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Abstract. This paper is the first part of the work whose subject is to investigate
the set of stationary solutions of B-B-G-K- Y hierarchy. We state that under
some conditions on the interaction any stationary solution obeying certain
restrictions of a general type corresponds to an equilibrium state (in the
sense of Dobrushin-Lanford-Ruelle).

0. Introduction

The first mathematically rigorous works related to the theory of non-equilibrium
phenomena appeared in Statistical Mechanics at the end of the sixties and the
beginning of the seventies. Lanford was the first who has obtained interesting
general results in this direction for the case of one-dimensional classical systems
[1-2]. The main result of Lanford consists in the construction a natural dynami-
cal system which describes the motion of an infinite number of interacting particles.
The next important step was made by Sinai [3-4]. In particular, Sinai has given
the rigorous proof of the cluster character of the dynamics for a system of particles
in a gas phase. The results of Lanford and Sinai were generalized in the one
dimensional case by Zemliakov [5] and Presutti, Pulvirenti and Tirozzi [6].
Combining the methods of Lanford and Sinai, Marchioro, Pellegrinotti and
Presutti [7] constructed the dynamics in the multidimensional case for an infinite
system in any possible thermodynamic phase.

In connection with the construction of dynamical systems of Statistical Mechan-
ics the problem of studying their ergodic properties arises. For several particular
cases this problem was solved in the papers [8-14]. Another problem which is
closely connected with the preceding one is that of describing the set of measures,
invariant with respect to the constructed dynamics of an infinite system of particles.
The last problem was considered in the one-dimensional case in [15] where it
was demonstrated that in a natural class of probability measures, defined on the
phase space, only the equilibrium states may be invariant with respect to the
dynamics constructed in [3].



64 B. M. Gurevich and Ju. M. Suhov

In this paper we study the stationary solutions of the Bogoliubov hierarchy
equations1 [16]. It is well-known that for systems in a finite volume these equations
are equivalent to the Liouville equation and characterize the time evolution of
the probability measure on the phase space of a finite number of particles. Per-
forming the thermodynamic limit one obtains the infinite chain of the Bogoliubov
hierarchy equations which are related to a system of particles in the whole space.
The problem of existence and uniqueness for this chain of equations has not
been solved so far (some of the results obtained here are contained in [17-20]).

It is natural to connect the stationary solutions of the Bogoliubov hierarchy
equations with the states of an infinite system of particles (i.e., probability measures
defined on the phase space) which are invariant with respect to time evolution.
In the cases where the dynamics on the phase space has been constructed it is
possible to demonstrate that any invariant measure satisfying further conditions
of a general type generates a stationary solution of the Bogoliubov hierarchy
equations. On the other hand, an immediate analysis of stationary solutions of
the Bogoliubov hierarchy equations (unlike the invariant measures) does not
require, in general, the use of such delicate dynamical properties as clustering.
Apparently, the point is that only functions of a finite (although not bounded)
number of variables enter in the Bogoliubov hierarchy equations. One can
consider these functions (the correlation functions) as integral characteristics
of a measure and their behavior must not necessarily show the influence of
singularities arising from the motion of individual configurations of infinitely
large number of particles. Thus the approach based on the Bogoliubov hierarchy
equations seems not only to be more general but also more natural from the
physical point of view.

The main result of the present work consists in the description of all stationary
solutions of the Bogoliubov hierarchy equations belonging to a certain class of
functions of a finite (but increasing) number of variables2. This class corresponds
to a set of Gibbs probability measures defined on the phase space. It is shown that
any stationary solution from this class corresponds to an equilibrium state
associated with the interaction potential appearing in the equations (the interaction
between particles is supposed to be described by a finite-range pair potential
which depends only on the distance between particles). Thus one can consider
this result as a generalization to the multidimensional case of the results of [15].

For defining the equilibrium states we use the approach proposed by Dobrushin
[22-24] and Lanford and Ruelle [25]. By definition, any equilibrium state
is labelled by three parameters associated with the natural "integrals of motion"
of an infinite system: mean energy, density and mean velocity of particles. From
this point of view the main result of the present work appears as an assertion
of the fact that for certain conditions all integrals of motion are exhausted by
those mentioned before.

The class of Gibbs probability measures under consideration is defined in the
same terms as the set of equilibrium states. More precisely, every Gibbs probability
measure may be considered as an equilibrium state associated with some inter-
action of a general (possibly, multiparticle) type. Note that if we confine ourselves
1 According to another terminology, B-B-G-K-Y-hicrarchy equations.
2 This result is announced in [21] under more restrictive conditions.
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to the class of Gibbs probability measures we do not lose too much in generality:
in fact, one can show (see [26]) that any probability measure satisfying sufficiently
general and natural conditions is a Gibbs measure. Thus consideration of the
class of Gibbs probability measures only is not the main restriction but it is
rather a convenient framework.

The paper consists of four sections. The first one contains the preliminary
information on the phase space, states, correlation functions and stationary
solutions of the Bogoliubov hierarchy equations. In the second one we give the
definition of Gibbs probability measures and formulate the results. The third
section contains the proof of the first of two statements in to which the main
theorem is divided up. The last, fourth section contains the proofs of a series
of auxiliary lemmas.

The statement which makes the second part of the main theorem will be
proved in the further papers.

1. Preliminaries

Phase Space. The phase space M = M(RV) of a system of particles in Ry is defined
as the set of all finite or countable sets X consisting of pairs (q,υ\ qeRv, veRv,
and satisfying the following conditions: (a) if (q,v)eX then qή=qf for any other
(qf, v')eX, (b) the set {q:(q, v)eX}nC is finite for any compact CcRv. The vectors
q and v are interpreted respectively as the coordinate and velocity of a single
particle. For any Borel set ΩcRv define the phase space M(Ω) of a system of
particles in Ω by

M{Ω)={XeM\qeΩ for all (q,v)sX}.

IΪΩ is bounded then M(Ω) consists, of course, only of finite X and may be represented
00

as M(Ω) = (J Mn(Ω), where Mn(Ω) is the phase space of a system of n particles

in Ω. The space M0(Ω) contains only one element (vacuum) corresponding to the
absence of particles in Ω. We denote it by the symbol 0. Denote by (M^Ωf)* the
subset of the Cartesian product Mί(Ω)n = (Ωx Rv)n consisting of all points
{(qί9 υx\ (q2, v2\ ..., (qn9 υn)\ q{eΩ, vteR\ such that qi^qj for any i+j, ij= 1,..., n.
The space Mn(Ω) for n^l is the image of M^Ωf under the symmetrization
mapping Sn

3. This mapping realizes an isomorphism of the σ-algebra generated
by the symmetric Borel subsets of (M^Ωf)^ and a σ-algebra of subsets of the
space Mn(Ω) which will be denoted by &n(Ω). For bounded Ω define the σ-algebra

<£(Ω)={AQM(Ω):AnMn(Ω)e&«(Ω)> " = 0,1, . . . } .

On (£(Ω) define the measure λ by

^ l , (1.1)
n - ι yι•

where mn is Lebesgue measure on M^Ωf [clearly, mn(Mί(Ω)n\(M1(Ω)n)+) = 0~].

3 The mapping Sn is the identification of all n\ points of M^Ωf belonging to the same image of the
permutation group of order n acting on M1(Ω)n.
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Define the restriction mapping πΩ:M-+M(Ω), ΩQRV, by

πΩX = XΩ={(q,v)eX:qeΩ}9 XeM. (1.2)

For any bounded Borel set Ω denote by 93(Ω) the σ-algebra of subsets of the space
M which may be represented in the form πΩ~1A, where Ae(£(Ω). For any Borel
set Ω denote by 23(Ω) the smallest σ-algebra containing 23(Ω') for any bounded
Borel Ω'QΩ and set for brevity S(KV) = 33. It is not hard to verify that the
collection of sets {πΩB\Be?β(Ω)} is a σ-algebra which coincides with d(Ω) for
bounded Ω; in the general case we denote it by the same symbol. Clearly, the
σ-algebras &(Ω) and 33(Ω) are isomorphic (and for Ω = RV coincide).

The mapping X->(XΩ,XΩC)
4 [see (1.2)] generates an isomorphism

M = M(Ω) x M(ΩC) and a corresponding isomorphism of the σ-algebras:

Now consider the subset M° = M°(RV)CM consisting of finite X's. It is not
hard to see that M°e© and M(Ω)CM° for any bounded ΩCR\ Furthermore,

00

it is obvious that M° = [j Mn where Mn = Mn(Rv) is the phase space of a system
n = 0

of n particles in Rv. As before, M o contains the unique element 0. For n ^ l the
space Mn is the image of (M")Φ under the mapping Sn. For points of the space
M° and particularly for those of M(Ω) for bounded Ω we shall use the notations x,
y, z, etc.; for points belonging to Mx the bar will be omitted. The same symbols
and also X, Y, XΩ9 XΩC, etc. will denote, according to the situation, the sets of
pairs of vectors (q9 v). This convention includes also the meaning of the symbol 0.
In particular, the notation £ indicates the summation over all finite

xeM°,xcX.xdF<ά

non-empty subsets of the set X; for that the inclusion xeM° will be omitted.
The formula (1.1) replacing Mn(Ω) by Mn defines on M° a measure which

will be denoted by λ as before. For n ̂  1 the space Mn is provided with the natural
topology which is induced by the topology of the euclidean space M\. The space
M° is provided with the topology of the topological union.

We say that a function / defined on a subset A Q M° belongs to the class Ck

at a point xeAnMn, fe = O, 1, . . . , n = l , 2 , . . . , if there exists a set WQAnMn such
that xeW, s^Wis open in M\ and s*f( ) = f(s~i(-)) is a function of the class Ck

on s^W. Let / be a function of the class C 1 defined on AQM°. On the set of
pairs {x,x) where xeA, x = (q9υ)ex, we shall define two vector-valued functions
with values in Rv which will be denoted respectively by Vqf(x) and Vvf(x) and
called the gradients of / For let us fix the set 5c\x and consider the function
fx\x(y) = f({5c\x)vy) where y = (q\v') is any point of M1 for which (5c\x)vyeA.
It is clear that f^Jy) is a function of the class C 1 at the point y = x. This gives us
the possibility to set by definition

States and Correlation Functions. Now turn to the space M and the σ-algebra 23.
Definition 1.1. A state of a system of particles in Rv (or, briefly, a state) is any

probability measure defined on 93.

C = RV\Ω.
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Consider the restriction of the state P to the σ-algebra 33(Ω). Then by the
isomorphism between 33(Ώ) and (£(Ω) we obtain a system of consistent probability
measures {PΩ,ΩQRV} on the σ-algebras {(£(Ώ), ΩQRV}. Conversely, if for every
bounded Borel set ΩcRv a probability measure PΩ is defined on the σ-algebra
K((2) and the condition of consistency holds, then there exists the unique state
P on 35 which generates the sytem of measures {PΩ, ΩcRv} (the Kolmogorov
theorem).

Below we shall restrict ourselves to consideration of those states P which are
locally absolutely continuous with respect to λ (i.e., PΩ-Kλ for any bounded
Borel set Ω). The Radon-Nikodym derivative dPΩ/dλ is denoted by PΩ and called
the local density of the state P. For any measurable function /(x), xeM(Ω\ the
following equality holds

ί f(x)pΩ(x)dλ(x) = J iπtf) (X)dP(X), (1.3)
M(Ω) M

both integrals existing or not existing simultaneously.
Let P be a state of a system of particles in R\ For any Borel set AcM° let

M xcX

This formula defines on M° a measure KP, taking its values in [0, +oo]. The
measure KP is called the correlation measure of the state P.

Definition 12. The Radon-Nikodym derivative (if it exists)

QP(x)=d^(x), xeM\ (1.4)

is called the correlation function of the state P.
A sufficient condition for the existence of correlation function (in the case

of a locally absolutely continuous state P) is the σ-finiteness of the measure KP.
The correlation function is expressed in terms of local density by

Qpffl= ί pΩ(x^y)dλ(y), (1.5)
M(Ω)

where Ω is any bounded Borel set such that xeM(Ω). The converse formula

= ί (-ίy™Qp(xυy)dλ(y)9 XEM(Ω) (1.6)
M(Ω)

is true if for any bounded Borel ΩcRv

ί 3nCy)pΩ(y)dλ(y)<^

M{Ω)

[cf. [29]]. Here

n(y) = n if yeMn, n = 0 , l , . . . . (1.7)
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Interaction of Particles. Bogoliuboυ Hierarchy Equations. Everywhere below
we suppose that the interaction of particles is given by a pair potential U(r),
0 ^ r < o o , which satisfies the following conditions:

(yt/frJΞ + oo for O^r^d0 where d0 > 0 (the hard-core condition),

(I2)ί7(r) is a function of the class C 3 for r>d0,

(I3) lim U(r) = + 00 and lira d/dr exp[ — c(7(r)] = 0 for any c>0,
r*d r^d +

(I4)l/(r) = O for r^dx where d1>d0 (the locality condition).

We say that the correlation function ρP of a state P is the stationary solution
of the Bogoliubov hierarchy equations if at each point of the set

D°= xeM°\M0: min \q-q'\>d0

 5 (1.8)

q,q'ex,q*q'

ρP is a function of the class C 1 6 and satisfies the equation

{ρP(x),H(x)}+ I {e/,(xu);),C/(x|y)}^ = 0, (1.9)

where { , } denotes the Poisson brackets, y = {q, v)eMί9 dy = dmί(y) = dqdv,
H(x) is the classical Hamiltonian corresponding to the interaction potential U(r):

(here and below < , > denotes the inner product in Rv),

U(x)= Σ U(\q'-q"\) (1.11)
q',q"ex,q'*q"

is the potential energy of the system of particles with the coordinates q'ex,

U(x\y)= X U(\q-q>\) (1.12)
q'ex

is the potential energy of the interaction of the particle with the coordinate q
and a system of particles with the coordinates q'ex and finally

D°(x) = {yeD°: min \q'-q"\>d0}. (1.13)
q'ex,q"ey

In conclusion of this section we formulate a simple auxiliary statement which
can be easily deduced from the definition of the measure λ [see (1.1).] and will be
used repeatedly in future.

Lemma 1.1. Let Φ (x, y), xe M°, yeMl9 be a measurable function of two variables.
Then

J J Φ(xuy,y)dλ(x)dy= J Σ Φ{x, y)dλ{x)
Mi M° M°\Mo yex

if the integral in the left hand side converges absolutely.

5 The notations qex and VEX will be used often instead of {q, υ)ex.
6 Since the function ρP is defined by the equality (1.4) only almost everywhere (w.r.t. the measure λ),
one must find, of course, the smooth version of the correlation function.
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2. Gibbs Random Fields. Formulation of Results

Let / be a measurable real-valued function on M° which can also take the value
+ 00 and has the following properties: a) /(0) = O, b) i f / ( x ) = + o o and xQy,
then f(y)= + oo. For any x, yeM°, xny = 0 we put

h(x) =
Έcx

f(z), χΦ0, y+0,

Definition 2.1. (Dobrushin [21-23], Lanford-Ruelle [24], Kozlov [26]).
A state P is called a Gibbs random field (Gibbs measure) with the generating
function f if for any bounded Borel set ΩcRv the following conditions hold:

1) for almost all (w.r.t. the measure λ x P) pairs (x, X)EM(Ω) X M there exists
the limit (being finite or equal to + oo)

h{x\XΩC)= _\\m^c h{x\xf)

where x'->XΩC denotes the net of the finite subsets x' CX& ordered by inclusion,
2) for almost all (w.r.t. the measure P) XeM there exists the conditional

probability measure [P( -/93(ΏC))] {X) defined on the σ-algebra 33(Ω) or, equivalently
(see Section 1) — on the σ-algebra (£(Ω). The last measure is absolutely continuous
with respect to the measure λ on (£(Ω) and

(x) = pΩ(x XΩC) = Ξ exp [ — h(x) — h(x\XQC)'] , x e M(Ω),

where Ξ = ΞΩ(XΩC) depends on XQC (and on Ω), but does not depend on xeM(Ω).
From the Definition 2.1 one can derive that for almost all (w.r.t. P) XeM

0<ΞΩ(XΩC)= J Qχpl-h(x)-h(x\XΩC)-]dλ(x)<^. (2.1)
M(Ω)

The function pΩ(x; XQc) is called the conditional local density of the Gibbs random
field P. The local density pΩ introduced in Section 1, is connected with the con-
ditional local density by

ft/*) = ί ft/*; XQWP(X) , xeM(Ω). (2.2)
M

For any Borel set ΩQRV let us denote by PΩ the restriction of a Gibbs measure P
on the subset M(Ω)QM. The measure PΩ is defined on the σ-algebra (£(Ώ), but,
unlike PΩ, it is in general not a probability measure. Now let Ω be a bounded set.
The double conjugate map of the map M-+M(Ω) x M(ΩC) transforms the measure P
into a measure F on M(Ω) x M(ΩC). It is not hard to verify that the measure F
is absolutely continuous with respect to the direct product λ x PΩ\ and

dF
- (x, 7) - ΞΩ( Y)pΩ(x 7 ) , x E M(Ω), Y E M ( Ω C ) . (2.3)

We set exp(-oo) = 0.
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From this fact and from (1.4), (2.1) one can easily derive the following formulae
for local density and correlation function

pΩ(x)= J exp[-/z(x)-/2(x|Y)]dP(Y)5 JceM(β), (2.4)

Qp(x) = f exp [ - h(x) - h(x\ Y)-]dP(Y) (2.5)
M

where

h(x\Y)= lim h(x\y).

There are general sufficient conditions for a state P to be a Gibbs random field
(see [26]). In particular, if P is an ί-markovian8 and conditionally locally absolu-
tely continuous (w.r.t. λ)9 measure on M and if for any bounded Borel set ΩcRv

almost everywhere on M, then P is a Gibbs random field and its generating
function f(x) vanishes if max \q — qf\>l.

q,q'ex

We consider the Gibbs random fields whose generating functions satisfy the
following conditions:

(G1){xeM°:f(x)<+oo} = D° [see (1.8)];
(G2) a) the function / belongs to the class C2 at each point xeD°,
b) for each n = 1,2,... the functions exp [ — /(x)] and max [| F exp [ — /(ic)] | +

{q,v)ex

IF,exp[-/(x)] | ] are bounded on MnnD°;

c) let f(q,v) be the restriction of/ to M l 5 then lim exp [ — f(q, v)~] = 0 for

any qeRv, and the integrals
f Mexp[-/foι;)]di;, J M|Fe exp [-/fa, υ)]|dι;, J IF, exp [-/fa, ϋ)]|dϋ

jR v Λ v i ? v

converge and are bounded uniformly over qeRv;
(G3) there exists nQ ^ 2 such that /(jc) = 0 for xeD° and n(x) >no(i.e., the number

of "interacting" particles is finite);
(G4) for any (q, υ), (q\ v')eM1 such that \q — q'\=d0

lim

= lim \Vqexpl-f((q,vMq",v'm\
q"^q'

= lim

(G5) there exists a constant d2^d0 such that if xeD°, n(x)>l and diam x><i2

then

\f(x)\ ̂  Ψ(άmmx), max_ [|Fq/(x)| +1 Vj{x)[\ ̂  Ψ(άmmx),
(ί, v)ex

A measure P is called /-markovian (/>0) if for any ΩcRv and 5eS(Ω) with the probability

ί Ll(w.r.t.P) P(B/^β(Ωc)) = P(B/^B(Wι{Ω))) where W^^ίqeΩ': inf |ςf-ήf'|^/
1 ff'efi J

9 The conditional local absolute continuity means that P(B/23(ΩC)) = 0 with the probability 1 (w.r.t. P)

ifλ(πfljB) = O, J
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where

diamic= maxjg — q'\ (2.6)
q,q'ex

and Ψ(r), r^O, is a non-increasing function such that

(G6) for any xeD° and (q, v)ex

ί ί\K' e x p [ - f(q', V)-h((q\ ι/)| jc)]I + e x p [ - f(q\ t/)]
MinD°(5c)

• (I Vv exp [ - h((q\ ι/)|x)]| + exp [ - ft(fo', ι/)|x)])] I U\\q - q[\)\dq'dυ' ̂  cx

where c1 is an absolute constant.
The condition (G6), unlike the precedents, is formulated in terms of the

function h( \ ). However, it is not hard to see that on account of (G2), (G3), and
(G5), (G6) follows from the condition (G'6)9 imposed directly on the function / :

(G'6) for any x = (q,v)u(qf,v')eM2nD°

where c2 is an absolute constant.
Remarks. 1. The condition (Gx) means that the generating function / has a

"hard core" of length equal to that of the potential U. The conditions (G3)
and (G5) are, from our point of view, the most essential restrictions imposed on /
All other conditions are needed only for the possibility to interpret in the usual way
each term on the left hand side of (1.8) and to apply known theorems about
changing the order of the integration, the derivation of an integral depending on
a parameter etc. (see Sect. 3).

2. Using the method, developed in [21-23, 24], one can prove that for any
function / obeying (G1— G6), there exists at least one Gibbs random field whose
generating function is / (for this one needs only conditions (G 1 -G 3 ) and (G5)).
There is a widespread hypothesis that, generally speaking, a Gibbs random field
is not uniquely defined by its generating function (for a discussion of this problem
see [21-24]), although, as far as we know, there is no concrete example of the
non-uniqueness so far1 0.

Fix the numbers β>0 and μeR1 and the vector voeRv and let

(β/2)(v-vo,v-vo)+βμ, x

βU(\q-q'\)9 xeM2nD\ x = (q,υMq'9υ')9 (2.7)

0, xeMnnD°, n>2,

and /o(x)= + oo for xφD°. Using (Ix —14), it is easy to verify that the function f0

satisfies the conditions ( G ! - G 5 ) and (G;

6).
Definition 2.2. A Gibbs random field with generating function f0 given by

(2.7) is called an equilibrium measure (state) corresponding to the Hamiltonian
H(x) [see (1.10)].

1 0 We emphasize that only systems with one type of particles are considered. Outside of this class
such examples are known (see [27—28]).
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The parameters β, μ and v0 in (2.7) have a physical meaning: β and μ correspond
to the mean energy and the particle density in an equilibrium state, and v0 is just
the mean velocity of the particles.

The non-uniqueness of the equilibrium state corresponding to a Hamiltonian
H and given values of the parameters β, μ and υ0 (if it holds) is usually inter-
preted as the presence of a phase transition in the system of classical particles with
interaction described by the potential.

Main Theorem. Let P be a Gίbbs random field with generating function f
obeying (G 1 -G 6 ) . Suppose that the correlation function ρP is a stationary solution
of the Bogoliubov hierarchy equations11. Then f is given by (2.7), i.e., P is an equi-
librium state, corresponding to the Hamiltonian H.

This theorem seems to be an essential extension of the recent result of Gallavotti
and Verboven [30].

The proof of the main theorem follows from two theorems below.

Theorem 1. // the conditions of the main theorem hold then the generating
function f of the Gίbbs random field P satisfies the equation

{/(x), H(x)} + X {f(x\y), U(x\y\y)} = 0, xeD° (2.8)
yex

(ifx = xeMί then the second term on the left-hand side of (2.8) is set equal to zero)12.

Theorem 2. If the function f on M° obeys (G1— G 6 ) 1 3 and satisfies Equation
(2.8) then f is given by (2.7).

In the present paper (in Sect. 3) we prove Theorem 1. The proof of Theorem 2
will be given in the second part of the work.

Consider now the question under what conditions an equilibrium state
corresponds to a stationary solution of the Bogoliubov hierarchy equations.
This is completely solved by the following.

Theorem 3. The correlation function of an equilibrium state P is a stationary
solution of the Bogoliubov hierarchy equations if and only if

/v , V V a (x)\ = 0 (2.9)
\ qεx I

where v0 is the vector which appears on the right hand side of (2.7).

Condition (2.9) means the invariance of the state P with respect to the group
of transformations {S{

t

Vo\ teR1} of the space M generated by the shifts in Rv

1 1 As we shall show later, if the conditions ( G ^ G J and (G 4 -G 6 ) hold, then the function ρP(x) has
the required smoothness properties for its substitution in the equation (1.9).
1 2 Theorem 1 holds if one replaces the condition (G3) by an appropriate condition of decreasing
and reformulates correspondingly the condition (G5).
1 3 In the proof of Theorem 2 we use only the conditions (GJ, (G2b), (G3) and the relation

lim |/(x)l=0
diamx->oo

following from (G5).
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along the vector v0. By definition,

S\Vo)X= {{q, v)eRv x Rv:(q-tv0, υ)eX) , XeM.

There exists a hypothesis that the condition (2.9) can be violated only for v > 2
(for v = 1 the invariance property of P follows from that of the potential U, see
[31,32]; for v > l it is proved if μ^C(β)<oo, see [33]). Theorem 3 extends the
result of Gallavotti [17] to the multiphase case.1 4

Proof of Theorem 3. In the proof given below we use repeatedly such formal
manipulations as change of the order of integration, the derivation under the
sign of integral etc. Similar manipulations are used in a more general situation
in the proof of Theorem 1. Their validity follows from a set of auxiliary lemmas
formulated in Section 3 and proved in Section 4. These lemmas refer to an
arbitrary Gibbs random field whose generating function obeys (G^Gg). Here
we need them only in the particular case of an equilibrium state corresponding
to the Hamiltonian H.

By Lemma 3.3 (ii) for any xeM°, x Φ0 and any (q, υ)ex

VqQp{x)= J Vqexpl-ho(x)-ho(x\Y)-]dP(Y) (2.10)
M

and

VvQp(x)= J Vvexp[_-ho(x)-ho(x\Y)-]dP(Y) (2.11)
M

where index 0 means that ho(x) and ho(x\ Y) correspond to f0 given by (2.7).
In addition to (1.8) and (1.13) let

D={XeM: min \q — q'\>d0 for any qeX}
q'eX,q' ±q

and

D(X)={XED: min \q-qf\>d0}, x + 0.
qex,q'eX

By Lemma 3.1 (iii) the integrands in (2.10) and (2.11) are equal to zero as jcu YφD.
Let now

It follows from the definition of the measure λ [see (1.1)] that

A(M°nMjf) = 0. (2.12)

Then due to the local absolute continuity of P

P(M,) = 0 (2.13)

Note that χ\jYeD and YφM^ if and only if xeD° and YeD(x). Therefore we can
replace M by D(ic) in the integrals (2.10) and (2.11) and for xeD° we have

{ρP(f), H(x)}= J {exp [ - ho(x) - ho(x\ 7)] , H(x)}dP( Y)
D(x)

= f {expl-βHΌ0Jx)-βU{x\Yy]> H(x)}dP(Y),
D(x)

In this theorem we use only the C1-smoothness property of the potential U instead of condition (I2).
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where

τ τ , \ i v—\ / . , v T T / —\ / —\
n vo, μv*7 = ~2 La \ 0' u0/ "i ^ \ ̂ ) ' /̂ "V-̂ /

v'ex

= H(x)- Σ <v',vo}+(μ+ $<vO9vo»n(5c) (2.14)
v'ex

[see (1.7), (1.10), and (1.11)],

U{x\Y)= }im U{x\y)

and

[see (1.12)].
One can rewrite the last integral as

- j expl-βHυ0tμ(x)-βU(x\YJ]
D(x)

•(-β\Σ<v>Vo>> U(x)\+βίU(x\Y), Σ<v,v>\)dP(Y)
\ • [ vex J 1 vex J /

= - I expl-βHV0,μ(x)-βU(x\Y)-]
D{x)

• Σ (β<vo,VqU(ϊ)} + β(v,VqU(x\Y)»dP(Y) (2.15)
(q, v)ex

and divide it into two terms, the first of which is

D{x)

• Σ Φo, VqU(x)+VqU(x\Y)}dP(Y)
qex

= - ί
D(x)

qex

By the above arguments, this integral equals

j Σ <v0, Vqexpl-βHV0Jx)-βU{x\Y)]>dP(Y)
M qex

= Ao> Σ ί Vqexpί-βHVθιμ(x)-βU(x\Y)-]dP(Y)S

\ qex M

) ( 2 1 6 )

The second term arising from (2.15) is

-β J expl-βHυoJx)-βU{x\Y)l
D(x)

• Σ <v-vo,VqU(x\Y)>dP(Y). (2.17)
q,v)ex
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Let Ω be a Borel subset of Rv and

DΩ(x)={XeM:XΩeD°(x)}. (2.18)

If xeM(Ω) is fixed and Ω is bounded but sufficiently large then the integrand
in (2.17) is well defined on DΩ(x). Under the same assumptions, DΩ(5c)\D(x)CM\D.

Using the definition of the Gibbs measure [see (2.1)] one can easily prove
that (Ix) (see Sect. 1) implies

P{D)=1. (2.19)

Hence P(DΩ(5c)\D(5c}) = 0 and we may rewrite (2.17) for sufficiently large Ω as

- β ί XDΩ{Ϊ)(Y) exp C~βHV O ί μ(x)-βU(x\ 7)]
M

• X <v-vo,VqU(x\Y))dP(Y). (2.20)
(q, v)ex

Condition (I3) (see Sect. 1) and the definition of DΩ(x) [see (2.18)] imply that
the integrand in (2.20) depends only on YΩ (as Ω is large enough). Thus formula
(1.3) is applicable and (2.20) is equal to

-β J expl-βHυoJx)-βU(x\yϊ]
M(Ω)nD°(x)

• Σ <υ-vo VqU(x\y)}pΩ(y)dλiy}.
{q,v)ex

On account of the relation

PΩ(x^y) = pΩ(y) expl-βHΌ0Jx)-βU(x\y)'] , xeM{Ω), yeM(Ω)nD°(x)

[see (2.4) and condition (I4)], the last integral equals

-β ί Vni^y) Σ <v-v09VqU(x\y)>dMy).
M(Ω)nD°(x) (q,v)ex

Thus for sufficiently large Ω

-β j pΩ(xvy) Σ <v-υo,VqU(x\y)}dλ(y). (2.21)
M(Ω)nD°{x) (q,v)ex

Furthermore, by Lemma 3.3 (ii), (2.19) and Lemma 3.1 (iii),

uz), U(x\z)}dz
M1nD°(x)

= - J J expi-βHVa,μ(χyjz)-βU(xijz\Y)l
MmD0(x) D(xuz)

• {βHVΰ,μ(xuz) + βU(χyjz\Y), U(x\z)}dP(Y)dz

= β I $exp[-βHυθiμ(xvz)
MmD°(x) M

• Σ <v-υo,VqU(x\z))dP(Y)dz.
{q, v)exκjz
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Using Lemma 3.5, divide this integral into two terms. The first of them has the form

β J j exp [-βH Ό O t μ (xufe v))-βU(xv(q, v)\ 7)]
MmD°(3c) M

'(v-vo,VqU(x\(q,v))}dP(Y)dqdv

and actually is equal to zero. To see this, change the order of integration and inte-
grate first over dv. The formula for Hvoμ(x) [see (2.14)] implies that the probability
distribution of a single velocity is Gaussian with mean v0. This gives the equality
claimed. The second term equals

β f J expl-βHϋ0Jxvz)-βU(xυz\Yy]
M1nD°(x) M

• Σ <v-vo,VqU(x\z)>dP(Y)dz
{q,v)ex

= β \ Σ <v-vo,VqU(x\z)yρP(xvz)dz
MίΓ\D°(x) (q, v)ex

= β J j pΩ(xuj7uz) £ (v-vo,VqU(x\z)}dλ(y)dz (2.22)
M i nD°(x) M(Ω) {q, v)ex

[here we used (2.5) and (1.5)]. Note that from condition (Ix) and from (2.4)-(2.5)
it follows that

pΩ(x) = Qp(x) = 0, χφD°, x + 0. (2.23)

Thus we can integrate on the right hand side of (2.22) over M(Ω)nD°(5c) [on dλ{y)~].
Then applying Lemma 1.1 to the function

Σ <v-υo,VqU(x\z)y9

Φ(y,z) = \ {q'v)e*

[ 0 , otherwise,

we can represent (2.22) in the form

β \ ΣPa^y) Σ (v-vo,VqU(x\z))dλ(y)
M{Ω)nD°(x) zey {q,v)ex

= β J PίUxvy) Σ (^-^o. yqU(x\y))dλ{y).
M(Ω)nD°(x) (q,v)ex

Comparing the last integral with (2.21), we conclude that

{QP(X), H(X)} + j {ρP(icuz), U(x\z)}dz
MinD°(3c)

Q.E.D.

3. Proof of Theorem 1

As we already said, the proof of Theorem 1 is based on a number of auxiliary
statements, which have been used partially in Section 2, in the proof of Theorem 3.
We formulate these statements as Lemmas 3.1-3.5 and prove them in Section 4.
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Let

DΪ(x;Y) = {zeD°:zCxvY, znxΦ0, znYΦ0, max \q-q'\^d},
qez n3c, q'eznY

xeD°, YeD(x), d>d0.

Lemma 3.1. Let a function f satisfy the conditions (Gx—G6). Then

(i) for any x, Y, x u YeD, d ^ d 2 (see (G5)) and (#, ι;)ex

Σ (\f(ϊ)\ + \Vqf(z)\ + \Kf(ϊ)\)Sc3 Σ ΨikW^-v-1 (3.1)
zeD+(x,Y) k^[d]

where c3 depends only on n(x),
(ii) the limit lira h(x\y) = h(x\ Y) is finite if xuYeD and equals +oo otherwise,

y->Y

moreover

c 4 , xeM°, YeM, (3.2)

where c 4 depends only on n(x),
(iii) /or any YeM ίte function exp[ — /z(x|7)] (res/?., exp[ —/2(x) —/z(x|Y)]) is

of class C1 at each point xeD, ic + 0 (resp., iceM0, 3cφ0)

(3.3)
0, xeD°, X U F G D ,

(resp., P exp [ - h{x) - h(x\ 7)]

exp[-/z(x)]ί7exp[-/2(Jc|y)]+(Pexp[-/t(Jc)])exp[-/z(x|y)], ic

(3.4)

.0, icuY^D)

where V denotes the gradients Vq or Vv for any (q,v)ex (of course, the meaning
of V must be the same inside a given equality) 1 5 .

From now on we shall assume (without specifying this every time again)
that P is a Gibbs random field with generating function / obeying (G^GQ).
As above, the condition (Gx) implies relations (2.19) and (2.23) and the local
absolute continuity of P implies equality (2.13).

For any Borel set ΩCRV and any x e M(Ω) let

RΩ(x}= J exp[-/ι(x|7)]rfP(7) (3.5)

M(Ω C )

[the integral exists by (3.2)].

Lemma 3.2. If Ω is bounded and xeM(Ω)nD° then RΩ(x)>0. Furthermore,

Lemma 3.3. (i) For any bounded Borel set ΩcRv the function RΩ(x) (resp.,
the local density pΩ(x)) belongs to the class C1 at each point xeM(Ω)r\D° (resp.,

The symbol V will also be used with the same meaning further on.
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xeM(Ω),xφ0) and

VRΩ(x)= J Fexp[-/z(x|F)]JP(Γ), xeM(Ω)nD° (3.6)

Iresp.,

VpΩ{x) = ί V exp [ - h(x)- ή(x| Y)]dP(7), xeM(Ω)\ , (3.7)

(ii) the correlation function ρP(x) belongs to the class C1 at each point xeM°,
icΦ0, and

VρP(x)= j Vexpl-hixj-hixlYfidPίY), xeM°, (3.8)
M

(in) for any xeM°, qeRv

lim ρP{xv(q9v)) = 0. (3.9)
|ι;|->co

Let us turn immediately to the proof of Theorem 1. For any bounded Borel
set ΩcRv and xeM(Ω)nD°, comparing (2.4) and (3.5), using Lemma 3.2, and on
account of (1.6), we obtain

= [JRΩ(X)] 1 j (— l)n{^ρP(xuy)dλ(y). (3.10)
M(Ω)

Writing [#Ω(x)] ~* in the form

we have

M(Ω)

By Lemmas 3.2 and 3.3 (i) QΩ(x) and pΩ(x) are of class C1 at each point

xeM(Ω)nD° and

{exp [ —/i(x)] , H(x)} = [Po(0)] < ( — l)n(>))0p(xuv)dA(v), H(5c) [
\ I

Let us consider the sequence of the balls

For any xeM° there exists, of course, n% such that xeM(Ωn) for n^nR. Now we
will show that for fixed xeD°

lim [Pf ln(0)] - x {pΩn{x)QΩn{*), ^(x)} = 0 . (3.13)

For this it is sufficient to prove that

lim [ P O B ( 0 ) ] " ! IF(pn.(x)βflii(x))| = 0, x e ΰ ° . (3.14)
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On account of (3.10) and (3.11),

= P[(exp [- /*(*)]) (1 - [Pfln(0)] " ' RΩn(xm , xeM(Ωn)nD° ,

and (3.14) will follow if we prove that

lim ( l - [ P O n ( 0 ) Γ * RΩn(x))= ]im [P Ω n (0)Γ' \VRΩn(x)\ = 0, xeD° . (3.15)

Now go back to the definition of RΩn(x) [see (3.5)]. We have

1 - LPM ~1 RΩnW = 1 ~ [P«n(0)] ' ' ί exp [- h(x\ Y)-]dP(Y)
M(β£)

1 ί (l-exp[-Λ(x|y)])dP(y).

On account of (2.19), one can integrate here only over M(Ωc

n)nD. If YeM(Ωc

n)nD
and n> max |^| + rf2 then, by (3.1),

qex

Σ Ϊ W Λ * " 0 " " " 1 , xeD°, (3.16)

where kn = n — max |ί/|. Since the right hand side of (3.16) vanishes if n->oo [see
qex

(G5)], we obtain for sufficiently large n the estimate

ί (1
1 J iM

M(Ωfi)nD
0 - 1 ) - 1 . (3.17)

Furthermore, by (3.6), (2.19), and (3.3), if n> max \q\+d2,
qex

VRΩn{x) = j V exp [ - Λ(χ| 7)]dP( Y) = J P exp [ - ft(jc| Y)~\dP{ Y)
M{Ωc

n)

= J exp[-/ι(x|Y)] Σ F/(z)dP(Y).

Using (3.1) and (3.2), we obtain from this for n> max|^|+rf2

 t n e estimate
qex

= (c3expc3) ^ Ψik)^"0-1^1. (3.18)

From (3.17) and (3.18) we deduce (3.15) and hence (3.13).
Now return to (3.12). Using (3.13) we have

{exp[-Λ(x)],iί(x)}

= lim [P β n (0)]" x { f ( - ir^ρP(xuj0^(j7), H(x) | , xeD° . (3.19)
n^oo [M(Ωn) J
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Lemma 3.4. For any bounded Borel set ΩcRv and xe M(Ω)

V J (-ψylρP(xvy)dλ(y)= j (-l)n^VQp(xvy)dX(y).
M(Ω) M(Ω)

Note that by (2.23) the function ρP(xuy) vanishes for xκjyφD°. On account
of this and using Lemma 3.1 and (2.12), we transform the Poisson brackets on the
right hand side of (3.19) as follows:

J ( — i)n{y)ρP(x^jy)dλ{y), H(x)>= j (— l)n{y){ρP(xuy), H(x)}dλ(y)
M{Ωn) J M{Ωn)

j
M(Ωn)nD°(x)

ί
M(Ωn)nD°(x)

), U(x\y)}

-{Qp{xκjy),H(y)}¥λ{y). (3.20)

Lemma 3.5. For any bounded Borel set ΩcRv and XEM{Ω)ΓΛD° the following
integrals converge

ί ί Σ WvQP{χyjyvz)\\VqU{x\z)\dzdλ{y), (3.21)
M(Ω)nD°(x) MinD°(3c) (q, v)exκjz

j ί ί ίK
Mi(fl) MinB°(z)

•\U'{\q-4\)\dz'dzdλ{y), z = (q,υ), z' = (q',v'), (3.22)

and

J j \VqQP{χvjyvjz)\-\υ\dzdλ{y), z = (q,υ). (3.23)
M(β)πD°(Jc) M(Ω)

Fix JceM0 and a bounded Borel set ΩcRv, and consider the function

uy), U(x\z)}9 yeM(Ω)nD°(x), ze

[0, otherwise.

Since the integral (3.21) converges, one can use Lemma 1.1. We choose
n > max \q\ + dί and set Ω = Ωn. Then on account of the condition (I4) of Section 1,

qex

U(x\z) = 0 for zφM(Ωn). Finally we obtain

j (-ψ'y){ρP(xuy), U(x\y)}dλ(y)
M{Ωn)nD°(x)

— ί Σ (~l)"(^){^p(^uy) > U(x\z)}dλ(y)
M(Ωn)nD°(x) zey

C Γ / Λ \n(v) f ί— — \ TΎί— \ "ί J j v—\

= — J J \ — i)κy)\Qp\x}uy\Jz), U(x z))dzdλ(y)
M(Ωn)nlP(x) Mi(Ωn)nD°(x)

J j (-l)n{y){ρP{xvyuz), U(x\z)}dzdλ(y). (3.24)
M{Ωn)nD°{x) MmD°(x)
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Now fix xeM°, z' = (q', υ')sM1 and a bounded Borel set ΩcRv. Let

ί(-l)"(*>{ρP(xujnjz'), U(\q-q'\)},yeM(Ω)r,D°(z'),

Φ2(y,z)=\z=(q,υ)eM1nD°W,

I 0, otherwise .

The convergence of the integral (3.22) implies that

f j f |{ρF(xuj;uzuz'), t/(|ί/-^|)}|^λ(y)dz'< +00,
Mi M{Ω)nD°(z') M1(Ω)nD°(z')

z = (q,v), z' = (q',V). (3.25)

Hence for almost all (w.r.t. mt) z'eMy

ί J \{ρP(xvyvz<Jz'),U(\q-q'\)}\dzdλ(y)<π.
M(Ω)nD°(z') Mi(Ω)nD°{z')

This means that for almost all z'eM1 we can apply Lemma 1.1, to the function
Φ2(y, z). Then we have

J (~Ψy) ί {ρP(xuj7uzuz'), U(\q-q'\)}dzdMy)
M(Ω)nEP{z') Mι(Ω)nD°(z')

= - ί Σ ί-ir^tei ίxuyuz'), C7(l9-9'|)}d^y)
M{Ω)nD°{z') z = (q,v)ey

J (-lF w {ρ P (iuyuz'), C7(j;|2')}^(jJ). (3.26)
M(β)nD°(z')

Using (3.25), we can integrate in the last expression over dz'. First integrate over
whole Mv This gives

J ί ί (-ir ( p ) tep(^j7uzuz0 ? U(\q-q'\)}dzdλ{y)dz'
Mi M{Ω)nD°{z') Mi(Ω)nD°(z')

= - J J (-l)"5){ρP(xuj7uz'), t/(y]z')}dA(y)dz'. (3.27)
Mi M(Ω)nD°(z')

Both integrals in (3.27) are absolutely convergent. Hence, one can choose any
order of integration on the both sides of (3.27). Integrating the function
{Qp(xvjy\jz\jz'\ U(\q — q'\)} over dv and dv' and using the statement (iii) of Lemma
3.3 we obtain zero. Thus

J (-lf ? ) J {ρP(xuyuz), U(y\z)}dzdλ(y)
M(Ω) MιnD°(y)

= J (-1)"<7) f {ρP(xuyuz), U(y\z)}dzdλ{y) = O.
M(Ω)nD°(x) MmD°(xuy)

By the last equality and (3.24), for n > max \q\+d1,
qex

J (-irwtep(xυ3θ, t7(Jcly)}ίW(y)
M(βn)nD°(3c)

ί (-1)"W ί {ρP(xuj7υz), [/(xuy|z)}dz^()J). (3.28)
M(Ωn)nD°(x) MmD°(xuy)
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Now integrate (3.26) over z'eM^Ω). By repeating the above arguments we
obtain

J (-If 5 0 ί {^(xuyuz), U(y\z)}dzdλ(y) = O. (3.29)
M(Ω) Mί{Ω)nD°(y)

The absolute convergence of the last integral enables us to apply Lemma 1.1
to the function

ΦΓ \= ί(-1)" ( ' )W^50, U(j^z\z)}, yeM{Ω)nD\ zey,
3 l y ? Z J \θ, otherwise.

On account of (3.29), we have

- ί ( - W β p ί x u f l , U(y)}dλ(y)
M(Ω)nD°

= i j ( - iy-σ) ^ {ρ^JcυjO, U(y\z\z)}dλ(y) = 0. (3.30)
M(Ω)nD° zey

Finally, using the convergence of the integral (3.23) we apply Lemma 1.1
to the function

ΦΓ ^ = /(- 1) f I ( P )<^p(xuJ0,t;>, yeM(Ω), z = (q,v)ey,
4[y' } [0, otherwise.

And so we obtain the relation

ί J (-iy
Mi(Ω) M{Ω)

= - ί (-ir
M(Ω) vey

which together with (3.30) shows that

- ί (-lΓ~>{ί?p(xuy), H(y)}dλ(y)
M(Ω)ΓΛD°{X)

= j J (-ψ*\VqρP(xuy<jz),vydzdλ(y). (3.31)
Λf(Ω) M i(Ω)

Comparing (3.20), (3.28) and (3.31), we obtain for n> max|tf| + d l9
qex

j {-l)n^QP{x^y)dλ{y), H(x)\
M(Ωn) J

MinD°(3cuy)

+ J ί (-ίrf\VqρP(xvyiJz),v)dλ(y)dz.
Mι(Ωn) M{Ωn)



Stationary Solutions of the Bogoliubov Hierarchy Equations 83

Now we use the hypothesis that ρP is a stationary solution of the Bogoliubov
equations. Hence,

ί , H(x)\
M(Ωn) J

= ί ί (-l)nΓy)<VqρP(xuyuzXv}dλ(y}dz, z = (q,v). (3.32)
Mi{Ωn) M{Ωn)

Using Lemma 3.4 and (1.6) we represent the right-hand side of (3.32) as

ί (K ί (-iT
\ M(Ωn)

= ί (VqpΩn{xvz),vydz, z = {q,v). (3.33)
Mi(Ωn)

Let us introduce the notations:

q = (q\...,qv), v = {v\ ...,vv), q^VjeR1 , j=ί9 ...,v ,

diM1(Ωn)={q,v):qeΩn,q
i=O,veRv},

dtq= Π dtf, {q±)i=±[n2-

Then we can write

ί

= Σ ί vi[PΩn(xvz?-)-pΩn(xvzr)]diqdυ9 z = (q,υ). (3.34)
i = l diMί(Ωn)

Now turning to (3.19) and taking into account (3.32), (3.33), and (3.34), we obtain

-{exp [-/>(*)], H(x)}= exp[-/z(x)] {h{x)9 H(x)}

= l i m Σ ΐ Γ 7 ^ ί tfΪPΩjxvz^-pnJxvzrfldiqdv, xeD°. (3.35)

Let us represent the local density pΩn(xκjzf) in the form

pΩfl(xuzi t)= exp[-ft(x)] Λ«n(x;^), (336)

where [see (2.3)]

R'Ωn{x\zf)= j e x p E - Z ί z ^ - M x I z ^ - ^ x u z f l Γ f l ^ y ) . (3.37)
M(Ω£)

Then after substituting (3.36) into (3.35) we have

= l i m Σ ^ 7 ^ ί v'lR^x z^-R^xiznidtqdv, xeD°. (3.38)
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Now we shall prove that the right hand side of (3.38) does not depend on x.
Of course, it is sufficient to verify that for /= 1,2,...,

lim7Γ7S ί vΊR^x z^-R'nβ zfMqdυ^. (3.39)

First of all we note that the integrand in the right-hand side of (3.37) vanishes
if YφD(z^). Hence we can integrate in (3.37) only over M(Ωc

n)nD(zf). Further,
from the definition of Rf

Ωn, we obtain the following inequality

\R'Ωn(x; zf) - R'Ωβ z±)| ̂  J exp [ - /(z±) -h{zf | Y)]

where

h{x\zΐ\Y)= lim _ _ _ X _ / ( w u z f ) .
y —* Y wCx uy,wnx Φ 0 , wny Φ 0

If rc> max |c/| +ί i 2 then, by Lemma 3.1 (i), for any YeM{Ωξ)nD{z*)
qex

where, as above, kn = n— max|g|. The right hand side of the last estimate vanishes
qex

if n->oo [see (G5)]. Hence, one can state that for sufficiently large n and any

The function exp [ — h(zf \ Y)~\ is, by Lemma 3.1 (ii), uniformly bounded in both
its variables. From what we have said above we obtain the following estimates

\R!Ωn(x9 zfr-Raβ, zt)\

and

1

0'"-1 j Iv^expl-fiq^vfldfldv. (3.40)
k^kn dιM1(Ωn)

According to condition (G2, c), the right hand side of (3.40) does not exceed

c5 X ΨikW0-1)-1^-1

k^kn

where c5 depends only on n(x). From condition (G5) we see that this expression
vanishes if n->oo. Thus the relation (3.39) is proved.

Now (3.38) may be written as

{h(x)9 H(x)} = c6, xeD°, x+0
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where c6 does not depend on x. Putting here x = x = (q,v)eM1 and υ = 0, we

xeD°, x + 0.

obtain that c6 = 0. Thus

Finally, note that

{/(x), H(x)} + Σ {f(x\y)9 U(x\y\y)}= £ ( - l ^ M P ) , H(y)} . (3.41)
yex yCx

This completes the proof of Theorem 1.

4. Proof of the Auxiliary Lemmas

We shall use the following terminology: the points of M and M° will be called
the configurations of particles, and the pairs x = (q, v)eRvx Rv—the particles.

Proof of Lemma 3.1. (i) Let xeM°, YeM, xuYeD and d^d2- First, suppose
that x n 7 = 0, and therefore, YeD(x). For any d'^d denote

Dd,(x\ Y)=<zeDo:zCxvY,znxή=0,znY^0, max \q-q'\<d'> (4.1)
L qez nx, q'ez ny J

and

D >(x' Y) = D+(x' Y)oD >(x' Y) (4 2)

Our first goal is to estimate the cardinality of Dd d{x\ Y) denoted by \Dd^d{x\ Y)\16.
For this fix an arbitrary particle x = (q, v) and integers k,n,nγ such that k^.[d],

ι^no a n <^ n — n1 ^n(x) and consider the set

Ek(n,nux)

kfk+1(x', Y):z3x,n(z)=n,n(znY) = n1, k^L max \q — q'\<k+l\. (4.3)
q'eznY J

Clearly, D k > k + 1 (x; Y)C (J Ek(n,nux) and hence \DkΛ+1(x; Y)\^ Σ l ^ ( ^ ^ i ^ ) l
« , « i , x n,nι,x

To estimate |£fc(π, ?ι1?x)| we note that for any pair of particles (q\v'\
(q", v")sxuY,\q' — q"\>d0. Hence, the number of particles (q\ V')EXVJY satisfying
the condition k^\q — q'\<k+l is less then cΊk

v~x where cη is a constant. By the
same bound one can estimate the number of the particles (q\ v')e Y maximizing
the distance \q-qf\ in (4.3). Furthermore the number N of particles (q",υ")eY
satisfying the condition \q — q"\<k + l is less than cΊk

v. Then the number of
ways of choosing the intersection zr\ Y

N

Finally, the number of ways of choosing the intersection containing the given
particle x is

n(x)

1 6 A similar notation will be used below for any set of configurations. For the number of particles
in a given configuration xeM° we preserve the notation (1.7).
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Thus we find that

\Ek{n9nί9x)\

< -1 L-2—:

and

\Dktk+ i(x; Y)|gngc^- 1[n(x)]n (* )fcv ( ' I ( )"υ"x =c ' 3 fc v ( f l 0 " 1 ) - 1

where c'3 depends only on n(5c).
Note that, by condition (G3), a configuration zeD^(x; Y) gives a non-zero

contribution in the sum £ (|/(z)| + |Fg/(z)| + ||7/(z)|) so long as π(z)^n 0

zeD+(x,Y)

and, by condition (G5), a single term in this sum is bounded by 3Ψ (diam z) [see
(2.6)] where Ψ is a non-increasing function. Therefore,

Σ
zeD5(x;

<3

Consider now the case where X\JYED but xnY + 0. Then, as we remarked
above, Y\χeD(x) and

Using the stated estimate for x and Y\χ and condition (G5) one can find that
in this case the left-hand side of the last inequality does not exceed

3c3 £

Clearly, this bound does not exceed

c3 £ ΨikW0-"-1

where c3 depends only on n(x). So (i) is proved.
(ii) First let xuYeD. To prove the existence of \imh(x\y) it is sufficient to find

for any ε > 0 a number d>0 such that \h{x\y)-h(x\y')\<s provided YΩdgycY
and YΩdQy'C Y, Ωd= {qeRv:\q\^d}. Using the statement (i) and the convergence
of the series, in the right-hand side of (3.1), one can easily verify, that such a d may
be choosen from the conditions

|, c3
qex

where

d' = d-
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Next we prove the estimate (3.2). By (3.1),

exp[-λ(x|Y)]=exp[- £ f{z)- Σ /(z)
ί zeDϊ2(x;Y) zeDfcx Y)

• Σ /(^)j exp Γc3 Σ Ψifyk*"0-1)-1]. (4.4)

Using the above arguments one can show that \D^2(x; Y)\ is bounded by a constant
depending only on n(x). Moreover, each factor exp[— /(z)] contributing to the
first exponential on the right-hand side of (4.4) is bounded according to condition
(G2). The bound (3.2) follows from this in the case where XKJYED.

Let 5ίκjYφD. Then one can find a zCicu Y such that znicΦ0, zn Yφ0 and
f(z) = + oo. Hence, h(x\y) = + oo for any yCY such that znYQy, and h(x\ Y) = + oo.
This proves (ii).

Remark 4Λ. By similar arguments one can prove that for any x, yeM° and
YeM

exp - Σ

zΦ.v '

(iii) First consider the case when xeD° and YeD(x). In this case the smoothness
of f(x) [see (G2, a)] implies that of exp[ — h(xj] and we have only to prove the
smoothness of exp [ — h(x\ Y)] which follows from the similar property of h(x\ Y).

We shall use a theorem on smoothness properties of the limit function (see
e.g. [34], Th. Il l) on account of the fact that h(x\Y) is, by definition, the limit
of functions of the class C1.

Fix Xι=(qί9vi) and denote xί=x\xi. Clearly there exists δ>0 such that
if (q,v)eRv xRv and \q — qi\<δ, ^ u ^ φ ί e D . We shall show that for any
ε>0 there exists yC Ysuch that for all qeRv satisfying the condition \q — qι\<δ,
for all veRv and all y' C Y containing y, the following holds:

q, v)\y)\<s, (4.5)

where V, as usual, is Vq or Vv.

Let

y={{q"9v")eY:max\qr--qf'\^d + δ}
q'ex

where d>d2 is such that c3- ^ Ψ(k)kv{no~1)~1<ε. Then for \q-qx\<δ and

y£7CY k=ld]

\Vh(xMq,v)\y')-Vh(xMq,v)\y)\S Σ 117/®!
Z6D + (X!U(g,i;); Y)

Applying the bound (3.1) we obtain (4.5). The existence and continuity of the
gradients Vh(x\Y) as formulae (3.3) and (3.4) follow from this immediately.

If xu YeD, but YφD(x) then xnYφβ, xeD° and Y^oceD(x). In this case
we can apply the proved statement to the function h(x\Y\x) and then use the
identity

h(χ\ Y) = h(x\Y\χ) + h(xn Y) + h(xn Y\x\Y).
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Suppose now, that xuYφD. On account of the last identity we can restrict
ourselves to the case xnY = 0. The gradients

vex,

exist and vanish since exp [ — h(x\ Y)] = 0 and the same holds for any change
of the velocity v. Now let us prove that the gradient Vt.exp[ — h(x|Y)] (resp.,
VqQxp\_ — h(x) — h(x\YJ\\qex, exists and vanishes for xelr (resp., xeM°). Since
the arguments in the both cases are completely similar we consider only the first
of them.

If one can find q'ex and q"eY such that 0<\q' — q"\<d0 then the statement
is trivial since the configuration (x\(q, v))u(q9 v)κjYφD for any qeRv sufficiently
close to q, and consequently exp [ — h((x\(q, v))v(q, v)\ Y)] =0. A similar argument
is applicable to the case when YφD. Thus we have to consider only the case where
xeD°, YeD and min \q' — q"\ = d0. If, in addition, for a given qex,

q'ex, q"eY

min\q-q"\>d0
q"eY

then VqQxp\_ — h(x\Y)]=0 by the above arguments. Finally fix x = (q,v)ex and
consider the case when min \q — q"\ = d0.

q"eY

Let q = (qx,..., qv\ ί/'eR1, i = l, ...,v. Fix i and put for TG.R1

Mi=((qτ)i>v) > (χτ)i

It is not hard to see that there are only four possibilities: (a) for any sufficiently
small τφO the configuration (x^uYeD, (b) for any sufficiently small τ>0,
(xJiVYeD but {x-^vYφD, (c) for any sufficiently small τ>0, {x^vYφD but
(x_τX uyeD, (d) for any sufficiently small τφO, (x^uYφD. By (ii),

for any sufficiently small ί<0 in the cases (b) and (d) and for any sufficiently
small ί>0 in the cases (c) and (d). Hence, in the case (d) the derivative

and in the cases (b) and (c) the same is true for the left and right derivatives re-
spectively. This shows that the derivative d/dqΪQxpl — h((xt)i\Y)'] exists: in the
case (a) for all sufficiently small t + 0, in the case (b) for all sufficiently small t > 0
and in the case (c) for all sufficiently small t < 0.

Thus we have to prove in the cases (a), (b), and (c) that all derivatives mentioned
above approach zero as £-»0. For definiteness consider the case (a) and put ί>0.
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Using formula (3.3), we can write

exp L- = -exp[-ft((xt)ί|Y)] Σ a-if®
zC(5c t)zuY,znYΦ0, GCLt

Z3{Xt)ι

Σ exp - Σ
ΞeDfdxth; Y),ze(xt)ι

Σ /(?)
d

exp[

Σ
3

(4.6)

We shall consider each of the two terms on the right-hand side of (4.6) separately.
For the brevity the index i will be omitted. By (3.1), the first term is bounded by

Σ

exp exp Σ /(?)

χt); Y)

where c8 does not depend on t for sufficiently small t > 0. Furthermore, the number
of factors in the product exp f— Σ / ( ^ ) | i s bounded uniformly in t if

ί > 0 is sufficiently small. Each factor exp [ — /(?)] is bounded by condition (G2),
and at least one of them vanishes as ί-»0+ by condition (G4) (viz., the factor
e x P [ —/(tof)> )̂u(<z"> */'))] where g'^Yis such that |q — ς['Ί = do) Hence, the first
additive term on the right hand side of (4.6) vanishes as ί->0 + .

Let us pass to the second term on the right hand side of (4.6). We represent
it in the form

Σ e χp
εDd-((5c£); Y),

z (xt)

Σ /αo

•expf- Σ /(F)l—exp[-/(z)].
L z'eDd-((3ct);y),z'Φz J ^ ί

The number of additive terms in the external sum is uniformly bounded for
sufficiently small ί>0. Hence we have to consider the single term

exp

d

Σ /(?) exp Σ /(?)
z'eDd-((5cc);y),z'Φz •

which, by (3.1), is less than

I d
exp[-/(z)] exp Σ
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where c9 does not depend on t for sufficiently small t > 0. The number of factors
exp [ — /(?)] is bounded uniformly in t if t > 0 is sufficiently small. Any such factor
is bounded by condition (G2b); the same is true for the factor \δ/dqt exp[ — /(z)]|.
Finally note that there is at least one among these factors which vanishes as
£-•0+ by the condition (G4). This is either the factor

\δ/δqtexp[-f(((qtlυMq'\v"m\ if z = ((qt), υ)v(q", υ")

or

exp [- f(((qt\ υ)υ(q", i;"))] if z > « υMq", υ").

Here (q", v")e Y is the particle mentioned above. Thus the second term on the
right hand side of (4.6) vanishes as ί-»0 + . Hence lim d/dqtQxp[ — h(xt\Y)']=0

and statement (iii) is proved.
Proof of Lemma 3.2. Let Ω be a bounded Borel set. Using the equality (2.19)

we can write

RΩ(x)= f expl-h(x\Y)]dP(Y)9 xeM(Ω). (4.7)
M(Ωc)nD

Since RΩι^RΩl if Ω12Ω2, it is sufficient to prove that RΩ(x)>0 for Ω = Ωn where
n> max|ί/|+d2. In this case the conditions xeD°, YeM(Ωc

n)nD imply that
qex

xuYeD, and so, by (3.1),

\h(x\Y)\S Σ | /(z)ISc 3 £ !P(fc)fcϊ("o-1)-1<oo.
zeD% (5c Y) k^n

From this it follows that the integrand in (4.7) is strictly positive. Finally note
that according to the definition of the Gibbs random field [see (2.1)],

almost everywhere (w.r.t. P) and therefore

PΩ(0) = P(M(ΩC)) = P(M(Ωc)nD) > 0 .

This completes the proof of Lemma 3.2.
Proof of Lemma 3.3 (i). The proof of formulae (3.6) and (3.7) is identical and

we consider only the first of them. We use a theorem on the derivation of a
integral depending on a parameter (see [34], Th. 114). Thus we have to prove
that for any fixed xeD°, |F exp [ —/ι(x'| Y)]| is bounded uniformly in x'eD0 suf-
ficiently close to x and all YeM. It is sufficient to consider the case x'uYeD
since in the opposite case Γexp[ — h(x'\Y)~]=0 [see (3.3)].

Fix xeD° and x = (q, v)ex. Fix further δ>0 such that, if x ' = (</', v/)eMί and
\q — qf\<δ then x'eD0 where x' = (x\χ)uxr. We shall show that for any such x*
and any YeM

c 1 0 (4.8)

where V is Vq, or VΌ> and c 1 0 depends only on n{x).
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Ifx'uFeZ)thenby(3.3)

zeD£2(x';Y) zeDd-{x';Y)

By (3.1) and (3.2), the first term on the right hand side is bounded by

c4expfc3 £
[

To estimate the second term we represent it in the form

Σ exp[-h(x'\ Y)] exp[- /(z)]|Γ exp[- /(f)]|.
zeDj2{x'; Y)

The number of terms in this sum is uniformly bounded in x' and Y satisfying
the conditions x'eD0, x'vYeD. By Remark 4.1 and condition (G2b), the product
of the first two factors in every additive term of the last sum is bounded by a
constant depending only on n(x). Other factors are bounded by the same condition.
This gives the bound (4.8).

Using the formula (3.6) and the bound (4.8), we obtain, by Lebesgue's con-
vergence theorem, the continuity of the gradients VRΩ(x). The same property
oϊpΩ(x) is proved similarly.

Remark 4.2. For any xeD°, YeM and yeM° the following estimate holds

Pexp - _ Σ /( f ) ^ c i o

This estimate is proved by the same arguments as (4.8).
(ii) The smoothness of the correlation function ρP and the formula (3.8) are

proved by the same arguments as above. Note that it follows from (3.4) and
(3.8) that

VρP(x) = 0, (4.9)

tixφD0.
(iii) By (2.5),

ρP(xu(q, υ)) = exp [ - f(q, ι?)]

• exp [ - h(x) - h{x\{q, ϋ))] j exp [ - h(xufe v)\ Y)~]dP{ Y)
M

As |i;|->oo, the first factor tends to zero [see (G2c)] and the other factors are
bounded according to (G2b) and (3.2). This gives equality (3.9). Lemma 3.3 is
proved.

Proof of Lemma 3.4. We use again the theorem on the derivation of an integral
depending on a parameter. We want to prove that \VρP(xuy)\ is bounded by a
function depending only on y whose integral over M(Ω) [on dλ{y)~] is finite.
We shall show that if xκjyeM(Ω), then

\VρP(xuyMcllQχp\- £ f(q9v)] (4.10)
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where c n depends only on Ω. The estimate (4.10) implies the result since by the
definition of the measure λ [see (1.1)]

J expf- X f(q,v)]dλ{y) = txp\^ Qχpl-f(qfv)-]dvdql1Ί (4.11)
M(Ω) [ {q,v)ey J [Ω R1 J

and the right hand side is bounded by condition (G2c).
On account of (4.9), we shall restrict ourselves to the case xκjyeM(Ω)c\D°.

By (3.8), statement (iii) of Lemma 3.1 and bounds (3.2) and (4.8), we then obtain

\VρP(xuy)\ = j Vexpt-h(xuy)-h(xvy\Y)-]dP(Y)
M

+ exp[-/φcuy)] J \V expl-h(xvy\Y)~]\dP(Y)
M

^c 4 |Γexp[-Λ(xuj0] | + c l o exp[-ft(xuJ0]. (4.12)

Note that c4 and cί0 in (4.12) depend in general on n(xκjy). But if xκjyeM(Ω)nD°
then n(xuy), of course, does not exceed some constant depending only on Ω.
So one can think of c4 and cl0 in (4.12) depending only on Ω. Furthermore,

IV exp [ -hixυyj]\ = \V exp [-h(x\y) -h{x\y)y)lI exp C-h{yj\

^(exp [-h(x\y\y}]IVexp [-/ί(x\jθ]I +1F exp [-h(x\y\y)l| exp [-ft(x\p)])

•expf- Σ /(z)lexpf- Σ /(«»y)]. ( 4 1 3 )

^ f(q, υ)].
(q,v)ey J

(4.14)

f
and

exp[-/z(JcujJ)]
exp [-h(x\y)2 exp [-h(5c\y\yy\ exp [ - ]Γ /(z) 1 exp

Using condition (G2b) and the boundedness of n(xuy) as Ω is fixed, one can
verify that the right hand sides of (4.13) and (4.14) do not exceed

c'nexpf- £ f(q,v)

where c\ί depends only on Ω. On account of (4.12) we obtain (4.10). Thus Lemma
3.4 is proved.

Proof of Lemma 3.5. Using (3.8) and Fubiny's theorem we conclude that
the convergence of the integral (3.21) follows from that of the integral

ί ί ί Σ l^exP[-Mxuj7uz)-/2(xuj7uz|7)]|
M{Ω)nD°(x) M MιnD°(xuy) (q,v)exuz

\VqU(x\z)\dzdP(Y)dλ(y). (4.15)

Using (2.13) one can integrate in (4.15) over the set Mc^Uy = M\M^Uy instead
of M. The number of additive terms in the integrand equals n(x) + l. Hence we

1 7 If y = 0eMo, then the integrand on the left hand side of this equality is set to be equal to zero.
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can consider these terms separately. There are two possible cases: either (q, v)ex9

or (q,v) = z. Since the arguments in the both cases are essentially the same, we
restrict ourselves to the second one

For yeD°(x), zeMίnD°(xuy) and YeM.%^ one can rewrite the integrand
in the form

exp [ - ft(jcujj) - h(xu jJ| 7)] | Vv exp [ - f(q9 v) - h{{q, v)\xuyv Y)]11VqU(x\(q, υ))\.

The factor exp[ — h(xκjy) — h(xvy\YJ] in this product does not depend on z and
may be taken outside the internal integral. By Remarks 4.1 and 4.2 the product
of two remaining factors does not exceed

Σ \U'(\q-q'\)\

zCxuyuY,zΦ (q', v')

+ exp [ - f(q, v) - f((q, vMq', ι/))] Vv exp - X /(zufo «))

s Σ ιu'(iί-β'i)i
q'ex

•(c4\Vvexpl-f(q,v)-f((q,vMq',v'))-]\ + cloexp[-f(q,v)-f((q,vMq', t/))]).

Condition (G6) implies the convergence of the integral

ί
(ct\Vv exp [ - /fe i;)

+ c 1 0 exp [ - /(<?, υ) - f((q, υ)u(q', υ'))~\)dqdv

for all q'ex. Hence to prove the convergence of the integral (4.15) [and therefore
(3.21)] it is sufficient to show that

J j exp [-h(xuy)-h(xκjy\ Y)~]dP{Y)dλ{y)< oo . (4.16)
M(Ω)nD°(x) M

According to (3.2) exp [ - h(xuy\ YJ] ̂  c4, where the constant c4 may be considered
as depending only on Ω. Now the function exp [ — /z(icuj )], is, like in the proof of
Lemma 3.4, less than c 1 2 exp[— ]Γ f(q,v)] where c 1 2 depends only on Ω.

[ J
Substituting these bounds in to (4.16) we obtain, by (4.11), that the integral on the
left hand side converges.

We now pass to the proof of the convergence of the integral (3.19). As above
one can consider the integrals corresponding to each of two additive terms in
the square brackets separately. Since both integrals may be studied similarly we
shall prove the existence of one of them, namely

J f j \rυQp(xvyv(q,vMq',υ'))\
Mi M(Ω) Mi(Ω)nD°(q',v')

• \U'{\q-q'\)\dqdυdλ{y)dq'dv'. (4.17)
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Using (3.8) and Fubiny's theorem one can verify that the convergence of the
integral (4.17) follows from that of

ί ί ί J \VΌexpl-h(xvyυ{q,vMq',υ'))
M(Ω) M MΊ Mι(Ω)nD°(q',v')

• \Ur(\q-q'\)\dφdq'dυ'dP(Y)dλ(y) (4.18)

By (2.12), (2.13), (2.19), and (3.4), we can replace the regions Mί(Ω)nD°(q\ v'\
Mu M, and M(Ω) in (4.18) by M1{Ω)nD°{χκjy^j{q>

 ,V')^JY\ M^D^xuyuY),
D(xujτ), and M(Ω)nD°(x) respectively. Then the integrand may be written in
the form

exp [ — h(xuy) — h(xκjy\ Y)~]

- IVv exp [ - f(q, v) - f(q', υ') - f((q, v)u(qf

9 υ')) - h((q9 v)v(q', v')\xuyu 7)]|

'\U'(\q-q'\)\.

The first factor does not depend on q, v, q\ v' and may be taken outside the double
internal integral in (4.18). By (3.2) and (4.8), the second factor does not exceed

exp [-/(</>')]

• (IVυ exp [- f(q9 v)- /(fe, v)u(q\ i;'))]I exp [-h((q9 υMq', v')\xuyu 7)]

+ exp [- f(q, v)- f((q, v)κj(q\ t/))] |Vv exp [ - h((q, v)u(q\ v')\xvyv 7)]|)

Here c4 and c 1 0 are constants.
Let us consider now the integral

ί ί exp[-/(«',t/)]
Mi Mi(Ω)nD0({q',v'))

•(c4|(7exp[- f(q,υ)-

-\Uf(\q-qf\)\dφdq'dvf. (4.19)

Condition (I4) enables us to replace Mx in (4.19) by M^Ω') where Ω! is a large
bounded Borel set containing Ω. On account of this fact and the conditions
(G2c) and (G6), it is not hard to see that the integral (4.19) converges. Then we
apply the bound (4.16) and this completes the proof of the convergence of the
integral (3.22).

Finally we prove the convergence of the integral (3.23). As above it is sufficient
to show that the following integral exists:

f j j I Vq exp [ - h(xujJufe υ))- h(xuyv(q, v)\ 7)]|
M(Ω)nD°(x) M Mι(Ω)nD°(xuy)

'\υ\dqdυdP{Y)dλ{y). (4.20)
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It follows from (3.2) and (4.8) that the integrand in (4.20) does not exceed

exp [-h(xuy)-h(xuy\ 7)] (|Vq exp [ - f(q, υ)]| exp [ - h((q,

+ exp [ - f(q, ϋ)] I Vq exp [-h((q, υ)\xuyvj 7)]\)\v\

(c4\Vq exp [-/fa, ι>)]|+c10 exp[-/fa, t?)]) M.

By condition (G2c)

J (c4 |Fβ exp [ - f(q9 v)] + c 1 0 exp [ - /fa, t;)]) \v\dqdv< oo .

On account of (4.16) we obtain from this that the integral (4.20) is finite. Lemma 3.5
is proved.
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