split} (f,g)_E &= \int \left\{ ((-i\nabla - eA)f_1)^*(-i\nabla - eA)g_1 + (m^2 - e^2A_0^2)f_1^*g_1 \right. \\ &+ (eA_0f_1 + f_2)^*(eA_0g_1 + g_2) \right\} d\mathbf{x} \end{split}$$

for all $f, g \in C_0^{\infty}(\mathbb{R}^3) \oplus C_0^{\infty}(\mathbb{R}^3)$.

The completion of $C_0^{\infty}(\mathbb{R}^3) \oplus C_0^{\infty}(\mathbb{R}^3)$ in the energy norm is denoted by \mathscr{H}_E ; the Hilbert spaces \mathscr{H}_{E_0} and \mathscr{H}_E are related as sets by $\mathscr{H}_{E_0} \subset \mathscr{H}_E$. In the same way as one proves the Kato-Rellich theorem, one obtains the following result.

Lemma 2.1. If $(A^{\mu}) \in C_B^1(\mathbb{R}^3)$ and $|eA_0| \leq m$, then the operator $B := B_0 + B_{\text{int}}$ is essentially self-adjoint on $D(B_0)$ in the Hilbert space \mathscr{H}_E .

If one assumes that the norms $\|\cdot\|_{E_0}$ and $\|\cdot\|_E$ on $C_0^{\infty}(\mathbb{R}^3) \oplus C_0^{\infty}(\mathbb{R}^3)$ are equivalent, one gets a stronger result: the operator B is self-adjoint on $D(B_0)$ in \mathscr{H}_E ; $C_0^{\infty}(\mathbb{R}^3) \oplus C_0^{\infty}(\mathbb{R}^3)$ is a core for B.

Let \mathscr{P}_0 be the class of potentials (A^μ) with $A^\mu \in C^1_B(\mathbb{R}^3)$ and $|eA_0| \leq m$ such that there exists c > 0 with $\frac{1}{c} \|f\|_{E_0} \leq \|f\|_{E_0} \leq \|f\|_{E_0}$ for all $f \in C^\infty_0(\mathbb{R}^3) \oplus C^\infty_0(\mathbb{R}^3)$. The class \mathscr{P}_0 is non-trivial; in fact one can show the following lemma.

Lemma 2.2. If $A_0 = 0$ and $A^i \in C_B^1(\mathbb{R}^3)$ (i = 1, 2, 3), then $(A^{\mu}) \in \mathscr{P}_0$. If $|eA_0| \leq m$, $A_0 \in C_B^1(\mathbb{R}^3)$ and $A_0(\mathbf{x}) = O(|\mathbf{x}|^{-1-\epsilon})$ for $|\mathbf{x}| \to \infty (\epsilon > 0)$ and $A^i = 0$ (i = 1, 2, 3), then $(A^{\mu}) \in \mathscr{P}_0$.

To prove the second statement, one needs an estimate from [2]: if $A_0^2 \in L^2(\mathbb{R}^3)$ and $A_0^2(x) = O(|x|^{-2-\epsilon})$ for $|x| \to \infty(\epsilon > 0)$, then there exists c > 0, such that for all $f \in C_0^\infty(\mathbb{R}^3)$ $\int |eA_0(x)f(x)|^2 dx \le c \int |\nabla f(x)|^2 dx$.

As a further restriction on the class of potentials, we only admit potentials in \mathcal{P} , the subset of \mathcal{P}_0 such that 0 is a point of the resolvent set $\varrho(B)$. The class \mathcal{P} is non-trivial as the next lemma shows.

Lemma 2.3. For every (A^{μ}) in Lemma 2.2 there exists r > 0, such that $(\alpha A^{\mu}) \in \mathscr{P}$ for all $\alpha \in \mathbb{R}$ with $|\alpha| < r$.

Proof. Range $(B) = \text{Range } (BB_0^{-1}) = \text{Range } (\mathbb{1} + B_{\text{int}}B_0^{-1}) = \mathcal{H}_E \text{ if } \|B_{\text{int}}B_0^{-1}\| < 1.$ There exists c > 0 such that for all α in \mathbb{R} with $|\alpha| \le 1$, $\|B_{\text{int}}((\alpha A^{\mu}))B_0^{-1}\| \le |\alpha|mc$. By choosing α sufficiently small Range $(B((\alpha A^{\mu}))) = \mathcal{H}_E$.

Let $V(\cdot)$ be the one-parameter strongly continuous unitary group, generated by the self-adjoint operator B in \mathcal{H}_E ; P_+ and P_- are the spectral projections of B, connected with the sets $(0, \infty)$ and $(-\infty, 0)$. Because of $(A^{\mu}) \in \mathcal{P}$ the bilinear functional $(\cdot, \cdot)_O$ on \mathcal{H}_E , defined by $(f, g)_O := (f, B^{-1}g)_E$ for all $f, g \in \mathcal{H}_E$, is bounded;

$$(f,g)_Q = (f_1, g_2) + (f_2, g_1)$$
 and $(V(t)f, V(t)g)_Q = (f, g)_Q$

for all $f, g \in \mathcal{H}_E$ and for all $t \in \mathbb{R}$.

For potentials in $\mathscr P$ one can introduce a new inner product in $\mathscr H_E$; for all $f,g\in\mathscr H_E,(f,g)_I:=(f,|B|^{-1}g)_E$. $\mathscr H_I$ denotes the completion of $\mathscr H_E$ with respect to the norm $\|\cdot\|_I$. The operators $V(t),P_+,P_-$ and the bilinear functional $(\cdot,\cdot)_Q$ are $\mathscr H_I$ -bounded on $\mathscr H_E$; so one can extend them to bounded linear operators (resp. bilinear functional) on $\mathscr H_I$. We denote these extensions by the same symbols. The operator B is essentially self-adjoint in $\mathscr H_I$; its closure $\overline B$ in $\mathscr H_I$ is the generator of the one-parameter strongly continuous unitary group $V(\cdot)$. The starting point for quantizing a classical equation $i\partial_t f(t) = \overline B f(t)$ in $\mathscr H_I$ is a triple $(L,\sigma,V(\cdot))$, where (L,σ) is a symplectic space and $V(\cdot)$ a one-parameter group of symplectic transformations. We choose as the triple $L=\mathscr H_I^r$ (the underlying real linear space of the Hilbert space $\mathscr H_I$), $\sigma(f,g)=\mathrm{Im}(f,g)_Q$ for all $f,g\in\mathscr H_I$ and $V(\cdot)$ the one-parameter strongly continuous group of unitary operators in $\mathscr H_I$.

From [3] we adopt the notion of quantization. A quantization over $(L, \sigma, V(\cdot))$ is a quadruple $(\mathcal{K}, W, \Omega, U(\cdot))$ such that 1) (\mathcal{K}, W, Ω) is a cyclic Weyl system over (L, σ) ; 2) $t \mapsto U(t)$ is a one-parameter strongly continuous group of unitary operators on \mathcal{K} ; $U(t) = e^{-iHt}$ for all $t \in \mathbb{R}$ with $H \ge 0$; 3) the symplectic transformations are unitarily implemented by the U(t)'s and $U(t)\Omega = \Omega$ for all $t \in \mathbb{R}$; $W(V(t)f) = U(t)W(f)U(t)^{-1}$ for all $t \in \mathbb{R}$ and $f \in L$. Two quantizations $(\mathcal{K}, W, \Omega, U(\cdot))$ and $(\mathcal{K}_0, W_0, \Omega_0, U_0(\cdot))$ over $(L, \sigma, V(\cdot))$ are unitarily equivalent, if there exists a unitary intertwiner U for the cyclic Weyl systems (\mathcal{K}, W, Ω) and $(\mathcal{K}_0, W_0, \Omega_0)$.

Lemma 2.4. If $(A^{\mu}) \in \mathcal{P}$, then there exists a quantization $(\mathcal{K}_0, W_0, \Omega_0, U_0(\cdot))$ over $(L, \sigma, V(\cdot))$ with $\Omega_0 \in \mathcal{K}_0$ being the only (± 0) vector in \mathcal{K}_0 , which is invariant under $U_0(t)$ for all $t \in \mathbb{R}$.

Proof. We extend the symplectic space (L,σ) to a Hilbert space \mathscr{H}_P such that the underlying real linear space is L, the imaginary part of the inner product is the symplectic form σ and $V(\cdot)$ is a one-parameter strongly continuous group of unitary operators in \mathscr{H}_P with positive generator. Define $\mathscr{H}_I^+ = P_+ \mathscr{H}_I$ and $\mathscr{H}_I^- = P_- \mathscr{H}_I$, then $\mathscr{H}_P = \mathscr{H}_I^+ \oplus \overline{\mathscr{H}}_I^-$, where $\overline{\mathscr{H}}_I^-$ is the Hilbert space conjugate to \mathscr{H}_I^- . The multiplication with complex numbers is defined by if := jf, where j is an operator in \mathscr{H}_I ; $j := i(P_+ - P_-)$. For all $f, g \in \mathscr{H}_I$ $(f, g)_P = \operatorname{Re}(f, g)_I + i\sigma(f, g)$. Because jV(t) = V(t)j, the operators V(t) are unitary in \mathscr{H}_P . From $i\partial_t V(t)f = BV(t)f$ for all $f \in D(B)$ in \mathscr{H}_E follows $j\partial_t V(t)f = |B|V(t)f$ for all $f \in D(B)$; the operator |B| is essentially self-adjoint in \mathscr{H}_P ; so the \mathscr{H}_P -unitary group $V(\cdot)$ has $|\overline{B}|$ as its generator. $|\overline{B}|$ is positive, because $\sigma(|\overline{B}|) \subset \sigma(|B|) \subset (0,\infty)$ taking into account $(A^\mu) \in \mathscr{P}$. $(\sigma(|\overline{B}|))$ is the spectrum of the operator |B| in \mathscr{H}_P (or \mathscr{H}_I); $\sigma(|B|)$ is the spectrum of the operator |B| in \mathscr{H}_E .) So $0 \in \mathscr{H}_P$ is the only vector in \mathscr{H}_P , invariant under V(t) for all $t \in \mathbb{R}$. The lemma is proven, if one considers the Fock quantization over $(\mathscr{H}_P, V(\cdot))$.

Lemma 2.5. If $(A^{\mu}) \in \mathcal{P}$ and $(\mathcal{K}, W, \Omega, U(\cdot))$ is a quantization over $(L, \sigma, V(\cdot))$ with a unique vacuum and if the Weyl systems (\mathcal{K}, W) and (\mathcal{K}_0, W_0) (from Lemma 2.4) are unitarily equivalent, then the quantizations are unitarily equivalent.

Proof. The generating functional E of the quantization (\mathcal{K}, W, Ω) has the form $E(f) = \exp(-\frac{1}{4} \|f\|_P^2 + iF(f))$ for all $f \in L = \mathcal{H}_P^r = \mathcal{H}_I^r$ [3]; F is a \mathbb{R} -linear function on L and invariant under V(t) for all $t \in \mathbb{R}$. If (\mathcal{K}, W) and (\mathcal{K}_0, W_0) are unitarily equivalent, then F is a continuous functional on L. From $0 \notin \sigma(|\overline{B}|)$ one deduces F = 0 on L. Application of the G.N.S. theorem proves the lemma.

3. The Interaction Hamiltonian in the Fock Space of the Free Field

For the special case $A^{\mu}=0$ ($\mu=0,1,2,3$) one can construct $\mathcal{H}_I=W^{\frac{1}{2}}(\mathbb{R}^3)\oplus W^{-\frac{1}{2}}(\mathbb{R}^3)$, the free one-particle space \mathcal{H}_P and the Fock system (\mathcal{K},W,Ω) over \mathcal{H}_P .

Let \mathcal{Q} be the set of real potentials (A^{μ}) on \mathbb{R}^3 with Fourier transforms \tilde{A}^{μ} , such that the functions $\mathbf{p} \mapsto (1+|\mathbf{p}|)\tilde{A}^{\mu}(\mathbf{p})$ are integrable over \mathbb{R}^3 ($\mu=0,1,2,3$).

Lemma 3.1. If $(A^{\mu}) \in \mathcal{Q}$, then

- 1) $B_{\rm int}$ with $D(B_{\rm int}) = \mathcal{H}_E$ can be extended to a bounded operator $\bar{B}_{\rm int}$ on \mathcal{H}_I .
- 2) The equation $i\partial_t f(t) = (\bar{B}_0 + \bar{B}_{\rm int}) f(t)$ has for all $f \in D(\bar{B}_0)$ a unique differentiable solution $f(\cdot)$ in \mathcal{H}_I with f(0) = f. Define for all $f = f(0) \in D(\bar{B}_0)$, V(t) f = f(t); $V(\cdot)$ is a one-parameter strongly continuous group of bounded operators in \mathcal{H}_I .
 - 3) $(V(t)f, V(t)g)_Q = (f, g)_Q$ for all $t \in \mathbb{R}$ and for all $f, g \in \mathcal{H}_I$.

Proof. 1) is proven by the same method as in the appendix of [1]. Define $\tilde{V}(t) = \sum_{n=0}^{\infty} R_n(t)$ with $R_0(t) = \mathbb{1}$ and $R_n(t) = \int_0^t B(s) R_{n-1}(s) ds$ $(n \ge 1)$ and

$$B(t) = -ie^{i\overline{B}_0t}\overline{B}_{\rm int}e^{-i\overline{B}_0t}.$$

The series is uniformly convergent in norm on any compact interval in \mathbb{R} ; the function $t \mapsto \tilde{V}(t)$ is norm continuous. Because $\tilde{V}(t)D(\bar{B}_0) \subset D(\bar{B}_0)$, $V(t) = \exp(-i\bar{B}_0t) \tilde{V}(t)$ represents the solution of equation 2). The domain $D(B_0)$ is also

left invariant by the operators V(t); on $D(B_0)$ one shows 3) by direct computation; it then holds on \mathcal{H}_I by continuity. We remark that the operators V(t) are not linear in \mathcal{H}_P , because they do not commute with multiplication by i.

Lemma 3.2. If $(A^{\mu}) \in \mathcal{Q}$ and $V(\cdot)$ is the solution of the differential equation $i\partial_t f(t) = (\bar{B}_0 + \bar{B}_{int}) f(t)$ in \mathcal{H}_I , then

- 1) for all $t \in \mathbb{R}$ $P_+V(t)P_+$ is a bounded, one-to-one operator from \mathcal{H}_1^+ onto \mathcal{H}_1^+ .
- 2) The mapping $t \mapsto (P_+ V(t)P_+)^{-1} \phi$ is continuous for all $\phi \in \mathcal{H}_I^+$; the mapping $t \mapsto (P_+ V(t)P_+)^*$ is strongly continuous.
 - 3) For all $f \in \mathcal{H}_{I}^{+}(P_{+}V(t)P_{-})^{*}(P_{+}V(t)P_{+})f (P_{-}V(t)P_{-})^{*}(P_{-}V(t)P_{+})f = 0.$

Proof. The operator $P_+V(t)P_+$ is invertible and Range $(P_+V(t)P_+)$ is dense in \mathscr{H}_I^+ ([4]). For the inverse of the operator $P_+V(t)P_+$ one finds $(P_+V(t)P_+)^{-1}=(P_+V(t)^{-1}P_+V(t)P_+)^{-1}P_+V(t)^{-1}P_+$ with $\|(P_+V(t)^{-1}P_+V(t)P_+)^{-1}\| \le 1$. Because $(P_+V(t)P_+)^{-1}$ is a bounded operator on Range $(P_+V(t)P_+)$, the range is the whole of \mathscr{H}_I^+ . The continuity of the mapping $t\mapsto (P_+V(t)P_+)^{-1}\phi$ is now trivial. The mapping $t\mapsto \tilde{V}(t)^*$ is norm continuous, so $t\mapsto P_+e^{i\bar{B}_0t}\tilde{V}(t)^*P_+$ is strongly continuous. The result 3) can be found in [4] or [5].

In the space \mathcal{H}_P the one-parameter group $V(\cdot)$ of \mathcal{H}_P^r -bounded operators is symplectic (Lemma 3.1); so the operators $W_t(f)$, defined by $W_t(f) = W(V(t)^{-1}f)$ constitute for every time t a Weyl system in the Fock space \mathcal{K} over \mathcal{H}_P .

Lemma 3.3. Let (A^{μ}) be an element of \mathcal{Q} .

The one-parameter sympletic group $V(\cdot)$ in \mathcal{H}_P is unitarily implementable in the Fock space \mathscr{K} of the free field, if and only if the mapping $t \mapsto P_-V(t)P_+$ is Hilbert-Schmidt continuous in \mathscr{H}_I .

Proof. Let $V(t) = U(V(t)) (V(t)^T V(t))^{1/2}$ be the polar decomposition of V(t) in \mathcal{H}_P^r ; U(V(t)) is an orthogonal operator and $V(t)^T$ is the adjoint of V(t) in \mathcal{H}_P^r . $V(t)^T = V(t)^* = -jV(t)^{-1}j$; $V(t)^*$ is the adjoint of V(t) in \mathcal{H}_I .

According to a result of Shale [6] it is necessary and sufficient for the one-parameter symplectic group in \mathcal{H}_P to be unitarily implementable in the Fock space \mathcal{K} , that $t \mapsto U(V(t))$ is strongly continuous in \mathcal{H}_P^r and $t \mapsto (V(t)^T V(t))^{1/2} - \mathbb{1}$ is Hilbert-Schmidt (H.S.) continuous in \mathcal{H}_P^r . In our case the mapping $t \mapsto V(t)$ is strongly continuous, so the strong continuity of $t \mapsto U(V(t))$ is automatically satisfied. A further simplification is obtained by observing that the H.S. continuity of the mapping $t \mapsto (V(t)^T V(t))^{1/2} - \mathbb{1}$ in $\mathcal{H}_P^r = \mathcal{H}_I^r$ is equivalent to the H.S. continuity of the mapping $t \mapsto V(t)^T V(t) - \mathbb{1}$ in \mathcal{H}_I . The strong continuity of the function $t \mapsto V(t)$ entails the equivalence of the last statement with H.S. continuity of the mapping $t \mapsto P_- V(t) P_+ - P_+ V(t) P_-$ on \mathcal{H}_I .

With Lemma 3.2 3) one proves that the function $t \mapsto P_+ V(t) P_-$ is H.S. continuous in \mathcal{H}_I , if the function $t \mapsto P_- V(t) P_+$ is H.S. continuous in \mathcal{H}_I .

The next lemma shows that it is sufficient to consider the Born term of the time-evolution V(t).

Lemma 3.4. If $(A^{\mu}) \in \mathcal{Q}$, then the mapping $t \mapsto P_{-}V(t)P_{+}$ is H.S. continuous in \mathcal{H}_{I} , if and only if the mapping $t \mapsto P_{-}R_{1}(t)P_{+}$ is H.S. continuous in \mathcal{H}_{I} .

Proof. Adapting the proof of Lemma 3 in [7] one can show that the H.S. continuity of the Born term $P_-R_1(t)P_+$ is sufficient. To prove that this condition is also necessary, one observes that the function $t\mapsto P_-R_1(t)P_+$ is the uniquely determined solution of the integral equation

$$X(t) = C(t)A(t)^{-1} + \int_{0}^{t} X(s)D(s)A(t)^{-1}ds$$

with $X(t) \in \mathcal{B}(\mathcal{H}_I^+, \mathcal{H}_I^-)$ for all $t \in \mathbb{R}$, $t \mapsto X(t)$ strongly continuous and X(0) = 0. The coefficients of the equation are defined by $A(t) = P_+ \tilde{V}(t) P_+$, $C(t) = P_- \tilde{V}(t) P_+ - \int_0^t P_- B(s) P_- \tilde{V}(s) P_+ ds$ and $D(t) = P_+ B(t) \tilde{V}(t) P_+$.

The function $t\mapsto (A(t)^{-1})^*$ is strongly continuous and from our assumption the function $t\mapsto C(t)$ is H.S. continuous; so the function $t\mapsto \varrho_0(t)=C(t)A(t)^{-1}$ is H.S. continuous. Also the function $t\mapsto D(t)^*$ is strongly continuous; so the functions $t\mapsto \varrho_n(t)=\int\limits_0^t\varrho_{n-1}(s)D(s)A(t)^{-1}ds$ are H.S. continuous. On the interval [-a,a] (a>0) the series $\sum\limits_{n=0}^\infty\varrho_n(t)$ is uniformly convergent in $\mathscr{I}_2(\mathscr{H}_I^+,\mathscr{H}_I^-)$ (the Banach space of H.S. operators from \mathscr{H}_I^+ to \mathscr{H}_I^- with H.S. norm). This proves that the function $t\mapsto\sum\limits_{n=0}^\infty\varrho_n(t)$ is H.S. continuous on [-a,a]. The series satisfies the integral equation; by uniqueness of the solution $P_-R_1(t)P_+=\sum\limits_{n=0}^\infty\varrho_n(t)$ for all $t\in\mathbb{R}$.

Theorem 3.5. Let (A^{μ}) be an element of \mathcal{Q} .

The one-parameter symplectic group $V(\cdot)$ in $(\mathcal{H}_{P}^{r}, \sigma)$ is unitarily implementable in the Fock space \mathcal{K} of the free field, if and only if A=0 on \mathbb{R}^{3} and for all $t\in\mathbb{R}$ $Q_{0}(t)$ is finite and the function $t\mapsto Q_{0}(t)$ is continuous at t=0.

Proof. By applying Fubini's theorem twice one obtains for all $t \in \mathbb{R}$

$$||P_{-}R_{1}(t)P_{+}||_{2} = \int |K_{t}(p, p')|^{2} \frac{dp dp'}{2\omega(p)2\omega(p')}$$

with

$$K_{t}(\mathbf{p}, \mathbf{p}') = i(-1 + \exp(-i(\omega(\mathbf{p}) + \omega(\mathbf{p}'))t))2\omega(\mathbf{p}')B_{\text{int}}^{-+}(\mathbf{p}, \mathbf{p}')/(\omega(\mathbf{p}) + \omega(\mathbf{p}')),$$

$$B_{\text{int}}^{-+}(\mathbf{p}, \mathbf{p}') = (-\omega(\mathbf{p}')^{-1}\omega(\mathbf{p}) + 1)\tilde{A}_{0}(\mathbf{p} - \mathbf{p}') + \omega(\mathbf{p})^{-1}\tilde{A} * \tilde{A}(\mathbf{p} - \mathbf{p}')$$

$$-\omega(\mathbf{p}')^{-1}(\mathbf{p} + \mathbf{p}') \cdot \tilde{A}(\mathbf{p} - \mathbf{p}').$$

If there exists a point $p \in \mathbb{R}^3$ with $\tilde{A}(p) \neq 0$, then one obtains a contradiction with $K_t \in L^2\left(\mathbb{R}^3 \times \mathbb{R}^3, \frac{dp}{\omega(\mathbf{p})} \frac{dp'}{\omega(\mathbf{p}')}\right)$ Setting A = 0 on \mathbb{R}^3 the H.S. continuity of the function $t \mapsto P_- R_1(t) P_+$ implies the continuity of the mapping $t \mapsto Q_0(t)$ at t = 0. Remark. For spin one-half particles this theorem was generalized independently in $\lceil 8 \rceil$ and $\lceil 9 \rceil$.

Acknowledgements. This work was part of a doctoral thesis at the II. Institut für Theoretische Physik der Universität Hamburg. I am indebted to Prof. G. Roepstorff for his supervision and his stimulating interest in this work. I am grateful for the hospitality at Lehrstuhl E der R.W.T.H. Aachen.

The Deutscher Akademischer Austauschdienst, the Freie und Hansestadt Hamburg and the Bundesministerium für Forschung und Technologie financially supported this investigation.

References

- 1. Schroer, B., Seiler, R., Swieca, J. A.: Phys. Rev. D2, 2927—2937 (1970)
- 2. Thoe, D.: Arch. Rat. Mech. Anal. 22, 364—406 (1966)
- 3. Weinless, M.: J. Funct. Anal. 4, 350-379 (1969)
- 4. Lundberg, L.-E.: Commun. math. Phys. 31, 295—316 (1973)
- 5. Seiler, R.: Commun. math. Phys. 25, 127—150 (1972)
- 6. Shale, D.: Trans. Amer. Math. Soc. 103, 149—167 (1962)
- 7. Bongaarts, P. J. M.: Ann. Phys. **56**, 108—139 (1970)
- 8. Fredenhagen, K.: Thesis, Hamburg 1976
- 9. Ruijsenaars, S. N. M.: Thesis, Leiden 1976

Communicated by R. Haag

Received June 10, 1976