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Abstract. We demonstrate, under circumstances that allow the construction
of a “thermodynamic” hamiltonian, that Gibbs equilibrium states w are
modular states in the Tomita-Takesaki sense. The thermodynamic Greens
functions G are connected to these modular states, and the associated group
of modular automorphisms g, by the identification

G(A, B; 1)=w(Ac,(B))

(4 and B are observables) whenever the thermodynamic Hamiltonian is self-
adjoint and defines a derivation of the algebra of observables in a certain
sense. Our results apply to a class of interacting quantum gases at small
fugacity and Bose gases with repulsive interactions at all fugacities z<1.

1. Introduction

Although the time-development of thermodynamic systems in quantum statistical
mechanics is barely understood, some progress has been made on the questions
of existence and characterization of equilibrium. The existence problem has been
tackled by establishing that the limits

1{A)= lim et ge~Hat
A= o0

of the time development of finite systems A exist in some suitable sense. (H,
represents the Hamiltonian of a finite system A, A a fixed observable, and the
limit indicates the thermodynamic limit of an idealized infinite system.) Two
types of limit, i.e. types of convergence, have been distinguished.

In the best cases (free fermi gas, “short range” spin systems) the above limits
exist for all 4 in a C*-algebra 2 of quasi-local observables and t—1, defines a
strongly continuous one-parameter group of automorphisms of % [1-37]. Under
these circumstances one can also show that all Gibbs equilibrium states (limits
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of the type
w(A)= lim Tr(e #44)/Tr(e”#4), AU,
A—

are modular states in the sense of Tomita-Takesaki [4]. Furthermore the modular
automorphism coincides with 7. Expressed in another way, w satisfies the --KMS
condition.

In other cases (low density Bose and Fermi gases, “long range” spin systems)
the limit dynamics has been established for Gibbs states through use of the time
dependent Greens functions

G(A, B; t)= lim Tr(e ¥4 A4e4'Be~iHad) /Ty (¢~ Ha)
A=

etc. [5-9]. One would expect the equilibrium characteristics of the latter problems
to resemble that of the former. In particular one would reasonably believe that

a) the Gibbs equilibrium states are modular states in the Tomita-Takesaki
sense,

b) the modular automorphism and the Greens functions are connected by the
relation

G(A, B; t)=w(Ac(B)).

In this paper we tackle these two problems. The first is resolved and the second
reduced to a question of self-adjointness of the Hamiltonian naturally associated
with the infinite system and certain density estimates for this system.

2. Principal Results

In this section we discuss certain properties of the states obtained from the thermo-
dynamic limit in quantum statistical mechanics. We work in a semi-abstract
setting which is devised to cover various models of statistical mechanics.

The states of a quantum-mechanical system are determined by the states of
its finite subsystems and these in turn are defined via a directed set $, of Hilbert
spaces which are such that if A, <A, then §,, is identifiable as a subspace of §,4,.
In applications the indices A run over the bounded open sets of IR, or the finite
subsets of Z*, and the direction is by inclusion.

The observables of the system can be described by a family 2, of C*-algebras
which we will take to form an isotonic family in the following sense.

A family €, of *-algebras is defined to be an isotonic family if

1. each € is isomorphic to an irreducible subalgebra of £($ ,) containing the
identity,

2. if A;< A, then

Note that to each isotonic family, for example the 2, we may associate a
global C*-algebra, for example 2, which is defined as the uniform closure of the
union of the A ,.
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In order to define the usual Gibbs states of our system it is necessary to
introduce a family of Hamiltonians H,. Each H, is assumed be a lower semi-
bounded self-adjoint operator, on the corresponding Hilbert space § ,, with the
property that

Z(B)=Trg (e 1)< + 00

for all §>0.
The family of Gibbs states w ,, associated with a system of the above type, are
now introduced by

w(A)=Trg (e "H14)/Trg (e~ F4)

where AeU . Thus w, is a state over the C*-algebra 2 ,. Note that as 2, is a
subalgebra of 2 the state w, has an extension to a state over 2. Further as A
contains the identity its state space is weak *-compact. Thus, implicitly identifying
the w, with one of their extensions to A, we can assert the existence of weak
*-limit points

w(A)y=limw, (A)

where Ae, and A;<A,. The w obtained in this manner extend by continuity
to give states over 2. We wish to study such limit states and for this it will be
necessary to make further assumptions concerning the Hamiltonians H ,.

In the following discussion we will encounter commutator expressions of
the form [H 4, A] and the additional assumptions we now introduce are designed
to ensure that these expressions have a well-defined meaning for a large enough
set of A. We assume:

H1. there exists an isotonic family of *-algebras ©,C U, such that if 4eD,
then AD(H ,) S D(H ,);

H2. the operators

[HA5 A] e PHa

are of trace-class for all Ae D, and all f>0;
H3. the Gibbs states w, are such that

a)A([HA9 A]*[HAa A]) < Cq

where ¢, is independent of A and the bound is valid for all 4e®, and all A.
Note that condition 1 implies the operator of condition 2 is well defined. In
condition 3 the definition of w, is extended to unbounded operators for which
the appropriate operators are of trace-class.
Our first result is the following

Theorem 1. Let {w,} denote the Gibbs states associated with the family of Hamil-
tonians {H ,} and let w denote a limit point of the w , in the weak™® topology. Let the
{H ,} satisfy condition Hi—H3 above.
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Next assume there exists an isotonic family B, of *-algebras such that B,C 2,
and the algebra B formed by the union of the B, has the following properties

1. B is separable in the uniform topology,

2. the restriction to B of the representation n,, generated by w is weakly dense
in m,(AY".

It follows that w is a modular state over U, i.e. the vector Q, canonically as-
sociated with w and m,, which is cyclic for ©, is also separating for m.,.

Remark. The introduction of B appears somewhat artificial and in applications
in redundant whenever the algebra % is itself norm-separable. The suppositions
are devised to cover the case of the Bose gas where 2 is non-separable.

M. Winnink has kindly informed us that he had previously proved a similar theorem (see [7]).
He assumed continuity of the limit Greens functions in time instead of our assumptions H1-H3.
Thus Theorem 1 follows from his result and our Lemma 1. For completeness we include our proof.

The proof of the theorem uses the (one-time) Greens functions G, which are
defined by

G (A, B; 1)=Trg (e~ #*+HafeitHaB)/7 (B)

where 4, Be¥, and telR. We begin by listing a number of properties of these
functions which will be needed in the sequel.

L 1G4, B;t)* Sw(AA%)w 4(B*B), A, BeU,,,
2. .G c,GA* Ast,—1)20
ij
for all ¢;, c;eC and A€,
3. If BeD, then G,(A, B;t) is once differentiable and

2

0
5 04l Bs )} s0,(AA%0 ([H 1, BI*[H,B]).

4. If A, BeD, then G(4, B;t) is twice differentiable and
2

0

5. If f is a function whose Fourier transform f is in the class D(R) of Schwartz
then

§dif(G (A, B; t)={dt f(t+iB)G (B, A; —1)

for all 4, Be .

The last condition is a rephrasing, in the form of [10], of the Kubo-Martin-
Schwinger (KMS) boundary condition. This condition expresses that the G,
have analytic extensions in the strip 0 < Imz < 8 which are continuous and bounded
on the closure of the strip. The boundary values satisfy

Ga(A, B;t+1)=G4(B, A; —1)
for all A, Be, and teR.

2
sSo,([H,, AJH 4, A1*)o [H 4 B1*[H 4, B]) .
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We next consider limits of these Greens functions. We assume throughout
that

w(A)=limw, (4), Ac U,A,

exists for some net of A, and then consider limits of subsequences of the Greens
functions.

Lemma 1. Adopt the assumptions of Theorem 1. For all A,Be®B and teR there
exists a subsequence A, such that the Greens functions

G(A4, B;t)=lim G4 (4, B; 1)
exist. These functions are once-differentiable and

0 .0

a G(A, B;t) = '}Lri a G4 (A,B;t).
Proof. The existence of the G(A4, B; t) follows from the work of Ruskai [5]. Ruskai’s
application of the Arzela-Ascoli theorem is valid in the present context because
of the assumed separability of B and property H3.

Next note that

62 2
6_t2GA(A’ B;1t)| <cucp

uniformly in A and hence by a simple application of Taylor’s series

0 0
’E G, (A B;t)— E G, (4, B;1)
<1G 4, (A, B t4+1)— Gy, (A, B e+ W

+1G (4, B; )= Gy, (4, Bi t)|/|h] +(C,Cp) 2] .

Hence the limit of the derivatives of the G, exist. But another application of
Taylor’s series gives

0
|G4 (A, B;t+h)—G, (A, B; t)—hgt G, (A, B;t)| 27 Th*(C,Cy)'* .
The described result follows immediately.

Next we consider the properties of G considered as a sesquilinear form over
the representation space £, associated with the pair (w, )

Lemma 2. Adopt the assumptions of Theorem 1 and let G denote the Greens functions
defined in Lemma 1.
There exists a Hilbert space 8,09, and a strongly continuous one-parameter
family of unitary operators V, on &, such that K,=\/V,9,, and
t

G(4, B; 1)=(Qq, 1(A)Vimo(B)RQ,) -
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Further if f is a function such that f€® then
fdtf(1)(Q, n(A)V 7 (B)R,,)
=[dtf(t+iB)(Qq» To(B)V _ (A2,

for all A, BeB.

Proof. The first part of the lemma may be deduced from Ruskai’s discussion [5]
of multi-time Greens functions or may be deduced directly by the following
argument:
From property 1 of G, it follows that
|G(4, B, 1))* < w(AA*)w(B*B)
= [ (4%, | 7 (B)2 1% -
Hence the function G defines a one-parameter family of bounded sesquilinear

forms on 7 (B)2,, x 7,(B)Q2,,. The closures of these forms define a one-parameter
family te R— X, e 2(9,,) of bounded operators on §,, with bound

X =t.

By Lemma 1, this family is weakly continuous. From property 2 of G, it
follows that t— G(A*, 4, t) is positive definite in time, hence

XO = ]1 N Xt* = X —t

YeieiX, 20, ¢eC.

ij
Now one may apply the Nagy extension theorem, [11], page 452, to deduce the
existence of &, and V. If P denotes the orthogonal projector, on K&, with range
9, one has X,=PV,P.

The second statement of the lemma follows from Property 5 of G, and Lebes-
ques convergence theorem.

Proof of Theorem 1. If Aen), then it follows from the strong*-density of x,(B)
in 7, (A)" that one may choose a sequence A,&B such that

imm (A4,)Q,=AQ,, Lmr(A5Q,=A4*Q, .

Thus from Lemma 2 one has
Jdtf(t)(AQ,, V,AQ,)=[dt f(t+iB)(A*Q,, V_,4*Q,)

for all Aen and f with fe®. Now suppose Aex’, is such that 4*¥Q,=0. One
concludes that

fdtf(1)(AQ,, V,AQ,)=0.

But as V is a strongly continuous unitary group it easily follows that 4AQ, =0.
Finally choosing 4 as above and taking any Bem), one is forced to the
conclusion

(AB)*Q,,=B*(A*Q,)=0
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and hence, by the foregoing argument, applied to AB, instead of A
ABQ,=0.

But Q, is cyclic for «, in ©, and hence 4=0, i.e. Q, is separating for 7. This
completes the proof of the theorem.

Next consider the operators X associated with G and their unitary extensions V.
If K is the infinitesimal generator of V, on &,, and E its spectral family then the
KMS condition of Lemma 2 states that when Aem,, then

[d(AQq, Ex(A)AQ,) [(A) = [d(A*Q,, Ex(2)A*Q,,) f(A)e™"*.
One easily concludes that
149, 1> =(AQ,, AQ,) = [d(A*Q,, E(A)A*Q,)e ™"
= lle™ 12 4*Q, |

In particular =, Qe D(exp {— K/2}). Further, as Q, is cyclic and separating for

g, there exists, by the modular theory of Tomita-Takesaki, a group of
automorphisms of 7, implemented by unitaries 4%, such that the self-adjoint
operator 4, satisfies

1AQ, |1 =43 4*Q, | .
Further 7/ Q,, is a core for A%, Therefore one has

Af = Pe~FXP
where P is the projector on &, with range §,,. Thus if & =9, one has

AB =™ BK
and

AP =U,,.
In particular

Vi, V_,=n,, teR
i.e. if the Greens functions G determine a one-parameter family of unitaries on 9,
then these unitaries implement a group of automorphisms of 7, and this group is the
modular group of the state w. Thus it is of interest to find criteria which ensure
that the G determine unitaries.

One simple criterion can be given in terms of the Greens functions G and the
modular functions F,, associated with w. This latter function, defined by

F (A, B;t)=(Q,, A4*BQ,)

for A, Benl, has an analytic continuation in the strip 0<Imz<p. We have
concluded above that

F (A%, A;if)=G(A* A;if), Aen!

But it also follows that

F (A% A4;iB/2) 2 G(A*, 4;iB/2).
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This inequality follows by noting that
AP = pe~PKP
=(Pe PXI2P)2 4 Pe~PRIZ(] — P)e~FKIZP
>(Pe PKIZpy2
Hence
A2 > pe=FKI2p

Taking matrix element yields the desired result.
Now we may conclude that G determines a one-parameter family of unitary
operators, if, and only if,

F (A%, 4;1/2)=G(A*, A;1p/2)

for all Aen,. This result follows because the above inequality becomes an equality
if, and only if,

Pe™PKI2(] — P~ PK2P=0

which in turn implies P=1, or $,=K,,.

The foregoing criterion does not appear to be useful in applications but it
has some interest because F, at the point iff/2 corresponds to the Wigner-Yanase
entropy [12] of the state w (or at least to a natural generalization of this concept).
The G corresponds to the limit of the entropy of the subsystems and the above
criterion is a maximum entropy principle.

Next we turn to a criterion which involves the self-adjointness of a Hamiltonian
operator which can be associated with the limit systems.

We have demonstrated in Lemma 1 that, under the assumptions of Theorem 1,
the limit

0 .0
= G(4, B:1)= h:na G.(A, B;1)

exists. But this derivative of G defines a sesquilinear form over the representation
space 9, and one has from the properties of G, previously listed

2

% G(4, B;t)] Sw(AA4%)cy.

We next prove that the sesquilinear form given by t=0 defines a symmetric
operator on $,, which can be interpreted as the Hamiltonian of the infinite
system.

Proposition 1. Adopt the assumptions and notation of Theorem 1. Let A, be a
sequence such that the limits

G(4, B;t)=lim G, (4, B; 1)

exist for all A, BeB and teR (cf. Lemma 1).
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The derivatives of G determine a symmetric operator H,, on ,, such that D(H,,) =
7,(B)Q,, and

0
i(na)(A*)Qav Hwnw(B)Qw) = 5 G(A> B) t)lt= 0
for A, BeB.
Proof. We have noted above that

- i% G(A, B; t),— o = h(n,(A¥)Q, 1(B)R2,,)

defines a sesquilinear form & on 7,(B)2,, x 7,(B)Q, with the continuity property
(1 (A*)Q0, T BYQ) < [ 1,(A%)R0 [l 5 -

Thus by the Riesz representation theorem there exists for each Be®B, a vector
WEEYD,, such that

h((A*)2, T o(B)2y) = (T (A%)2,, W)
for all AeB. Define H,, by
H,n,(B)Q,=vp, Be®B.
In order that this definition determines a bona-fide operator we must show that
1,(B)Q2,=0 implies pz=0.
But as Q, is separating
n,(B)R2,=0 implies B=0

and hence implies 0G(A4, B;t)/dt=0. The desired conclusion follows immediately.
The symmetry of H, results from the easily checked symmetry of h.

In the remainder of this section we study the situation that H,, is essentially
self-adjoint on n,(*B)Q,. We establish properties of the commutators [H ,, B],
BeB, and the states w4, w, which ensure that the modular automorphism group
associated with w is given by

ofA)=eHoge o - geq! teR,

where H,, is the self-adjoint closure of H,,.
The basic idea is to establish conditions under which the Heisenberg equations
of notion

d . . . .
_elHAtBe zHAtzezHArl[HA’B]e iH 4t

dt

have an analogue in the equilibrium representation 7,. For this one needs the
existence of limits of the differentials i[H ,, B] as A tends to infinity. In the simplest
models, quantum spin systems, these commutators are bounded and converge
within the C*¥-algebra U even with the long range interactions considered by
Ruskai [5]. For continuous systems the situation is more complicated. The
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easiest behaviour occurs when the inter-particle interaction is of finite range and
can be characterized by the following subsidiary condition
H4. If BeB there exists a A such that

d(B)=i[H 4, B]

is independent of A for AD> A, [d(B) is an unbounded operator affiliated with
AyonH, ]
We also need a method of estimating the magnitudes of the derivatives d(B)
in the state w. This is achieved by the following “a priori” density assumptions.
Recall that @ was defined as a state over the C*-algebra 2 by a weak* limit

w(A)= ]io{n w, (A)

over a net A, Our first assumption concerns this net.

N1. o is a locally normal state over A=(U 2 ,); i.e. for each A, there exists a
density matrix ¢, on $, such that

o(A)=Trg (044), AecU,.

Further the net w,_ converges weak™ on £=U,2($,) to the state @ which
is the unique normal extensions of w to £, i.e.

@ (A)=Trg (044), A€ L5

In applications we will demonstrate that this rather unnatural assumption
follows from estimates on the particle energy density. Our next assumptions can
be interpreted as estimates on the particle density.

N2'. There exist positive operators N , affiliated with £($,) and constants c,(A),
such that

o, (NDZe (A) m=1,2, ...
for all A'DA.
N3*. For Be® there exists an m such that
S(B)(NT+ 1)
is bounded for some 4> Ap.

Remark 1. If N is an unbounded positive operator affiliated with a von Neumann
algebra M and w is a normal state on M then w(N) has a canonical definition (see
for example, [13] Section 3). If N1 and N2 are satisfied then [13] Corollary 3.3
establishes that

oN)<liminfw, (N} Zc,(A).

1 Inapplications to quantum gases the N, are local number operators and it suffices to have bounds

for certain small values of m, i.e. m<4
(In N3, m=1 for Fermions, m=3/2 for Bosons, in N2 we need m=2+¢ for Fermions, m=3+¢
for Bosons)
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Further m,(N") is canonically defined, Q,e D(r,(N"/?)) and
o(ND= [N, 1% -
The principal result in the present context is the following

Theorem 2. Assume that conditions Hi—H4, N1—N3, are fulfilled and, moreover,
assume that the symmetric operator H, defined in Proposition 1, is essentially
self-adjoint on ,(B)Q,,. ~

It follows that the self-adjoint closure H,, of H,, satisfies

L G(A, B; )= (mo(A%)Qq, €', (B)Q,,)
forall A, BeU

2. eflotgre=iflot—gr = teRR,

and this group of automorphisms, is the (f—) modular group associated with w by
Theorem 1.

The proof is divided into the following three lemmas.

Lemma 3. Adopt the assumptions Hi—H3 and N 1. Let A, denote the Greens functions
G on BxB, i.e. A, is such that

G(A, B; )= lim G, (4, B; t)
forall A, Be'B.

Then G satisfy the bounds

|G(4, B; 1)) < w(A4*)o(B*B)

and hence can be extended by continuity to 2 x & where =U,9,). If Ay is a
subset of A, such that w4, converges pointwise on £ then

G(4, B; t)=1imG , (4, B; 1)
for all A, BeX.

Proof. The bounds follow from Property 1 of the G, discussed at the beginning
of the section.
Let AeB, Be L and note that
G4(4, B;1)—G(4, B; 1)
=G,(A,B—B';1)
+G4(A4,B;t)—G(A4, B';t)+G(A, B —B; 1)
for any B'e B. Thus
|G4(4, B;1)—G(4, B; 1)
1G4, B';1)—G(A4, B'; 1)
+ | Al (B—B)*B—B)'?
+ | Allw(B—B)*(B—B))'".
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Thus
lim sup|G,,(4, B; 1) — G(4, B; 1)l 2| 4] (B~ B)*(B—B)"* .
Since =, (B) is strongly dense in 7,(LQ)" the right hand side can be chosen

arbitrarily small. Thus the desired result is obtained on B x £. Repetition of the
argument gives the same conclusion on £ x £.

Lemma 4. Adopt the assumptions HI—H3 and N1. Let N be a positive self-adjoint
operator affiliated with ($,,) and assume w ,(N*)<K uniformly for A>Ay. The
extended Greens functions

G (A, BN; t)=Tr (e~ #+iHagoitHaBN)/Tr , (e~ PH4)
G(A; BN )= (m,(A*)Q2, X m,(BN)Q,,)

are well defined for all A, Be L.
If Ap is the subnet of Lemma 3 then

G(A, BN;1)=1imG,, (4, BN; 1)
B

for all A, BeL and telR.
Proof. Since w ,(N®)< K we have that
(N3 limﬁinf w,(NY)=K
thus
Q,eD(n, (N*)CD(r, (N))
Qe D(n,(N*) CD(n,(N))

where Q, is the vector associated with w,. Thus the extended Greens functions
are well defined.
Let

N={ydE()X
be the spectral decomposition of N and define
N;={dEM)reL(D,,)
One has
G,(A, BN;t)—G(A, BN t)
=G,(4,B(N—N ;1)
+G4(A, BN;; 1)~ G(A, BN; t)
—G(A,B(N—=N));t).
The first and last terms can be bounded as follows
G A(4, BN = N ); )1? S (AA*)w (N — N )B*B(N — N ))
<[ AI2IBI?04(N* = N7).
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But one has
N?*—N?=[?dE(1)A?
<1/jJf dE)Z?
=N°/j.
Combining these estimates gives
G 4(A, BIN =N );t| <[ 4] | B| K"/
and, analogously
|G(4, BN = N); | < || Al | B K2 /jH2 .
Thus
|G 4,(4, BN; t)— G(A, BN ; )|
2[4 B K2/
+1G4,(4, BN ;; t)— G(A, BN 1)] -

Hence by Lemma 3

lim sup G4, (4, BN )= G(4, BN 1) <2 || A|| | B K*2/j!/* .

But j is arbitrary and the desired conclusion follows immediately.

145

Lemma 5. Adopt the assumptions Hi—H4, N1—N3. For Be®B choose N"} as in N3.

It follows that
iH 1o (B)Qy, =, (0(B)N'; + 1) ™ m (N7} + 1),
and for AeB.

& G(A, B: )= GUA, (BN +1) YN+ D30,

Proof. By Lemma 1 one has

d d

— ;) =1lim — A, B;t

7 G(A, B; 1) :l—»ri o Gyl )
and using H4

4G\ (A B0 =G, (A, [, B]: 1)

=G,4,(4,(B); 1)
=G, (A (BBYN"+ 1) HN"+1);1).
Hence by Lemma 4 applied to N=N"{+1 one has

dit G(A4, B;)=HmG (4, G(B)(N%+1)" YN+ 1); 1)
B

=G(A, OB(N+ D)™ HNG+1); 1)
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This proves the last part of Lemma 4. The first part follows from the definition
of H,.

Proof of Theorem 2. If Be®B then Lemma 5 implies

d
dt X (B)&Q,=1X,H,n,(B)Q, .

This implies that

X d
nw(A)Qwr — nw(B)Q(o == (X—tnw(A)Qw? nw(B)Qw)
dt dt
=i(X _ H,m,(A)R,, 1,(B)R,)
=i(H,m,(A)Q,, X,n,(B)2,)
for all 4, BeB. But the left hand side is continuous in 7,(4)Q, and this set of
elements forms a core for H,, Thus
X mo(B)2,€ D(H ;)
and
d .
a; thw(B)Qw = lethw(B)Qw
=iX,H,m,(B)Q,,

for all Be®B. These equations have the solution X,=exp {iH,t} but this solution
is unique because if X, is another solution one has

d . ,
T X (B)Q, = 16—~ Ho X+ X Ho (B2,

=0, Be®B.

Thus X,=exp{iH,t}. Therefore the Greens functions G determine a unitary
group and this group is the modular group associated with w as a result of the
discussion preceding the theorem.

Remark 2. In systems where 6(B) is defined as a bounded operator or if §(B)=
limi[H,, B] is an element of A then Theorem 2 is true without any of the

assumptions N1-N3. On the other hand one can also discuss situations in which
[H,, B] does not become independent of A. If, for example, the A are subsets
of R, {I';} is a partitioning of IR” into unit cells, there exist ¢,(B) such that

w((z ci(B)N',t'l.)3)< + o0

1

and
(CH,,, B1—[H,,, B]) (2 c{B)N7. + 1) -1

i

is a Cauchy set of bounded operators then the above proof can be extended.
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Remark 3. Theorem 2 has a partial converse. If the family of operators X deter-
mined by the Greens functions G is a one-parameter unitary group on §,, then H,
has equal deficiency indices. This follows by noting that the self-adjoint generator
of X extends H,,.

Remark 4. If, under the assumptions of Theorem 1, A, is a subsequence such that
the limits

G(4, B; t)=1im G, (4, B; 1)

exist for all 4, BeB and te IR, and if, further, the one-parameter family of operators
X, on $, determined by G is unitary then the limits

G(A, By, B,...B,;t, ... 1,)

=lim Tr, (efHange 1 HanB e~ it1=1Ma, B o~itmHan) Tp (o~ FHax)

exist for all 4, By, ..., BB, ty, ..., t,,€IR, and meZ ,. Moreover
G(A,By,B,, ..., Bty .., t,)=(Q4, T (A)X, m(B)X,,_,7(Bs)... X,
+Qu(B)2,
=w(Aoc,(By)...0,(B,))

ta—ty —th-1""

where o is the modular group of w. These statements follow from the foregoing
discussion and Theorem 5 of [5]. For example pick any subsequence of the 4,
such that the limits G(4, By, ..., B,,; ty, ..., t,,) exist for all 4, B;, ..., B,,B etc.
Such a sequence exists by the reasoning of [5]. By Theorem 5 of [5] there exists a
Hilbert space &,29,, a representation 7%, of U, and a unitary group U acting
on K, such that

G(A,By, ..., Bty .., t,)=(2,, T,(A)U, 7,(B,)...U To(Bm)2,) -

Now if P is the orthogonal projector on ], with range $, we deduce that X,=
PU,P. Hence if X, is unitary then U, commutes with P because

(PUP)*(PU,P)— P=(PU(1—P))*(PU(1— P))

tm—tm-1

and hence PU,Pis unitary on $),, if, and only if, PU (1 — P)=0. But 7, is an extension
of n,, such that 7,Q,=7,Q, and Q, is cyclic for {n,, U,} in ], Hence K,=9,,
P=1, and X,= U, These equalities identify G and simultaneously prove that each
convergent subsequence of the G, gives the same limit, i.e. the limit of the G,
exists.

3. Applications

In this section we discuss the applications of the abstract theorems of Section 2
to long range spin systems [5, 8] and low density Fermi and Bose gases [6,9].

a) Quantum Spin Systems

We adopt the notation and assumptions of [5] for spin systems. The quasi-local
algebra A associated with the system is norm separable.
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If @={P(X)}x.zv is an interaction then
H,= ) &X)eU,

XcA
is bounded and conditions H1-H2 are trivially satisfied. If the interaction &
satisfies the condition of [5]

sup Y |o(X)]| <+ o0

xeZ¥ Xax

then for Be A,
&(B)= lim i[H 4, B]
A=

= . i[®(X), B]
XAD
and H3 is trivially satisfied. Thus Theorem 1 is applicable.

Although [H 4, B] does not become independent of A the limit §(B) is bounded
and this replaces condition H4. (The conditions N1-N3 are unnecessary in this
case.) Thus Theorem 2 applies.

Every equilibrium state of the long range spin systems considered in [5] is a
modular state.

For a particular subclass of these systems Pulvirenti and Tirozzi [8] have
established that the Hamiltonian H, of Proposition 1 is essentially self-adjoint
and hence the Greens functions and the modular automorphisms are directly
related. These authors prove the essential self-adjointness by showing that H,
has a dense set of analytic vectors.

b) Dilute Fermi Gas

Low density Fermi gases with two body interactions have been studied in [6].
We adopt the notation of this reference. The C*-algebra A, the CAR algebra,
associated with these systems is norm-separable. It is established that if the
interaction is mediated by a stable two-body potential ¢e L*(R*)nL(R") which
is even and continuous for x 0 then conditions H1—H3 are satisfied for a suitable
choice of the D ,, whenever the activity is sufficiently small. For example one may
choose D, to be the algebra generated by creation and annihilation operators
a*(f), alg), with f and g twice continuously differentiable functions in L?*(A).
Theorem 1 applies with B ,=D,. The results of [6] are based on the work of
Ginibre [14] who establishes that at small activity and with fixed boundary
conditions there is a unique limit of the Gibbs states w,. Therefore the small
activity Gibbs state is a modular state.

If next we choose the interaction ¢ to have compact support then condition H4
is also satisfied but 6(B) is unbounded for Be B ,. In the appendix we give estimates
of the d(B) in terms of the particle number operators N, associated with the
regions A€IR". In particular we show that for suitable A,

I0(B)N 45+ 1)< +00.

Thus condition N3 is satisfied.
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It remains to check conditions N1-N2. In the small fugacity region studied
by Ginibre [14] one has, however, that the local Gibbs states w, converge in the
weak* topology of 2 to a locally normal state w. Moreover the density matrices
04.4, Obtained by restricting w, to W, i.e. the density matrices such that

a)A(A)=Tr$5AO(QA,AoA) . AeU,,,

converge strongly on 4 to the density matrices ¢4, associated with Q (see, for
example, [14] Proposition 3.3). But this implies that ¢, ,, converges to g, in the
trace-norm topology (see, for example, [19] and [15] Corollary 1) and hence w4
converges to o uniformly on each £($ ,,). Thus condition N1 is valid.

Finally condition N2 follows in the small fugacity region with N, chosen as
the number operator (see appendix) because the correlation functions g,(X, Y)
associated with the w, are bounded ([14] Chapter 3) uniformly in A.

But one has

WAN 4o(N 4o+ 1)...(N 4o+ m—1))

= fm dxy ... dXxp0 4(Xq .. Xp; Xpyo o X 1) -
Ao

Hence we may conclude that Theorem 2 is applicable to the interacting Fermi
gas at low fugacity if the two-body potential ¢ is finite range, ¢pe L*(R")n L (R"),
¢ is stable, even and continuous for x=0.

¢) Dilute Bose Gas

Results similar to those of [6] for the fermi gas have been obtained in [9] for the
Bose gas. The C*-algebra appropriate to the description of the Bose gas is the
algebra associated to the canonical commutation relations, the CCR algebra 2.
This algebra is generated by unitary elements U(f), V(g), the Weyl operators
which are defined for each pair f, ge L*(R"). The algebra is not norm separable.
In the small fugacity region there again exists a unique Gibbs limit state w for
each fixed boundary condition and this state is locally normal. These statements
again follow from [14]. Thus there exists a separable subalgebra B C U such that
the restriction of w to B fully determines w. One can consider the *-algebra B
where the corresponding local algebra B, are generated by Weyl operators
U(f), V(g) with f,g chosen in some fixed orthanormal basis of L*(A). If, further,
the basis of L?(A) are chosen to be formed of twice differentiable functions then
the estimates of [9] establish conditions HI—H3 in the small fugacity region for
an interaction of the type previously considered for fermions. Thus Theorem 1
is applicable. Under similar conditions Theorem 2 can be applied if the interaction
is taken to have finite range. Verification of conditions H4 and N1-N3 is similar
to the Fermi case and relies on the results of [14] and the estimates of the appendix.

d) Bose Gas with Repulsive Interactions

As a final application we consider the Bose gas with a positive two-body
interaction. The density estimates which are necessary for the application of
Theorem 2 have recently been obtained by Suhov [17].
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Proposition 2 (Suhov). Let (A1), ACIRY, be the Fock space appropriate to the
description of Bose particles confined to A and TS, T the kinetic energy operators
with Dirichlet and Neumann boundary conditions respectively. If xeR'— ¢(x) is
a positive twice continuously differentiable function such that ¢ is integrable and ¢”
is bounded, and U ,(A) the associated interaction operator on Hp(A) we define the
total Hamiltonian H, as the Friederichs extension of T3+ U, (A). Further we
denote the number operator on Hg(A) by N 4 and for f>0, u <0, we define the Gibbs
state wp , 4 by

— B(H 4 — _ B
wﬂ,u,A(A)=Tr$3F(A)(€ B(H 4 #NA)A)/Ter(A)(e B(H 4 uNA))

Sor all Ae Q(H(A)).
It follows that for A,CA

g0 AN SCp(Adg)<+00,m=1,2, ...
g a(TH) Sc(Ag) < + 00
where c,, ¢ are independent of A.
This proposition allows us to make our principal application

Corollary 1. Adopt the framework of Proposition 2 but further assume that the
interaction ¢ has compact support and ¢e L*(IR®). Let g, .. 4, be a weak* convergent
subnet and w, , the corresponding weak* limit point.

It follows that

L. wy , is locally normal;

2. g, 4, CONVeErges in normto wy , on YH(A)) for each A;

3. wp,, is a modular state on the von Neumann algebra generated by U ,(Hp(A));

4. if the thermodynamic H,,, associated with wy,, by Proposition 1 is essentially
self-adjoint then its closure H, is the generator of the modular group of w; .

Proof. The first statement is a consequence of the first density estimate of Proposi-
tion 2 and Corollary 1 of [17]. The second statement follows from the energy
estimate of Proposition 2 and Theorem 3 of [15]. Because T + N, has a compact
resolvent on $Hg(A,). The third statement follows by application of Theorem 1.
Note that conditions H1—H3 are valid by the estimates of the appendix combined
with Proposition 2. In this context we again take B , to be the *-algebra generated
by Weyl operators U(f), V(g) with f,g chosen to be twice differentiable and in
some fixed orthonormal basis of L?(A). Finally condition H4 is valid because
¢ has compact support, N1 follows from the first statements of the Corollary,
N2 is a consequence of Proposition 2, and N3 is established in the appendix.
Thus the fourth statement follows from Theorem 2. Finally we note that the
above result, Corollary 1, also holds for one-dimensional systems with a hard
core and finite range C*-interaction [20].

Appendix

In this appendix we derive a number of estimates for commutators of Hamiltonian
operators and field operators acting on Fock space.
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We let $ denote the usual Fock space built over L*(R"), either symmetrically
or anti-symmetrically, and a(f), a*(f) the usual annihilation and creation opera-
tors, defined for each real f'e L2(R"). If 4 is a bounded open subset of IR we define
the local number operator N, by

(NAw)(n)(xl X)) = z XA(xi)w(n)(xla s Xy)
i=1 ‘

where 7, is the characteristic function of A and = {p™}e H; is such that p™ =0
for n sufficiently large. N, is symmetric and its closure, which we also denote
by N, is self-adjoint.

If ¢ is a real symmetric function then we define the associated interaction
operator U, on Hy by

(U -5) = T 5= 9y

Actually we need further conditions on ¢ to ensure that the foregoing formal
definition specifies an operator on $, and we should also be more precise concern-
ing the domain of this operator. These points will be clarified in each of the results
given below, e.g. ¢pe L*(R") will specify an operator U, with domain containing
D(N?) for all A.

Lemma Al. Take feL*(A) and ¢pe L*(A’) then

ITU g al Nl = (@112 (S UN 44— Dl
SIS IXN 54— 4 —Dwll

where

X=1 for fermions (anti-symmetry)
=NY? for bosons (symmetry)

and A—A'={xelR”;x=y—z,yed, zeA'}.

Proof. Using the action of annihilation operators, and the definition of Uy, one
immediately calculates that

n

LU a(NIp?= Y (1) fdx,...dx,[fdxdy f(x)f () 3, dlx—x;) Z P(y—x;)

nz0 i=1
w(n+1)(x7 x’ tee xn)—lp("+l)(ya x) M xn) N

We now sum the right hand side over a complete orthonormal basis of L*(A')
which is chosen to contain ¢/||¢||,. This gives the inequality

LU a(NIwl* < 1413 X (+1) ). [dx ] dx,...,dx,

nz0 x—x,ed’ , x—xjeA’
S (x=x;+x))

Pt 1)(x1x1.._xn)—lp("+1)(x—xi+xj, XgeeXy)
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Applying the Schwartz inequality one then finds
MUpaNIWIP=le12 X Y | dxpdx(a(Nw) ™. x,))?

nz0 ij xj,xjed—A’

= Q13N 44 valf)wl?
= @13 1alf NN 444 =DI?.

Finally for fermions one has

a{(Na(NH=ZNf13
and for bosons
a*(fa(f)ZIfIEN 4.
Lemma A2. Tuke f e L*(A) and ¢pe L*(A') with Oc A’ then

LU g a* (Wl =MDl S NN g4 9ll - for fermions
Sl FIIN 4= 4+ DN 4 gl for bosons .
Proof. First note that

V=D R@HHAY), ACR’,

where A° denotes the complement of A in R” and ® denotes the anti-symmetrized
or symmetrized tensor product according to the choice of statistics. As all operators
occuring in the statement of the Lemma act on $(A4— A') it suffices to prove the
inequalities on this latter space.

In Lemma Al we established that

LU al NN 4= 2= D=1/ 12181

for fermions and, using ACA— A" and hence N,<N,_ ,,

1TV alf N 4= =D 'Ny a2 1S 12]1 9112

for bosons. Taking adjoints and using the fact that [U ,, a*(f)] maps the n-particle
subspace of Hy(A— A’) onto the n+ 1-particle subspace gives

ILU g a*(N)INs- g = LI =S 12M D12

for fermions and

LU a* (NN a-MN 4=+ DS 1101

for bosons.

In the case of bosons it is useful to consider bounded functions of the un-
bounded operators a( f), a*(f). Let ¢(f) and n(f) denote the usual self-adjoint
field operators associated with the a(f) and a*(f), e.g.

O(f)=2""2(al(f)+a*(f)
and let W(f, g) be the unitary operators given by

W(f. g)=exp {i¢(f)+in(g)} .
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Lemma A3. Take f, ge L*(A) and ¢pe L*(A') with O A’ then

LU W, Il < 1612015 12+ lgl2)ao+a (1 12+ lgllz)
(N 4— 4+ Dl
where ag, a, are positive constants independent of f, g, ¢, p.
Proof. One has

W(f, 9)*[Ug W, )1=W*([, QU W (S, 9)—
=i[odsW*(sf, sg)LUs, d)(f )+ (g1 (s f. sg) .
Therefore

LU W(f, 9IwlI< [6 dsILU 4, $(f) +m(@)IW (s S, sghpll -

But ¢ and 7 are linear combinations of a and a* Hence applying Lemma A2

LU WA g0l S 101 f 1+ gl )2 f8dsI(N 4 0+ W (s £, sghpll -
Next we use
W(sf, 9N 4 4, W(sf,s9)=N4_

where

Ny =N p+snlf)— ¢(g»+ (||f||z+l|gllz)
Thus
LU, WA 9dwl < 11,01 f 1+ gl )25 dsI(N 4 4+ 1))

Finally we bound (N ,_ ;.4 1)% in terms of (N ,_ 4. +1)* by using the commutation
relations of N,_ , with ¢ and = and the bounds

B S2AN+ DS
QIS2VAN A+ D2 [ 222N+ D 1l
N4sSNy-4

etc. The last inequality is a consequence of our assumption that A’ 30.
Combination of these inequalities yields a result of the form stated.
These estimates can be extended to certain potential functions ¢ which do
not have compact support.

Lemma Ad. Let pe 9y be such that for every ACIR® one has we D(N™) and
INGpll <lA™e,

where m=1 for fermions and m=3/2 for bosons, and c,, is independent of A. Further
let fe I*(A;) for some A and take ¢ such that

|12 = Jdx(1+x*) 1 ()* < + 0

for some > 0.



154 O. Bratteli and D. W. Robinson

It follows that
ILU s a*(NIpl Sdc,, Ap DL S Il

where a* denotes either a or a*, and d is a constant. Further, for bosons, with
feL*Ay), geL*(4,)

LUy W(f, 9yl Sd(c,, Ay, Ag OIPI f 12+ llgll2)
(ao+ay(I fl2+1g21))

where aq, a4, d are constants.

Proof. Partition R” into a cubic lattice with unit cells 4; and define ¢;=y,,¢.
One has

It a* (M= 1TV a* (N0l
=2 NSl IN%, - 4
=2 1 el dloe, A, — A"

where the first step follows from the triangle inequality, the second is an application
of Lemma Al, or Lemma A2, and the third follows from the hypothesis on 4. Next
note that |4, — 4| is uniformly bounded by a constant d, and

ol Za;] ¢
where

a,~=€€r(}:iAr11(1+>c2)v+£ .
Thus

,Z lipill éld)l‘;af”z :
Combining these estimates one has

II[U¢,a#(f)]wH§de?(Z ai_”z)llfllzlm.
The second statement of the lemma follows by an identical argument but
with Lemma A3 replacing Lemmas Al and A2.

Remark. A result similar to Lemma A4 is valid for states which are locally deter-
mined by density matrices g, on Hr(4) and such that

Tt g i (QaNDI <|A]"c, .

Next we turn to estimates involving the kinetic energy operator. Let T denote
the usual self-adjoint operator on §; whose action on the twice differentiable
vectors = {p™}, with p™ =0 for large n, is given by

(T)"(xy..x) =~ 3, Vap™x, . X,).
i=1
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If f is a twice-differentiable element of L*(A) one has

(T, a(f)]w)(n)(xl LX) =— jdxf(X) Viw("+ 1)(x, Xq.. .X,)
= P ).

Thus
ILT, a(f)Jwll < la(72 fvl
SIS 1L IX |
where

X =1 for fermions

=NY? for bosons.
Similarly
ILT, a*()Iwl =Yl

where

Y=1 for fermions
=(N,+1)¥? for bosons.
Lemma AS. Let f, ge L*(A) be twice differentiable then

ILT W(f, Tl <V I3+ 17g1D) 1wl
+272 2+ 1729l )N 4+ D Pl

Proof. One argues, as in the proof of Lemma A3, that

ILT, W(f, 9)Twll = [ods|Lo(f)+nlg), TIW(s S, sghp
=[odsl(m(V2 f)— p(P2g)W (s £, sl
= [ods[[n(V? £) = d(P*g) +s(I V£ II>+ 1 Vg )l .
One then uses ni(h)> <2N ,+ 1 for he L*(A) etc.
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