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Abstract. A quantum theory for charged spin zero particles interacting with an
external potential is constructed for a certain class of time-independent
potentials.
For potentials of a different class, a group of Bogoliubov transformations
generated by the solutions of a classical differential equation with an external
potential is defined in the free one-particle space. We give necessary and suf-
ficient conditions on the potential for this group to be unitarily implementable
in the Fock space of the free field.

1. Introduction

Although perturbation theory constitutes the basis for the practical calculations
in quantum electrodynamics, a direct justification for applying perturbation
theory is prevented by the existence of a Euclidean symmetry group. Generally
one tries to circumvent this implication of Haag's theorem by breaking the
symmetry.

For charged spin zero particles in an external time-independent potential we
prove in Section 3 a conjecture of Schroer, Seiler and Swieca [1]: the interaction
Hamiltonian does not exist in the Fock space of the free field if the external
potential contains a three-vector part. Thus, in a field theory with an external,
time-independent vector potential (0, A) the assertion of Haag's theorem is valid,
although its assumptions are not fulfilled.

To be more precise, let (Aμ) (μ = 0, 1, 2, 3) be an element of the function class
Ά specified in Section 3 the time evolution of the interacting field in the Fock
space of the free particles is determined by a one-parameter group of Bogoliubov
transformations in the free one-particle space; at time t = Q the interacting field
coincides with the free field. Then the time evolution is described by a strongly
continuous, one-parameter group of unitary operators in the Fock space of the
free field, if and only if A =0 on IR3 and

dpdp' >(/>)- ω(//)\2 ~ (ω(p) + ω(p'))t

is finite for all times ί and continuous in ί at 0.
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In the spin zero case, the vanishing of A stems from the presence of derivatives
in the interaction part of the Hamiltonian in the free one-particle space.

In Section 2 we show the existence of a non-trivial class of potentials, for
which one can construct a Fock quantization with a unique vacuum for charged
spin zero particles in an external potential. Furthermore, it is shown that every
quantization with a unique vacuum, whose generating functional is in the Fock
sector, is unitarily equivalent to the Fock quantization.

2. Quantization of the Klein-Gordon Equation with an External Potential

Our main concern will be proving the existence of a non-trivial class & of poten-
tials, for which one can define a one-particle Hubert space J*fP and a one-param-
eter strongly continuous group with a strictly positive generator \B\.

Let Jf£o be the direct sum of the Sobolev space ^ ( R 3 ) and the Hubert
space L2(R3). The operator Bo in J^Eo, with domain D(BO)=C$(R3)®C%(R3)

0 1

\-A-\-m2 0,
on D(B0).

Its closure Bo has domain D(B0) = W2(ΊR3)® ^ ( I R 3 ) , and is given by

Bo=\ 9 , where ω2 is the closure of the operator —Δ+m2 on C^(1R3) as

?(R3). The operator Bo in J^Eo, with domain D(BO)=C$(R3)®C%(R3)

and defined by Bo= ( Λ 2 Λ ) on D(B0) (mΦO), is essentially self-adjoint

W o.
a mapping from ^ ( I R 3 ) to L2(IR3). We close the operator Bo and denote this
closure again by Bo. The self-adjoint operator Bo has the property that BQ1

is bounded with \\BQ1\\=m~1. In the space JfEo we introduce the perturbation
B:ni\= \ Ί Ί ° as a bounded operator for potentials (Aμ)

i n t \e2A2 + ieV A+2ieA V eA0)
 F F y J

(μ = 0,1,2, 3) in C^(IR3), the class of real bounded continuous functions with
bounded and continuous first partial derivatives.

For potentials in C^(IR3) with the additional property \eA$\i^m an inner
product ( , )E is defined on Co

M(R 3)ΘCo(R 3) by

The completion of C^(R3)©C?(1R3) in the energy norm is denoted by Jt?E;
the Hubert spaces j4?Eo and 3t?E are related as sets by J^Eo C 34?E. In the same way
as one proves the Kato-Rellich theorem, one obtains the following result.

Lemma 2.1. // (A^eC^ΊR3) and \eA0\^m> then the operator B:=B0 + Bint is
essentially self-adjoint on D(B0) in the Hίlbert space Jή?E.

If one assumes that the norms || | |£ o and || | |£ on C^(IR3)ΘC^(1R3) are
equivalent, one gets a stronger result: the operator B is self-adjoint on D(B0) in
πE\ q?(IR 3 )e C?(IR3) is a core for B.

Let ^ 0 be the class of potentials (Aμ) with Aμe C^(IR3) and \eA0\ ̂ m such that

there exists c>0 with i | | / | | £ o ^ | | / | | £ ^ c | | / | | £ o for all/eC^(IR3)ΘC^(IR3). The

class ^ 0 is non-trivial; in fact one can show the following lemma.
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Lemma 2.2. // Ao = 0 and ^ e C ^ I R 3 ) (ΐ=l,2,3), then (Aμ)e0>o. If \e
AoeCiiΊR3) and A0(x) = O(\x\~1~g) for |x|-+oo(ε>0) and Al = 0 (i=l,2,3), then

To prove the second statement, one needs an estimate from [2]: if AleL2^3)
and Al(x) = O(\x\~2~ε) for |jc|->oo(ε>0), then there exists c>0, such that for all
/ G C ? ( R 3 ) j \eA0(x)f(x)\2dx£c$\Ff(x)\2dx.

As a further restriction on the class of potentials, we only admit potentials in
0>τ the subset of ^ 0 such that 0 is a point of the resolvent set ρ(B). The class &
is non-trivial as the next lemma shows.

Lemma 2.3. For every (Aμ) in Lemma 2.2 there exists r > 0 , such that (aAμ)e^ for
all αeIR with |α| <r.

Proof Range (B) = Range (BB^') = Range (1 + B intBo x) = ^E if \BϊrABZγ \\ < 1.
There exists c > 0 such that for all α in R with |α| ̂  1, ||£int((α,4μ))£o *II ̂  M^c. By
choosing α sufficiently small Range (B((ocAμ))) = X>

E.

Let F( ) be the one-parameter strongly continuous unitary group, generated
by the self-adjoint operator B in fflE\ P+ and P_ are the spectral projections of
B, connected with the sets (0, GO) and ( —αo, 0). Because of (Aμ)e^ the bilinear
functional ( , )Q on Jή?E, defined by (/, g)Q'.= {fB~xg)E for all/, ge^E, is bounded;

(f,9)Q = (fi,g2) + (f2,gi) and (V(t)fV(t)g)Q = (fg)Q

for all /, ge JfE and for all ί e R
For potentials in 0* one can introduce a new inner product in fflE\ for all

fg£^Eλf>g)i''= (f> \B\~1g)E- &Ί denotes the completion of fflE with respect to
the norm || ||7. The operators V(t), P+, P_ and the bilinear functional ( , )Q are
Jίj-bounded on fflE\ so one can extend them to bounded linear operators (resp.
bilinear functional) on ^Cv We denote these extensions by the same symbols. The
operator B is essentially self-adjoint in J ^ ; its closure B in J&Ί is the generator

- of the one-parameter strongly continuous unit_ary group V( ). The starting point
for quantizing a classical equation idtf(t) = Bf(t) in J ^ is a triple (L, σ, F( )),
where (L, σ) is a symplectic space and V( ) a one-parameter group of symplectic
transformations. We choose as the triple L — ^l (the underlying real linear space
of the Hubert space «#}), σ(fg)=lm(fg)Q for all fgeJ^j and F( ) the one-
parameter strongly continuous group of unitary operators in Jήfj.

From [3] we adopt the notion of quantization. A quantization over (L, σ, V( ))
is a quadruple (XI W,Ω,U(-)) such that 1) (X] W, Ω) is a cyclic Weyl system over
(L, σ); 2) th*U(ή is a one-parameter strongly continuous group of unitary op-
erators on J f U(t) = e~iHt for all ίeIR with J7^0; 3) the symplectic transforma-
tions are unitarily implemented by the C7(ί)'s and £/(ί)Ώ = Ω for all ί e IR; W^(F(ί)/) =
[/(O^ί/JC/ίί)"1 for all ίeIR and feL. Two quantizations (XIW,Ω, [/(•)) and
pΓ0, PF0, Ωo, C/o( )) over (L, σ, F( )) are unitarily equivalent, if there exists a
unitary intertwiner U for the cyclic Weyl systems (X, W, Ω) and (Xo, PF0, Ωo).

Lemma 2.4. If (Aμ)ε&>, then there exists a quantization (X0,W0,Ω0,U0( )) over
(L, σ, F( )) w/ίft ΩOGXO being the only (4=0) t βcίor m Jf0, w/zicfc is invariant under
U0(t) for all
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Proof. We extend the symplectic space (L, σ) to a Hubert space 2tfP such that the
underlying real linear space is L, the imaginary part of the inner product is the
symplectic form σ and V( ) is a one-parameter strongly continuous group of
unitary operators in JfP with positive generator. Define J ^ + = P+Jή?I and
je~=P_j^j, then J^P = jfI

+®j^I~, where j ^ ~ is the Hubert space conjugate to
J^!~. The multiplication with complex numbers is defined by if: = jf, where) is
an operator in J ^ ; j:= i(P+-P_). For all fge^ (fg)P=RQ(fg)I+iσ(fg).
Because j V(t) = V(t)j, the operators V(t) are unitary in J^P. From idtV(t)f = BV(t)f
for all feD(B) in JT£ follows jdtV(t)f=\B\ V(t)f for all feD(B); the_operator \B\
is essentially self-adjoint in 3ΊfP; so_the JfP-unitary group V( •) has \B\ as its gen-
erator. \B\ is positive, because σ(|£|)Cσ(|#|)C(0, oo) taking into account (Aμ)e^.
(σ(\B\) is the spectrum of the operator |J3| in 2tfP (or ^ ) ; σ(\B\) is the spectrum
of the operator |J5| in 3tfE) So Oe JfJ> is the only vector in J^P, invariant under
V(t) for all ί e R The lemma is proven, if one considers the Fock quantization
over pfP, V( )).

Lemma 2.5. // (Aμ)e0> and (Jf9 W,Ω,U(-)) is a quantization over (L, σ, V{ ))
α unique vacuum and if the Weyl systems (XI W) and (Jf0, Wo) (from Lemma 2.4)
are unitarily equivalent, then the quantizations are unitarily equivalent.

Proof. The generating functional E of the quantization (X', W, Ω) has the form
E ( / ) = e x p ( - i | j / | | J + ϊF(/))forall feL = ̂  = 3tfi [3]; F is a IR-linear function
on L and invariant under V(t) for all ί e R If (XI W) and (X"o, WQ) are unitarily
equivalent, then F is a continuous functional on L. From 0^σ(|5|) one deduces
F = 0 on L. Application of the G.N.S. theorem proves the lemma.

3. The Interaction Hamiltonian in the Fock Space of the Free Field

For the special case Aμ = 0 (μ = 0,1,2, 3) one can construct 3VI=W*(R3)®
PF~^(IR3), the free one-particle space J^P and the Fock system (Jf, W, Ω) over 2tfP.

Let Ά be the set of real potentials (Aμ) on R 3 with Fourier transforms Aμ, such
that the functions p^-(l + \p\)Aμ(p) are integrable over IR3 (μ = 0,1,2,3).

Lemma 3.1. If(Aμ)e£,then
1) Bιnt with D(Bint) = J^E can be_ extended to a bounded operator Bint on Jίfj.
2) The equation idtf(t) = (B0 + Bini)f(t) has for all feD(B0) a unique differen-

tiate solution /(•) in J#Ί withf(0) = f. Define for allf = f(O)eD(Bo),V(t)f = f(t);
V(') is a one-parameter strongly continuous group of bounded operators in Jf̂ .

3) {V(t)f, V(t)g)Q = (f, g)Q for all ίelR and for all f g&f,.

Proof 1) is proven by the same method as in the appendix of [1]. Define

V(t)= f Rn(t) with R0(t) = t and Rn(t)= ]B(s)Rn_1(s)ds (n^ί) and
π = 0 0

B(t)=-iJ*otBinte-iSot.

The series is uniformly convergent in norm on any compact interval in IR;
the function t\->V(i) is norm continuous. Because V(t)D(B0)cD(B0\ V(t) =

( — iBot) V(t) represents the solution of equation 2). The domain D(B0) is also
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left invariant by the operators V(t)\ on D(B0) one shows 3) by direct computation;
it then holds on j ^ Σ by continuity. We remark that the operators V(t) are not
linear in J^P, because they do not commute with multiplication by i.

Lemma 3.2. // (Aμ)e£ and V( ) is the solution of the differential equation idtf(t) =

( 0 + i n t ) f ( ) ^
1) for all ίeIR P+ V(t)P+ is a bounded, one-to-one operator from J^fj+ onto J4fj+.
2) The mapping t\-*(P+V(t)P+)~1φ is continuous for all φeJ^fj+;the mapping

t\->(P+V(t)P+)* is strongly continuous.
3) For all f e ^ (P+V(t)P_)*(P+V(t)P+)f-(P_V(t)P_r(P_V(t)P+)f = O.

Proof The operator P+V{t)P+ is invertible and Range(P+ V(t)P+) is dense in
^i+ (M). For the inverse of the operator P+V(t)P+ one finds (P+V(t)P+)~ί =
(P+V(ή-1P+V(t)P+)-1P+V{ty1P+ with \\(P+V(t)-1P+V(t)P+)-1\\^l. Because
(P+ F(ί)P+)~1 is a bounded operator on Range(P+ V(t)P+\ the range is the whole
of J#Ί+. The continuity of the mapping t\->(P+V(t)P+)~1φ is now trivial. The
mapping fκ>F(ί)* is norm continuous, so t\->P+eιBotV(t)*P+ is strongly con-
tinuous. The result 3) can be found in [4] or [5].

In the space ^P the one-parameter group V( ) of ^ - b o u n d e d operators is
symplectic (Lemma 3.1); so the operators Wt(f\ defined by Wt{f)=W{V{t)~1f)
constitute for every time t a Weyl system in the Fock space JΓ over Jfp.

Lemma 3.3. Let (Λμ) be an element of Ά.
The one-parameter sympletic group V( ) in Jή?P is unitarily implementable in the

Fock space Jf of the free field, if and only if the mapping ίπ>P_ V(t)P+ is Hilbert-
Schmidt continuous in Jtifj.

Proof Let V(t)=U(V(ή) (V(t)τV(t))1/2 be the polar decomposition of V(t) in Jf/;
U(V(t)) is an orthogonal operator and V(t)τ is the adjoint of V(t) in jffp*. V(t)τ =
V(t)*=-jV(t)~1j; V(t)* is the adjoint of V(ή in J^P

According to a result of Shale [6] it is necessary and sufficient for the one-
parameter symplectic group in Jtfp to be unitarily implementable in the Fock
space XI that t^U(V(f)) is strongly continuous in Jfp and t^(V(t)τV(t))1/2-ί
is Hilbert-Schmidt (H.S.) continuous in J^ r. In our case the mapping t\->V(t) is
strongly continuous, so the strong continuity of ίH»t/(F(ί)) is automatically
satisfied. A further simplification is obtained by observing that the H.S. con-
tinuity of the mapping t^(V(t)τV(t))1/2 - 1 in J^p=^f[ is equivalent to the H.S.
continuity of the mapping t\->V(t)τV(t) — 1 in Jf̂ . The strong continuity of the
function t\->V(t) entails the equivalence of the last statement with H.S. continuity
of the mapping t\->P_V{t)P+ - P + F(ί)P- on «^.

With Lemma 3.2 3) one proves that the function tt->P+V(t)P_ is H.S. con-
tinuous in Jtifj, if the function ίi->P_ V(t)P+ is H.S. continuous in fflv

The next lemma shows that it is sufficient to consider the Born term of the
time-evolution V(t).

Lemma 3.4. // {Aμ)eX then the mapping t^P_V(t)P+ is H.S. continuous in Jf/?

if and only if the mapping ίf->P_JR1(ί)P+ is H.S. continuous in 3tfv
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Proof. Adapting the proof of Lemma 3 in [7] one can show that the H.S. con-
tinuity of the Born term P_Rί(t)P+ is sufficient. To prove that this condition is
also necessary, one observes that the function t\-+P_Rί(t)P+ is the uniquely
determined solution of the integral equation

X(ή = C(t)A(t)"ι + } X(s)D(s)A(ή ~x ds
o

with X{t)£0β{^^f) for all ίeIR, tt->X(t) strongly continuous and X(0) = 0.
The coefficients of the equation are defined by A(t) = P+ V(t)P+, C(t) = P_ V(t)P+ -
t

\P_B(s)P_V(s)P+ds and D(t) = P+B(t)V(t)P+.
o

The function t^>(A(t)~1)^ is strongly continuous and from our assumption the
function ίi->C(ί) is H.S. continuous; so the function t\->ρo(t) = C(t)A(t)~1 is H.S.
continuous. Also the function t\->D(t)* is strongly continuous; so the functions

t

ίπ>ρn(ί)= J ρn_1(s)D(s)A(ή~ίds are H.S. continuous. On the interval [ — a, a]
o

00

(α>0) the series £ Qn(t) ^s uniformly convergent in J2{^i+^f) ( t n e Banach
n = 0

space of H.S. operators from J ^ + to fflf with H.S. norm). This proves that the
00

function ίπ> £ ρn(t) is H.S. continuous on [_ — a,ά]. The series satisfies the inte-
n = 0

00

gral equation; by uniqueness of the solution P_R1(t)P+= £ ρn(t) for all ί e R

Theorem 3.5. Let (Aμ) be an element of 1.
The one-parameter symplectίc group V( ) in (jΊfp, σ) is unitarily implementable

in the Fock space J f of the free field, if and only if A =0 on R 3 and for all ί e R
Qo(t) is finite and the function t\->Q0(t) is continuous at ί = 0.

Proof. By applying Fubini's theorem twice one obtains for all feIR

with

If there exists a point peJR3 with ^ ( ^ Φ O , then one obtains a contradiction

with KteL2 [IR3 x IR3, — £ - - ^ ) Setting 1̂ = 0 on IR3 the H.S. continuity of the
\ ω(p) ω(p)/ 5 J

function th>P_R1(t)P+ implies the continuity of the mapping tv->Q0(t) at ί = 0.

Remark. For spin one-half particles this theorem was generalized independently
in [8] and [9].
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