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Abstract. We demonstrate, under circumstances that allow the construction
of a "thermodynamic" hamiltonian, that Gibbs equilibrium states ω are
modular states in the Tomita-Takesaki sense. The thermodynamic Greens
functions G are connected to these modular states, and the associated group
of modular automorphisms σ, by the identification

(A and B are observables) whenever the thermodynamic Hamiltonian is self-
adjoint and defines a derivation of the algebra of observables in a certain
sense. Our results apply to a class of interacting quantum gases at small
fugacity and Bose gases with repulsive interactions at all fugacities z<\.

1. Introduction

Although the time-development of thermodynamic systems in quantum statistical
mechanics is barely understood, some progress has been made on the questions
of existence and characterization of equilibrium. The existence problem has been
tackled by establishing that the limits

τt(A)= lim eiHΛtAe~iHΛt

Λ-* co

of the time development of finite systems A exist in some suitable sense. (HA

represents the Hamiltonian of a finite system A, A a fixed observable, and the
limit indicates the thermodynamic limit of an idealized infinite system.) Two
types of limit, i.e. types of convergence, have been distinguished.

In the best cases (free fermi gas, "short range" spin systems) the above limits
exist for all A in a C*-algebra ϊ t of quasi-local observables and t-*τt defines a
strongly continuous one-parameter group of automorphisms of 21 [1-3]. Under
these circumstances one can also show that all Gibbs equilibrium states (limits
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of the type

ω(A) = \imTτ(e'HΛA)/Ύτ(e~HΛ)9AeS[ί9
Λ-+ oo

are modular states in the sense of Tomita-Takesaki [4]. Furthermore the modular
automorphism coincides with τ. Expressed in another way, ω satisfies the τ-KMS
condition.

In other cases (low density Bose and Fermi gases, "long range" spin systems)
the limit dynamics has been established for Gibbs states through use of the time
dependent Greens functions

G{A,B;ή= lim Tr(έΓ H Me i H ^Bβ- ί f l ^7Tr(έΓ H ^)
Λ-+ao

etc. [5-9]. One would expect the equilibrium characteristics of the latter problems
to resemble that of the former. In particular one would reasonably believe that

a) the Gibbs equilibrium states are modular states in the Tomita-Takesaki
sense,

b) the modular automorphism and the Greens functions are connected by the
relation

In this paper we tackle these two problems. The first is resolved and the second
reduced to a question of self-adjointness of the Hamiltonian naturally associated
with the infinite system and certain density estimates for this system.

2. Principal Results

In this section we discuss certain properties of the states obtained from the thermo-
dynamic limit in quantum statistical mechanics. We work in a semi-abstract
setting which is devised to cover various models of statistical mechanics.

The states of a quantum-mechanical system are determined by the states of
its finite subsystems and these in turn are defined via a directed set ξ>Λ of Hubert
spaces which are such that if Λx <A2 then ξ>Λί is identifiable as a subspace of ξ)Λl.
In applications the indices A run over the bounded open sets of IRV, or the finite
subsets of Έv, and the direction is by inclusion.

The observables of the system can be described by a family SΆΛ of C*-algebras
which we will take to form an isotonic family in the following sense.

A family (ίΛ of ^-algebras is defined to be an isotonic family if
1. each dΛ is isomorphic to an irreducible subalgebra of &(ξ)Λ) containing the

identity,
2. if ΛX<A2 then

Note that to each isotonic family, for example the 91^, we may associate a
global C*-algebra, for example 91, which is defined as the uniform closure of the
union of the %Λ.
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In order to define the usual Gibbs states of our system it is necessary to
introduce a family of Hamiltonians HA. Each HΛ is assumed be a lower semi-
bounded self-adjoint operator, on the corresponding Hubert space ξ>Λ, with the
property that

for all β>0.
The family of Gibbs states ωΛ, associated with a system of the above type, are

now introduced by

where AetyίΛ. Thus ωΛ is a state over the C*-algebra 91^. Note that as <HΛ is a
subalgebra of 91 the state ωΛ has an extension to a state over 91. Further as 91
contains the identity its state space is weak ^-compact. Thus, implicitly identifying
the ωΛ with one of their extensions to 91, we can assert the existence of weak
*-limit points

ω(A) = limωΛ (A)
a α

where Ae<ΆAβ and Aβ<Aa. The ω obtained in this manner extend by continuity
to give states over 91. We wish to study such limit states and for this it will be
necessary to make further assumptions concerning the Hamiltonians HA.

In the following discussion we will encounter commutator expressions of
the form [HΛ, A] and the additional assumptions we now introduce are designed
to ensure that these expressions have a well-defined meaning for a large enough
set of A. We assume:

HI. there exists an isotonic family of ^-algebras Ί)ΛQ
<ΆΛ such that if AeT)Λ

then AD(HΛ)QD(HΛ);
H2. the operators

are of trace-class for all AeΊ)Λ and all β>0;
H3. the Gibbs states ωΛ are such that

where cA is independent of A and the bound is valid for all AeT)Λ and all A.
Note that condition 1 implies the operator of condition 2 is well defined. In

condition 3 the definition of ωΛ is extended to unbounded operators for which
the appropriate operators are of trace-class.

Our first result is the following

Theorem 1. Let {ωΛ} denote the Gibbs states associated with the family of Hamil-
tonians {HΛ} and let ω denote a limit point of the ωΛ in the weak* topology. Let the
{HΛ} satisfy condition H1—H3 above.
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Next assume there exists an isotonic family 93̂  of*~algebras such that ̂ BΛ

and the algebra 93 formed by the union of the %$Λ has the following properties
1. 93 is separable in the uniform topology,
2. the restriction to S of the representation πω generated by ω is weakly dense

in πω(2Γ)".

It follows that ω is a modular state over 21, i.e. the vector Ωω canonically as-
sociated with ω and πω which is cyclic for πω is also separating for π^.

Remark. The introduction of 93 appears somewhat artificial and in applications
in redundant whenever the algebra 21 is itself norm-separable. The suppositions
are devised to cover the case of the Bose gas where 2ί is non-separable.

M. Winnink has kindly informed us that he had previously proved a similar theorem (see [7]).
He assumed continuity of the limit Greens functions in time instead of our assumptions H1-H3.
Thus Theorem 1 follows from his result and our Lemma 1. For completeness we include our proof.

The proof of the theorem uses the (one-time) Greens functions GΛ which are
defined by

GA(A> B; t) = TτsΛ(e-« + i»H*AeUH*B)/ZA(β)

where A,BE(ΆΛ and £eR We begin by listing a number of properties of these
functions which will be needed in the sequel.

1. \GA(A9 B; t)\2 £ωA{AA*)ωA(B*B)9 A,

U

for all cb c7e(C and Ae%Λ.
3. If BeT)Λ then GΛ(A, B; t) is once differentiable and

^GA(A9B;t)

4. If A,BeΊ)Λ then G(A, B; t) is twice differentiable and

δ2 2

5. If/is a function whose Fourier transform / is in the class T)(1R) of Schwartz
then

fdtf(t)GΛ(A, B;t) = $dtf(t + iβ)GΛ(B, A;-t)

for all 4, B e 2 ^ .
The last condition is a rephrasing, in the form of [10], of the Kubo-Martin-

Schwinger (KMS) boundary condition. This condition expresses that the GΛ

have analytic extensions in the strip 0 < Imz < β which are continuous and bounded
on the closure of the strip. The boundary values satisfy

for all A,BeSUA and ίelR.
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We next consider limits of these Greens functions. We assume throughout
that

ω(A) = ]imωΛJίA)9 Ae UAMA
α

exists for some net of Aa and then consider limits of subsequences of the Greens
functions.

Lemma 1. Adopt the assumptions of Theorem 1. For all A, Be^B and ί e R there
exists a subsequence An such that the Greens functions

G(A,B;t)=\imGΛn{A,B;t)
tt-> 00

exist. These functions are once-differentiable and

Proof The existence of the G(A, B\ t) follows from the work of Ruskai [5]. Ruskai's
application of the Arzela-Ascoli theorem is valid in the present context because
of the assumed separability of 23 and property H3.

Next note that

<CΔCr>

uniformly in A and hence by a simple application of Taylor's series

Hence the limit of the derivatives of the GΛn exist. But another application of
Taylor's series gives

GΛ(A,B;t)-h^GΛ(AiB;t)\^2-1h2(CACB)
1/2.

ot

The described result follows immediately.
Next we consider the properties of G considered as a sesquilinear form over

the representation space § ω associated with the pair (ω, 91)

Lemma 2. Adopt the assumptions of Theorem ί and let G denote the Greens functions
defined in Lemma 1.

There exists a Hilbert space Λ ω D § ω and a strongly continuous one-parameter
family of unitary operators Vt on SKω such that SKω = \f Vtξ>ω and

t

G(A, B; t) = (Ωω, πω(A)Vtπω(B)ΩJ .
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Further if f is a function such that fe D then

μtf(t)(Ωω,πω(A)Vtπω(B)Ωω)

= Jdtf(t + iβ)(Ωω, πω(B)V_tπω(A)Ωω)

for all A, Be®.

Proof. The first part of the lemma may be deduced from Ruskai's discussion [5]
of multi-time Greens functions or may be deduced directly by the following
argument:

From property 1 of GΛ it follows that

\G(A, B, t)\2Sω(AA*)ω(B*B)

= \\πω(A*)Ωω\\2\\πω(B)ΩJ2.

Hence the function G defines a one-parameter family of bounded sesquilinear
forms on πω(93)ί2ω x πω(33)Ωω. The closures of these forms define a one-parameter
family ίeIR—•Xίe£(§α)) of bounded operators on § ω with bound

By Lemma 1, this family is weakly continuous. From property 2 of GΛ it
follows that t^>G(A*, A, t) is positive definite in time, hence

Now one may apply the Nagy extension theorem, [11], page 452, to deduce the
existence of Rω and V. If P denotes the orthogonal projector, on Rω, with range
§ ω one has Xt = PVtP.

The second statement of the lemma follows from Property 5 of GΛ and Lebes-
ques convergence theorem.

Proof of Theorem 1. If Aeπ'^ then it follows from the strong*-density of πω(33)
in πJSΆ)" that one may choose a sequence Ane%ί such that

\imπω(An)Ωω=AΩω,
n n

Thus from Lemma 2 one has

ω, V_tA*Ωω)

for all Aeπ'ύ and / with / e ϊ . Now suppose Aeπ'ά is such that A*Ωω=0. One
concludes that

μtf(t)(AΩω,VtAΩω) = O.

But as V is a strongly continuous unitary group it easily follows that AΩω = 0.
Finally choosing A as above and taking any Beπ'ά one is forced to the

conclusion
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and hence, by the foregoing argument, applied to AB, instead of A

ABΩω = 0.

But Ωω is cyclic for πω in § ω and hence ^4=0, i.e. Ωω is separating for π^. This
completes the proof of the theorem.

Next consider the operators X associated with G and their unitary extensions V.
If K is the infinitesimal generator of V, on ΛωJ and Eκ its spectral family then the
KMS condition of Lemma 2 states that when Aeπ'ύ then

ω, Eκ(λ)AΩJf(λ) = ld(A*Ωω9 Eκ(λ)A*Ωω)f(λ)e-βλ .

One easily concludes that

\\AΩJ2 =(AΩω, AΩJ = μ(A*Ωω9 E(λ)A*Ωω)e-
βλ

In particular π'^ΩωeD(Qxp {- βK/2}). Further, as Ωω is cyclic and separating for
π^, there exists, by the modular theory of Tomita-Takesaki, a group of
automorphisms of π^, implemented by unitaries Δ% such that the self-adjoint
operator Δω satisfies

Further π'^Ωω is a core for Δβ

ω. Therefore one has

where P is the projector on Rω with range § ω . Thus if Rω = ξ>ω one has

Aβ=e-βκ

and

Δίβ=Uβt.

In particular

i.e. if the Greens functions G determine a one-parameter family of unitaries on § ω

then these unitaries implement a group of automorphisms of τϊ!'ω and this group is the
modular group of the state ω. Thus it is of interest to find criteria which ensure
that the G determine unitaries.

One simple criterion can be given in terms of the Greens functions G and the
modular functions Fω associated with ω. This latter function, defined by

for A,Beπ'ά, has an analytic continuation in the strip Q^lmz^β. We have
concluded above that

Fω(A*,A;iβ) = G(A*,A;iβ),

But it also follows that

Fω(A*,A;iβ/2)^G(A*,A;iββ).
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This inequality follows by noting that

Hence

Taking matrix element yields the desired result.
Now we may conclude that G determines a one-parameter family of unitary

operators, if, and only if,

Fω(A*,A;iββ)=G(A*,A 9iβ/2)

for all Aeπ'ύ. This result follows because the above inequality becomes an equality
if, and only if,

which in turn implies P= 1, or § ω = Λω.
The foregoing criterion does not appear to be useful in applications but it

has some interest because Fω at the point ίβ/2 corresponds to the Wigner-Yanase
entropy [12] of the state ω (or at least to a natural generalization of this concept).
The G corresponds to the limit of the entropy of the subsystems and the above
criterion is a maximum entropy principle.

Next we turn to a criterion which involves the self-adjointness of a Hamiltonian
operator which can be associated with the limit systems.

We have demonstrated in Lemma 1 that, under the assumptions of Theorem 1,
the limit

exists. But this derivative of G defines a sesquilinear form over the representation
space ξ)ω and one has from the properties of GA previously listed

We next prove that the sesquilinear form given by ί = 0 defines a symmetric
operator on § ω , which can be interpreted as the Hamiltonian of the infinite
system.

Proposition 1. Adopt the assumptions and notation of Theorem 1. Let An be a
sequence such that the limits

G{A9B;t)= lim GΛn(A,B;t)
n-» oo

exist for all A, JB<Ξ93 and ίeIR (cf Lemma 1).
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The derivatives of G determine a symmetric operator Hω on jr>ω such that D(Hω) =
πω(93)Ωω and

ω, Hωπω(B)Ωω) = | G(A B; ί ) | t = = 0

Proof. We have noted above that

-iI G(Λ B t)t = 0 = h{πω(A*)Ω, πω(B)Ωω)

defines a sesquilinear form h on πω(33)Ωω x πω(23)Ωω with the continuity property

\h{πω(A*)Ωω9 πω(fl)ΩJ S | |πω(,4*)Ωω | |4 / 2 .

Thus by the Riesz representation theorem there exists for each £e93, a vector
ψBeξ>ω such that

Λ(πωμ*)Ωω, πJB)Ωω) = (πω(A*)Ωω9 xpB)

for all AeSΆ. Define Hω by

In order that this definition determines a bona-fide operator we must show that

πω(B)Ωω = 0 implies ψB=0 .

But as Ωω is separating

πω(B)Ωω = 0 implies β = 0

and hence implies dG(A, B; t)/dt = O. The desired conclusion follows immediately.
The symmetry of Hω results from the easily checked symmetry of h.

In the remainder of this section we study the situation that Hω is essentially
self-adjoint on πω(23)Ωω. We establish properties of the commutators [_HΛ, B],
Be 33, and the states ωΛ, ω, which ensure that the modular automorphism group
associated with ω is given by

σt{A) = eita<*Ae-itBω, Aeπ'^teWL,

where Hω is the self-adjoint closure of Hω.
The basic idea is to establish conditions under which the Heisenberg equations

of notion

j eiHΛtBe ~iHΛt = eiHΛt i \HA9 B] e ~iHΛt

have an analogue in the equilibrium representation πω. For this one needs the
existence of limits of the differentials i[_HΛ, £ ] as A tends to infinity. In the simplest
models, quantum spin systems, these commutators are bounded and converge
within the C*-algebra 9ί even with the long range interactions considered by
Ruskai [5]. For continuous systems the situation is more complicated. The
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easiest behaviour occurs when the inter-particle interaction is of finite range and
can be characterized by the following subsidiary condition

H4. If Be 93 there exists a ΛB such that

is independent of A for AjAB. [_δ(B) is an unbounded operator affiliated with

We also need a method of estimating the magnitudes of the derivatives δ(B)
in the state ω. This is achieved by the following "a priori" density assumptions.

Recall that ω was defined as a state over the C*-algebra 21 by a weak* limit

ω(A) = \imωΛ {A)
α α

over a net Λa. Our first assumption concerns this net.

N l . ω is a locally normal state over <Ά = (UΛ9ίΛ); i.e. for each <ΆΛ there exists a
density matrix ρΛ on ξ>Λ such that

ω(A) = Ίvξ>Λ(ρΛA), Ae<ΆΛ.

Further the net ωΛχ converges weak* on fi= Uy4fi($yl) to the state ώ which
is the unique normal extensions of ω to fi, i.e.

In applications we will demonstrate that this rather unnatural assumption
follows from estimates on the particle energy density. Our next assumptions can
be interpreted as estimates on the particle density.

N2 1 . There exist positive operators NΛ affiliated with &(ξ)Λ) and constants cm(A),
such that

for all A' DA.

N 3 1 . For Be 93 there exists an m such that

is bounded for some A D AB.

Remark 1. If N is an unbounded positive operator affiliated with a von Neumann
algebra 501 and ω is a normal state on 9JΪ then ω(N) has a canonical definition (see
for example, [13] Section 3). If N l and N2 are satisfied then [13] Corollary 3.3
establishes that

1 In applications to quantum gases the NΛ are local number operators and it suffices to have bounds
for certain small values of m, i.e. m ^ 4

(In N3, m = l for Fermions, w = 3/2 for Bosons, in N2 we need m = 2-\-s for Fermions, m —
for Bosons)
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Further πω(N^) is canonically defined, ΩωeD{πω{Nψ)) and

The principal result in the present context is the following

Theorem 2. Assume that conditions H1-H4, NΪ-N3, are fulfilled and, moreover,
assume that the symmetric operator Hω, defined in Proposition 1, is essentially
self-adjoint on πω(93)Ωω.

It follows that the self-adjoint closure Hω of Hω satisfies

1. G(A, B; ί) = (πω(Λ*)Ωω) eiS"'πω(B)Ωω)

forallA,Be%

2. e^Xβ-^^πl, ίeR,

and this group of automorphisms, is the (β — ) modular group associated with ω by
Theorem ί.

The proof is divided into the following three lemmas.

Lemma 3. Adopt the assumptions H1—H3 and Nl. Let An denote the Greens functions
G on © x 93, i.e. An is such that

G(A,B;t)= lim GΛn{A,B;t)

for all A, Be®.
Then G satisfy the bounds

\G{A,B;t)\2Sω(AA*)ω{B*B)

and hence can be extended by continuity to £ x £ where £ = ΌΛ2(ξ>Λ). If Aβ is a
subset of An such that ωΛβ converges pointwise on £ then

G(A,B;t) = limGΛβ(A,B;t)

for all A, Be 2.

Proof. The bounds follow from Property 1 of the GΛ discussed at the beginning
of the section.

Let Ae%, Be2 and note that

GΛ(A,B;t)-G(A,B;t)

= GΛ(A,B-B';t)

+ GΛ(A, B' ή- G(A, B';t) + G(A, B'-B t)

for any Fe93. Thus

\GΛ(A,B;t)-G(A,B;t)\

^\GΛ(AB';t)-G(A,B';t)\

+ \\A\\ωΛ((B-Bγ(B-B'))1'2

+ \\A\\ω((B-Bγ(B-B'))1'2.
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Thus

l imsuplG^μ, B\ ή- G(Λ, B; t)\ ̂ 2\\A\\ω{(B-B')*{B-Bf))112 .

Since πω(23) is strongly dense in πω(£)" the right hand side can be chosen
arbitrarily small. Thus the desired result is obtained on S x f i . Repetition of the
argument gives the same conclusion on 2 x 2.

Lemma 4. Adopt the assumptions H1-H3 and Nί. Let N be a positive self-adjoint
operator affiliated with 2{ξ>ΛN) and assume ωΛ(N2)<K uniformly for ΛDΛN. The
extended Greens functions

GA(A, BN; t) = ΊrΛ{e~iβ+ίt)HΛAeίt

G(A ;BN;t) = (π ω μ*)O ω , Xtπω(BN)Ωω)

are well defined for all A, Be 2.
If Aβ is the subnet of Lemma 3 then

G(A, BN; t) = \imGΛ(A, BN; t)
β

for all A, Be2 and teWL

Proof. Since ωΛ(N3)^K we have that

ω{N3) S lim inf ωΛβ(N2}SK

thus

ΩΛeD(πωΛ(N-))CD(πωΛ(N))

ΩeD(πω(N-))CD(πω(N))

where ΩΛ is the vector associated with ωΛ. Thus the extended Greens functions
are well defined.

Let

N=$$dE{λ)X

be the spectral decomposition of N and define

One has

GΛ{A,BN;t)-G(A,BN;t)

= GΛ(A,B(N-Nj);t)

+ GA(A,BNj;t)-G(A,BNj-t)

-G(A,B(N-Nj);t).

The first and last terms can be bounded as follows

\GΛ(A, B(N - Nj) ;t)\2S ωΛ(AA*)ωΛ((N - Nj)B*B(N - Nj))
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But one has

Combining these estimates gives

\GΛ{A,BiN-Nj); t\£ \\A\\ \\B\\K1/2/j1/2

and, analogously

\G{A,B(N-Nj);t)\£\\A\\\\B\\K1i2/jii2.

Thus

\GΛβ(A,BN;t)-G(A,BN;t)\

+ \GΛβ(A,BNj;t)-G(A,BNj;t)\.

Hence by Lemma 3

limsupG^Λ, BN; t)-G{A, BNβ^

But j is arbitrary and the desired conclusion follows immediately.

Lemma 5. Adopt the assumptions H1-H4, N1—N3. For B e S choose N™ as in N3.
It follows that

iHωπω(B)Ωω = πMB)(Nm

Λ + 1 ) " V ω

and for Ae^B.

j t G(A, B; t) = G(A,(δ(B)(N"ί+1)"1)

Proof. By Lemma 1 one has

jG(A,B;t)=\imj
dt n^rr, dt
-G(A,B;ή=\im-GΛn(A,B;ή

and using H4

jtGΛn(A,B;t) = iGΛn(A,[_HΛn,Bγ,t)

= GΛn(A,δ{B) t)

= GΛn(A, (δ(β)(Nm + l)- 1 )(N m + l); ί) .

Hence by Lemma 4 applied to N=N™ +1 one has

j t G(A, B; ί) = l i m G ^ μ , (δ(B)(N^ + 1 ) " 1 ) W + 1); ί)
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This proves the last part of Lemma 4. The first part follows from the definition
oϊHω.

Proof of Theorem 2. If Be© then Lemma 5 implies

- Xtπω(B)Ωω = iXtHωπω{B)Ωω .

This implies that

πω(A)Ωω9 ~ πω(B)Ωω) = -(X_tπω{A)Ωω, πω(B)Ωω)

= i(X_tHωπω(A)Ωω,πω(B)Ωω)

for all A,5e23. But the left hand side is continuous in πω(A)Ωω and this set of
elements forms a core for Hω. Thus

Xtπω(B)ΩωeD(Hω)

and

- Xtπω(B)Ωω = MωXtπω(B)Ωω

= iXtHωπω{B)Ωω

for all £e93. These equations have the solution Xt = exp{iHωt} but this solution
is unique because if Xt is another solution one has

j t e-iH-tXtπω{B)Ωω = ieiH^{- HωXt + XtHω}πω(B)Ωω

= 0, Bem.

Thus Xt = Qxp{ίHωt}. Therefore the Greens functions G determine a unitary
group and this group is the modular group associated with ω as a result of the
discussion preceding the theorem.

Remark 2. In systems where δ(B) is defined as a bounded operator or if δ(B)=
\\mi[HΛ , B~] is an element of 51 then Theorem 2 is true without any of the

assumptions N1-N3. On the other hand one can also discuss situations in which
[HΛ, B~] does not become independent of A. If, for example, the A are subsets
of IRV, {ΓJ is a partitioning of Rv into unit cells, there exist ct(B) such that

and

(LHAί, B2-ίHΛ2, B]) (Σ clB)Nm

Γί +1)'1

is a Cauchy set of bounded operators then the above proof can be extended.
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Remark 3. Theorem 2 has a partial converse. If the family of operators X deter-
mined by the Greens functions G is a one-parameter unitary group on § ω then Hω

has equal deficiency indices. This follows by noting that the self-adjoint generator
of X extends Hω.

Remark 4. If, under the assumptions of Theorem 1, Λn is a subsequence such that
the limits

G(A,B;ή=\imGΛn(A,B;t)
W - * 00

exist for all A, Be 23 and telR, and if, further, the one-parameter family of operators
Xt on 9)ω determined by G is unitary then the limits

G(A,BuB2...Bm;tv...,tm)

exist for all A,Bl9 ...,Bme23, ίl9..., £meIR, and meZ + . Moreover

G(A9Bl9B2,...9Bm;t1,...JJ = (ΩwπJtA)Xtίπω(B1)X^^^

"Ωω(Bm)Ωω

= ω(Aσtl(B1)...σtm(BJ)

where σ is the modular group of ω. These statements follow from the foregoing
discussion and Theorem 5 of [5]. For example pick any subsequence of the An

such that the limits G{A9Bl9 . . . ,5 m ; ί l 5 . . . , ί j exist for all Al9Bl9 ...,£me93 etc.
Such a sequence exists by the reasoning of [5]. By Theorem 5 of [5] there exists a
Hubert space ftωD§ω, a representation π ω of 21, and a unitary group U acting
on Λω5 such that

<KA9Bl9...9Bm9tl9...9tJ = (Ωω9πJtA)Utlπω(B1)^

Now if P is the orthogonal projector on ftω with range § ω we deduce that Xt =
PUtP. Hence if Xt is unitary then Ut commutes with P because

(PUtF)*(PUtP)-P=(PUt(l-P))*(PUt(l-F))

and hence PUtP is unitary on ξ>ω if, and only if, PUt(ί — P) = 0. But πω is an extension
of π ω such that πωΩω = πωΩω and Ωω is cyclic for {πω, C7ω} in Rω. Hence ftω = § ω ,
P = 1, and Xt=Uv These equalities identify G and simultaneously prove that each
convergent subsequence of the GΛn gives the same limit, i.e. the limit of the GΛn

exists.

3. Applications

In this section we discuss the applications of the abstract theorems of Section 2
to long range spin systems [5, 8] and low density Fermi and Bose gases [6,9].

a) Quantum Spin Systems

We adopt the notation and assumptions of [5] for spin systems. The quasi-local
algebra 21 associated with the system is norm separable.
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If Φ={Φ(X)}XcZv is an interaction then

XCΛ

is bounded and conditions H1-H2 are trivially satisfied. If the interaction Φ
satisfies the condition of [5]

sup Σ
xeF Xax

then for Be 91^

δ(B)= \imi\_HΛ,E]
Λ-* oo

= X i\Φ{X),B-\
XΛΦ

and H3 is trivially satisfied. Thus Theorem 1 is applicable.
Although [HΛ, B~\ does not become independent of A the limit δ(B) is bounded

and this replaces condition H4. (The conditions N1-N3 are unnecessary in this
case.) Thus Theorem 2 applies.

Every equilibrium state of the long range spin systems considered in [5] is a
modular state.

For a particular subclass of these systems Pulvirenti and Tirozzi [8] have
established that the Hamiltonian Hω of Proposition 1 is essentially self-adjoint
and hence the Greens functions and the modular automorphisms are directly
related. These authors prove the essential self-adjointness by showing that Hω

has a dense set of analytic vectors.

b) Dilute Fermi Gas

Low density Fermi gases with two body interactions have been studied in [6].
We adopt the notation of this reference. The C*-algebra 9Ϊ, the CAR algebra,
associated with these systems is norm-separable. It is established that if the
interaction is mediated by a stable two-body potential φeL2(IRv)nL1(IRv) which
is even and continuous for x ΦO then conditions H1-H3 are satisfied for a suitable
choice of the T>Λ, whenever the activity is sufficiently small. For example one may
choose Ί)Λ to be the algebra generated by creation and annihilation operators
a*(f\ a(g\ with / and g twice continuously differentiable functions in L2{A).
Theorem 1 applies with 23^ = Ί)Λ. The results of [6] are based on the work of
Ginibre [14] who establishes that at small activity and with fixed boundary
conditions there is a unique limit of the Gibbs states ωΛ. Therefore the small
activity Gibbs state is a modular state.

If next we choose the interaction φ to have compact support then condition H4
is also satisfied but δ(B) is unbounded for Be$5A. In the appendix we give estimates
of the δ(B) in terms of the particle number operators NΛ associated with the
regions /telRΛ In particular we show that for suitable AB

\\δ(B)(N ΛB +1)^11 < +co.

Thus condition N3 is satisfied.
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It remains to check conditions N1-N2. In the small fugacity region studied
by Ginibre [14] one has, however, that the local Gibbs states ωΛ converge in the
weak* topology of 31 to a locally normal state ω. Moreover the density matrices
QΛ,Λ0 obtained by restricting ωΛ to 2Iylo, i.e. the density matrices such that

converge strongly on ξ>Λo to the density matrices ρΛo associated with Ω (see, for
example, [14] Proposition 3.3). But this implies that ρΛjΛo converges to ρΛo in the
trace-norm topology (see, for example, [19] and [15] Corollary 1) and hence ωΛ

converges to ω uniformly on each 2(&Ao). Thus condition Nl is valid.
Finally condition N2 follows in the small fugacity region with NΛ chosen as

the number operator (see appendix) because the correlation functions ρΛ(X, Y)
associated with the ωΛ are bounded ([14] Chapter 3) uniformly in A.

But one has

ωA(NΛo{NΛo+l)...{NAo + m-l))

= J dxi...dxmρΛ(x1...xm;xm...x1).

Hence we may conclude that Theorem 2 is applicable to the interacting Fermi
gas at low fugacity if the two-body potential φ is finite range, φeL2(W)nL1(WC),
φ is stable, even and continuous for xφO.

c) Dilute Bose Gas

Results similar to those of [6] for the fermi gas have been obtained in [9] for the
Bose gas. The C*-algebra appropriate to the description of the Bose gas is the
algebra associated to the canonical commutation relations, the CCR algebra 91.
This algebra is generated by unitary elements U(f), V(g), the Weyl operators
which are defined for each pair /, #eL2(IRv). The algebra is not norm separable.
In the small fugacity region there again exists a unique Gibbs limit state ω for
each fixed boundary condition and this state is locally normal. These statements
again follow from [14]. Thus there exists a separable subalgebra 23c2ί such that
the restriction of ω to 33 fully determines ω. One can consider the *-algebra 23
where the corresponding local algebra %5Λ are generated by Weyl operators
£/(/), V(g) with /, g chosen in some fixed orthαnormal basis of L2(A). If, further,
the basis of L2(A) are chosen to be formed of twice differentiable functions then
the estimates of [9] establish conditions H1-H3 in the small fugacity region for
an interaction of the type previously considered for fermions. Thus Theorem 1
is applicable. Under similar conditions Theorem 2 can be applied if the interaction
is taken to have finite range. Verification of conditions H4 and N1-N3 is similar
to the Fermi case and relies on the results of [14] and the estimates of the appendix.

d) Bose Gas with Repulsive Interactions

As a final application we consider the Bose gas with a positive two-body
interaction. The density estimates which are necessary for the application of
Theorem 2 have recently been obtained by Suhov [17].
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Proposition 2 (Suhov). Let ξ>F{A\ ΛcW, be the Fock space appropriate to the
description of Bose particles confined to A and TΌ

Λ, T
Ή

Λ the kinetic energy operators
with Dirichlet and Neumann boundary conditions respectively. If xeW-^>φ(x) is
a positive twice continuously differ entiable function such that φ' is integrable and φ"
is bounded^ and Uφ(Λ) the associated interaction operator on $)F(A) we define the
total Hamiltonian HΛ as the Friederichs extension of TΏ

A + Uφ(Λ). Further we
denote the number operator on ξ)F(A) by NΛ and for β>0, μ<0, we define the Gibbs
state ωβtfitΛ by

m (AΛ — 'Γr ( -β{HΛ-μNΛ)A\/rΓr ( p-β{HΛ-μΉ Λ)\
ωβ,μ,Λ\Λ)- lrξ>F(Λ)ye A)l l r $ b \ e )

for all AeΆ{ξ>F{A)).
It follows that for Λ0CΛ

where cm c are independent of A.

This proposition allows us to make our principal application

Corollary 1. Adopt the framework of Proposition 2 but further assume that the
interaction φ has compact support and φeL2(W). Let ω ^ ^ be a weak* convergent
subnet and cύβtμ the corresponding weak* limit point.

It follows that
1. ojβμίs locally normal;
2. coPt/liAg[ converges in norm to ωβfμ on 2(ξ>F(A)) for each A;
3. ωβίfl is a modular state on the von Neumann algebra generated by UΛQ(ξ>F(A));
4. if the thermodynamίc Hω, associated with ωβφ by Proposition 1 is essentially

self-adjoint then its closure Hω is the generator of the modular group of ωβ>μ.

Proof. The first statement is a consequence of the first density estimate of Proposi-
tion 2 and Corollary 1 of [17]. The second statement follows from the energy
estimate of Proposition 2 and Theorem 3 of [15]. Because T^o + NΛo has a compact
resolvent on ξ>F{A0). The third statement follows by application of Theorem 1.
Note that conditions H1-H3 are valid by the estimates of the appendix combined
with Proposition 2. In this context we again take %5Λ to be the *-algebra generated
by Weyl operators U(f), V(g) with /, g chosen to be twice differentiable and in
some fixed orthonormal basis of L2(A). Finally condition H4 is valid because
φ has compact support, N l follows from the first statements of the Corollary,
N2 is a consequence of Proposition 2, and N3 is established in the appendix.
Thus the fourth statement follows from Theorem 2. Finally we note that the
above result, Corollary 1, also holds for one-dimensional systems with a hard
core and finite range C2-interaction [20].

Appendix

In this appendix we derive a number of estimates for commutators of Hamiltonian
operators and field operators acting on Fock space.
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We let ξ)F denote the usual Fock space built over L2(RV), either symmetrically
or anti-symmetrically, and a{f\ a*{f) the usual annihilation and creation opera-
tors, defined for each real feL2(IRV). If A is a bounded open subset of 1RV we define
the local number operator NΛ by

M ( B ) ( x i . . . x B ) = Σ XΛ(xdΨ{n\xi,...,xJ

where χA is the characteristic function of yl and ψ= {ψ{n)}eξ>F is such that ip(w) = 0
for n sufficiently large. NΛ is symmetric and its closure, which we also denote
by NΛ, is self-adjoint.

If φ is a real symmetric function then we define the associated interaction
operator Uφ on § F by

Actually we need further conditions on φ to ensure that the foregoing formal
definition specifies an operator on ξ>F and we should also be more precise concern-
ing the domain of this operator. These points will be clarified in each of the results
given below, e.g. </>eL2(IRv) will specify an operator Uφ with domain containing
D{N2

Λ) for all Λ.

Lemma Al. Take feL2(Λ) and φeL\A') then

where

X=l for fermίons (anti-symmetry)

= N][2 for bosons (symmetry)

and Λ — Λ' = {xelRv;x = y — z,yeΛ,zeΛ'}.

Proof. Using the action of annihilation operators, and the definition of Uφ, one
immediately calculates that

KUφ,a(f)-]ψ\\2= Σ (n+l)$dx1...dxn$dxdyf(x)f(y) f φ(x-Xί) £ φ{y-Xj)
n^O i=1 j=ί

We now sum the right hand side over a complete orthonormal basis of L2(Λ')
which is chosen to contain φ/\\φ\\2- This gives the inequality

Σ (n+ί)ΣJdx J dx,...,dxn
n^O i,j x— xxeΛ' ,χ— XjβΛ'

f{x)f(x-Xi + Xj)
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Applying the Schwartz inequality one then finds

l̂l<H22 Σ Σ ί dx1...dxMf)ψ){n)(χi-χn)\2

n^.0 ίj Xi,Xj eΛ — A'

= W\l\\a(f)(NA+A,-l)\\2.

Finally for fermions one has

and for bosons

a*(f)a(f)S\\f\\2

2NΛ.

Lemma A2. TakefeL2{Λ) and φeL2(Λ') with OeΛ' then

\\lUφ,a*(f)]ψ\\^\\φ\\2\\f\\2\\NΛ_Λ,ψ\\ for fermions

^\\Φ\\z\\f\\2WA-Λ.+ ί)ll2NΛ.Λ,ψ\\ for bosons.

Proof. First note that

where Λc denotes the complement of A in Rv and ® denotes the anti-symmetrized
or symmetrized tensor product according to the choice of statistics. As all operators
occuring in the statement of the Lemma act on ξ>F(Λ — Λ') it suffices to prove the
inequalities on this latter space.

In Lemma Al we established that

-A'~L) II = 117 II2 IIVII2

for fermions and, using Ad A — A and hence NΛ ^

for bosons. Taking adjoints and using the fact that \Vφ, α*(/)]maps the rc-particle
subspace of ξ)F(Λ — A') onto the n+ 1-particle subspace gives

- Λ ' " 1 ! ! ^ 11.7 112

for fermions and

for bosons.
In the case of bosons it is useful to consider bounded functions of the un-

bounded operators α(/), α*(/). Let φ(f) and π(f) denote the usual self-adjoint
field operators associated with the a(f) and α*(/)5 e.g.

and let W(f, g) be the unitary operators given by
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Lemma A3. Take f, geL2(Λ) and φeL2(Λ') with OeΛ' then

\\[UΦ,

where α0, aί are positive constants independent of f, g, φ, ψ.

Proof. One has

W(f, gΠUφ, W(f, gί\ = W*{f, g)UφW{f, g) - Uφ

= i\ldsW*(sf, sg)iUφ, φ(f) + π(g)W(sf, sg).
Therefore

\\[Uφ, W{f,g)-]y\\ύ\U4VJφ, φ(f) + π(g)W(sf,sg)ψ\\.

But φ and π are linear combinations of a and a*. Hence applying Lemma A2

KUφ,W(f,g)-}ψ\\S\\ΦU\\f\\2+119112)2^5^^^ + 1)^(5 f,sg)ψ\\.

Next we use

W*(sf, sg)NΛ-A,W(sf, sg) = NΛ_Λ,

where

Thus

Finally we bound (NΛ-Λ' + 1 ) 3 in terms of ( Λ ^ ^ +1) 3 by using the commutation
relations of NΛ-Λ> with φ and π and the bounds

^ 2(NΛ

φ(f) ^ 2^2(NΛ + 1 ) 1 / 2 | | / 1 | 2 ύ 2 l ί 2 ( N Λ + l ) \\f ||

etc. The last inequality is a consequence of our assumption that A 3 0.
Combination of these inequalities yields a result of the form stated.
These estimates can be extended to certain potential functions φ which do

not have compact support.

Lemma A4. Let ψeξ>F be such that for every ΛcIRv one has ψeD(N™) and

where rn = l for fermions and m = 3/2 for bosons, and cψ is independent of Λ. Further
letfeL2(Λf)for some Λf and take φ such that

for some ε > 0.
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It follows that

where a* denotes either a or a*, and d is a constant. Further, for bosons, with
feL2(Λf),geL2(Λg)

KUφ,W(f,g)\ψ\\ίd(cψ,ΛpΛg,ε)\φ\(\\f\\2+\\g\\2)

where α0, α1 ? d are constants.

Proof. Partition Rv into a cubic lattice with unit cells Λt and define φi = χΛiφ.
One has

where the first step follows from the triangle inequality, the second is an application
of Lemma Al, or Lemma A2, and the third follows from the hypothesis on 4. Next
note that {Λf — Λ^ is uniformly bounded by a constant df and

where

αf = min(l4-x 2 ) v + f i .
xeΛτ

Thus

Combining these estimates one has

The second statement of the lemma follows by an identical argument but
with Lemma A3 replacing Lemmas Al and A2.

Remark. A result similar to Lemma A4 is valid for states which are locally deter-
mined by density matrices ρΛ on ξ)F{Λ) and such that

Next we turn to estimates involving the kinetic energy operator. Let T denote
the usual self-adjoint operator on § F whose action on the twice differentiable
vectors ψ={ψ{n)j, with ψ(n) = 0 for large n, is given by

(TΨr\x1...xn)=-fj V2

Xιψ*\xv...,xn).
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If / is a twice-differentiable element of L2(Λ) one has

([T, a(f)Mn\xi . . . * „ ) = - idxf{x) Vlxp^Xx, Xl ...χn)

Thus

ύ\\v2f\\2\\Xχp\\
where

X = 1 for fermions

= N)(2 for bosons.

Similarly

where

Y = 1 for fermions

-(Λ^ + l)1/2 for bosons.

Lemma A5. Let /, geL2(Λ) be twice differentiable then

\\ίT,W(fg)2ψ\\mVf\\2

2+\\Vg\\2)\\ψ\\

Proof. One argues, as in the proof of Lemma A3, that

HIT, Wtf9g)]ψ\\ ^Us\U(f) + n(gl T]W(sf,sg)ψ\\

= $Us\\(π(V2f)-φ(V2g))W(sfsg)ψ\\

One then uses π(h)2^2NΛ +1 for heL2{Λ) etc.
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