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Abstract. This paper is the first part of the work whose subject is to investigate
the set of stationary solutions of B-B-G-K-Y hierarchy. We state that under
some conditions on the interaction any stationary solution obeying certain
restrictions of a general type corresponds to an equilibrium state (in the
sense of Dobrushin-Lanford-Ruelle).

0. Introduction

The first mathematically rigorous works related to the theory of non-equilibrium
phenomena appeared in Statistical Mechanics at the end of the sixties and the
beginning of the seventies. Lanford was the first who has obtained interesting
general results in this direction for the case of one-dimensional classical systems
[1-2]. The main result of Lanford consists in the construction a natural dynami-
cal system which describes the motion of an infinite number of interacting particles.
The next important step was made by Sinai [3—4]. In particular, Sinai has given
the rigorous proof of the cluster character of the dynamics for a system of particles
in a gas phase. The results of Lanford and Sinai were generalized in the one
dimensional case by Zemliakov [5] and Presutti, Pulvirenti and Tirozzi [6].
Combining the methods of Lanford and Sinai, Marchioro, Pellegrinotti and
Presutti [ 7] constructed the dynamics in the multidimensional case for an infinite
system in any possible thermodynamic phase.

In connection with the construction of dynamical systems of Statistical Mechan-
ics the problem of studying their ergodic properties arises. For several particular
cases this problem was solved in the papers [8—14]. Another problem which is
closely connected with the preceding one is that of describing the set of measures,
invariant with respect to the constructed dynamics of an infinite system of particles.
The last problem was considered in the one-dimensional case in [15] where it
was demonstrated that in a natural class of probability measures, defined on the
phase space, only the equilibrium states may be invariant with respect to the
dynamics constructed in [3].
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In this paper we study the stationary solutions of the Bogoliubov hierarchy
equations® [16]. Itis well-known that for systems in a finite volume these equations
are equivalent to the Liouville equation and characterize the time evolution of
the probability measure on the phase space of a finite number of particles. Per-
forming the thermodynamic limit one obtains the infinite chain of the Bogoliubov
hierarchy equations which are related to a system of particles in the whole space.
The problem of existence and uniqueness for this chain of equations has not
been solved so far (some of the results obtained here are contained in [17-20]).

It is natural to connect the stationary solutions of the Bogoliubov hierarchy
equations with the states of an infinite system of particles (i.e., probability measures
defined on the phase space) which are invariant with respect to time evolution.
In the cases where the dynamics on the phase space has been constructed it is
possible to demonstrate that any invariant measure satisfying further conditions
of a general type generates a stationary solution of the Bogoliubov hierarchy
equations. On the other hand, an immediate analysis of stationary solutions of
the Bogoliubov hierarchy equations (unlike the invariant measures) does not
require, in general, the use of such delicate dynamical properties as clustering.
Apparently, the point is that only functions of a finite (although not bounded)
number of variables enter in the Bogoliubov hierarchy equations. One can
consider these functions (the correlation functions) as integral characteristics
of a measure and their behavior must not necessarily show the influence of
singularities arising from the motion of individual configurations of infinitely
large number of particles. Thus the approach based on the Bogoliubov hierarchy
equations seems not only to be more general but also more natural from the
physical point of view.

The main result of the present work consists in the description of all stationary
solutions of the Bogoliubov hierarchy equations belonging to a certain class of
functions of a finite (but increasing) number of variables?. This class corresponds
to a set of Gibbs probability measures defined on the phase space. It is shown that
any stationary solution from this class corresponds to an equilibrium state
associated with the interaction potential appearing in the equations (the interaction
between particles is supposed to be described by a finite-range pair potential
which depends only on the distance between particles). Thus one can consider
this result as a generalization to the multidimensional case of the results of [15].

For defining the equilibrium states we use the approach proposed by Dobrushin
[22-24] and Lanford and Ruelle [25]. By definition, any equilibrium state
is labelled by three parameters associated with the natural “integrals of motion”
of an infinite system: mean energy, density and mean velocity of particles. From
this point of view the main result of the present work appears as an assertion
of the fact that for certain conditions all integrals of motion are exhausted by
those mentioned before.

The class of Gibbs probability measures under consideration is defined in the
same terms as the set of equilibrium states. More precisely, every Gibbs probability
measure may be considered as an equilibrium state associated with some inter-

action of a general (possibly, multiparticle) type. Note that if we confine ourselves
1
2

According to another terminology, B-B-G-K-Y-hierarchy equations.
This result is announced in [21] under more restrictive conditions.
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to the class of Gibbs probability measures we do not lose too much in generality:
in fact, one can show (see [26]) that any probability measure satisfying sufficiently
general and natural conditions is a Gibbs measure. Thus consideration of the
class of Gibbs probability measures only is not the main restriction but it is
rather a convenient framework.

The paper consists of four sections. The first one contains the preliminary
information on the phase space, states, correlation functions and stationary
solutions of the Bogoliubov hierarchy equations. In the second one we give the
definition of Gibbs probability measures and formulate the results. The third
section contains the proof of the first of two statements in to which the main
theorem is divided up. The last, fourth section contains the proofs of a series
of auxiliary lemmas.

The statement which makes the second part of the main theorem will be
proved in the further papers.

1. Preliminaries

Phase Space. The phase space M= M(R") of a system of particles in R’ is defined
as the set of all finite or countable sets X consisting of pairs (g, v), ge R*, ve R’,
and satisfying the following conditions: (a) if (g, v)e X then g=¢’ for any other
(¢, v)eX, (b) the set {g:(q, v)e X} nC is finite for any compact CCR". The vectors
q and v are interpreted respectively as the coordinate and velocity of a single
particle. For any Borel set QCR" define the phase space M(2) of a system of
particles in Q by

MQ)={XeM:qeQ forall (q,v)eX}.
IfQisbounded then M(Q) consists, of course, only of finite X and may be represented

as M(Q)= U M ,(Q), where M (Q) is the phase space of a system of n particles
n=0
in Q. The space M,(Q2) contains only one element (vacuum) corresponding to the
absence of particles in 2. We denote it by the symbol #. Denote by (M,(Q)") .. the
subset of the Cartesian product M,(Q)"=(Q2x R")" consisting of all points
(@1, v1)s (925 02)s .5 (4 ) ;€ 2, v;€ R”, such that g, #q; for any i=j, i,j=1,...,n.
The space M, (Q) for n=1 is the image of M(Q)" under the symmetrization
mapping S,3. This mapping realizes an isomorphism of the o-algebra generated
by the symmetric Borel subsets of (M,(Q)"). and a o-algebra of subsets of the
space M,(©2) which will be denoted by €,(£2). For bounded Q define the o-algebra

CQ={AM(Q) AnM(Q)eC(Q), n=0,1,...}.
On ¢(Q) define the measure 4 by

HA)= 3 L ms; TANML@)), AM(@) =1, (11)

n=1

where m, is Lebesgue measure on M,(Q)" [clearly, m,(M{(2)"\(M(2)")+)=0].

3 The mapping S, is the identification of all n! points of M ,(Q)" belonging to the same image of the
permutation group of order »n acting on M,(Q)".
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Define the restriction mapping n,: M—M(Q), QS RY, by
o X =Xo={(¢q.v)eX:qeQ}, XeM. (1.2)

For any bounded Borel set 2 denote by B(Q) the g-algebra of subsets of the space
M which may be represented in the form 7, *4, where Ae@(Q). For any Borel
set 2 denote by B(L2) the smallest o-algebra containing B(Q') for any bounded
Borel 'CQ and set for brevity B(R")=B. It is not hard to verify that the
collection of sets {n,B:BeB(Q)} is a o-algebra which coincides with €(Q) for
bounded Q; in the general case we denote it by the same symbol. Clearly, the
o-algebras €(Q2) and B(L2) are isomorphic (and for Q= R" coincide).

The mapping X—(Xo, Xo)* [see (1.2)] generates an isomorphism
M= M(Q)x M(Q°) and a corresponding isomorphism of the o-algebras:

B E(Q) x G(Q).

Now consider the subset M°=M°R")CM consisting of finite X’s. It is not
hard to see that M°e®B and M(Q)C M° for any bounded QCR". Furthermore,

it is obvious that M®= () M, where M,=M,(R") is the phase space of a system
n=0
of n particles in R". As before, M, contains the unique element @ For n=1 the
space M, is the image of (M), under the mapping S,. For points of the space
M?° and particularly for those of M(Q) for bounded Q we shall use the notations X,
¥, z, etc.; for points belonging to M, the bar will be omitted. The same symbols
and also X, Y, X, Xg. etc. will denote, according to the situation, the sets of
pairs of vectors (g, v). This convention includes also the meaning of the symbol 0.
In particular, the notation Y indicates the summation over all finite
XeMO,XCX.X¥0
non-empty subsets of the set X; for that the inclusion xe M° will be omitted.

The formula (1.1) replacing M,(Q) by M, defines on M° a measure which
will be denoted by 4 as before. For n>1 the space M, is provided with the natural
topology which is induced by the topology of the euclidean space M. The space
M?° is provided with the topology of the topological union.

We say that a function f defined on a subset A< M° belongs to the class C*
at a point XeAnM,, k=0, 1,...,n=1,2, ..., if there exists a set WC AnM,, such
that Xe W, s, 'Wis open in M’} and s¥* f(-)= f(s, (-)) is a function of the class C*
on s, 'W. Let f be a function of the class C' defined on A4S M°. On the set of
pairs (X, x) where Xe 4, x=(q, v)eX, we shall define two vector-valued functions
with values in R* which will be denoted respectively by V, f(x) and V,f(X) and
called the gradients of f. For let us fix the set X\x and consider the function
Srx¥)= f(x>x)uy) where y=(q',v') is any point of M, for which (X \x)uye 4.
It is clear that f; (y) is a function of the class C' at the point y=x. This gives us
the possibility to set by definition

qu(f)z Vq/.f;'c'\x(y)|y =X va('f) = Vv’f;?\x(y)iy=x .

States and Correlation Functions. Now turn to the space M and the o-algebra B.
Definition 1.1. A state of a system of particles in R" (or, briefly, a state) is any
probability measure defined on B.

4 *=R"\Q.
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Consider the restriction of the state P to the o-algebra B(Q). Then by the
isomorphism between B(2) and €(Q) we obtain a system of consistent probability
measures {Pg, QS R} on the g-algebras {€(Q2), QCR"}. Conversely, if for every
bounded Borel set QCR” a probability measure Py, is defined on the g-algebra
€(2) and the condition of consistency holds, then there exists the unique state
P on B which generates the sytem of measures {P,, QCR"} (the Kolmogorov

theorem).

Below we shall restrict ourselves to consideration of those states P which are
locally absolutely continuous with respect to 1 (i.e., Po<A for any bounded
Borel set Q). The Radon-Nikodym derivative d P,/d/ is denoted by P, and called
the local density of the state P. For any measurable function f(X), Xe M(Q), the
following equality holds

| f@pa(3)di(x)= ]!4 @Ef) (X)dP(X), (1.3)

M(2)

both integrals existing or not existing simultaneously.
Let P be a state of a system of particles in R*. For any Borel set 4CM° let

Kp(A)= f Z Xa(X¥)dP(X).

M xcX

This formula defines on M° a measure Kp, taking its values in [0, +o0]. The
measure K, is called the correlation measure of the state P.
Definition 1.2. The Radon-Nikodym derivative (if it exists)

o= "Nr(®),  FeMO (14)

is called the correlation function of the state P.

A sufficient condition for the existence of correlation function (in the case
of a locally absolutely continuous state P) is the o-finiteness of the measure Kp.
The correlation function is expressed in terms of local density by

(@)= [ po(XUPAF), (1.5)

M)

where Q is any bounded Borel set such that Xxe M(Q). The converse formula

polF)= Jm (— 1) Pgu(RUP)dAF), e M(Q) (1.6)
(

is true if for any bounded Borel QCR"

[ 3"po(MdiF) < oo .

M)
[cf. [29]]. Here
nd=n if yeM,, n=01,.... (1.7)



68 B. M. Gurevich and Ju. M. Suhov

Interaction of Particles. Bogoliubov Hierarchy Equations. Everywhere below
we suppose that the interaction of particles is given by a pair potential U(r),
0<r< oo, which satisfies the following conditions:

(I)U(r)= + oo for 0=£r=d, where d, >0 (the hard-core condition),
(I,)U(r) is a function of the class C* for r>d,,
(I3) lir}il U(r)= + o0 and li§n+ d/dr exp[—cU(r)]=0 for any ¢>0,

(IyU(r)=0 for r =d, where d, >d, (the locality condition).

We say that the correlation function gp of a state P is the stationary solution
of the Bogoliubov hierarchy equations if at each point of the set

D°= XeM°\M,: min |g—q'|>d, ° (1.8)
4,9'eX,q%q’
0p is a function of the class C' © and satisfies the equation
{op(X), HR)}+ [ {ep(Xuy), URly)}Hdy=0, (19)
M 1A DOX)

where { , } denotes the Poisson brackets, y=(q,v)e M, dy=dm,(y)=dqdv,
H(X) is the classical Hamiltonian corresponding to the interaction potential U(r):

HE®=1Y, 0.0)+U® (1.10)
(here and below ¢ , ) denotes the inner product in RY),
Ux)= Y. Ulgd—q") (L.11)
q'.q9"e%,q' *q"

is the potential energy of the system of particles with the coordinates ¢'€ X,
U= 2 Ullg—4') (1.12)
q'ex
is the potential energy of the interaction of the particle with the coordinate ¢
and a system of particles with the coordinates ¢'e X and finally
D(X)={jeD’: min |g'—q"|>do}. (1.13)
q'ex.q"ey

In conclusion of this section we formulate a simple auxiliary statement which
can be easily deduced from the definition of the measure A [see (1.1).] and will be
used repeatedly in future.

Lemma 1.1. Let @ (X, y), Xe M°, ye M |, be a measurable function of two variables.
Then

| ] oEUy, pdiRdy= | Y D, y)dAR)

M M° MO\Mq yex
if the integral in the left hand side converges absolutely.
The notations geX and ve X will be used often instead of (¢, v)e x.

6 Since the function g, is defined by the equality (1.4) only almost everywhere (w.r.t. the measure 1),
one must find, of course, the smooth version of the correlation function.
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2. Gibbs Random Fields. Formulation of Results

Let f be a measurable real-valued function on M° which can also take the value
+o0 and has the following properties: a) f(@)=0, b) if f(X)=+oc0 and X<,
then f(7)= + co. For any X, yje M°, Xnj =0 we put

W)= [,

ZIcX

Y @, w40, 540,
h(x|y)= nguy';:gm zgyrwyzg

Definition 2.1. (Dobrushin [21-23], Lanford-Ruelle [24], Kozlov [26]).
A state P is called a Gibbs random field (Gibbs measure) with the generating
function f, if for any bounded Borel set QCR" the following conditions hold:

1) for almost all (w.r.t. the measure A x P) pairs (X, X)e M(2) x M there exists
the limit (being finite or equal to + o0)

WX )= _lim A(7F)

where X'— X 5. denotes the net of the finite subsets X' C X, ordered by inclusion,

2) for almost all (w.r.t. the measure P) XeM there exists the conditional
probability measure [ P(- /B(2°))] (X) defined on the o-algebra B(L2) or, equivalently
(see Section 1) — on the g-algebra €(2). The last measure is absolutely continuous
with respect to the measure 4 on €(Q2) and

dLP(-/B()] (X)
dA

where & =5,(Xg.) depends on X . (and on Q), but does not depend on Xe M(Q).
From the Definition 2.1 one can derive that for almost all (w.rt. P) XeM

0<Ey(X )= M(jm exp [ — (%) — h(X| X o) ]dA(X) < o0 . (2.1)

The function po(X; X ) is called the conditional local density of the Gibbs random
field P. The local density p,, introduced in Section 1, is connected with the con-
ditional local density by

Po(X)= Afl PalX; X o )dP(X),  XeM(Q). (22)

(X)=po(¥; Xo) =E"" exp[ —h(x) - h(X|X o.)]", Xe M(Q) ,

For any Borel set QC R let us denote by P? the restriction of a Gibbs measure P
on the subset M(Q)< M. The measure P? is defined on the g-algebra €(Q), but,
unlike Py, it is in general not a probability measure. Now let Q be a bounded set.
The double conjugate map of the map M — M(Q2) x M(Q°) transforms the measure P
into a measure P’ on M(Q)x M(Q°). It is not hard to verify that the measure P’
is absolutely continuous with respect to the direct product 4 x P%, and

apP
d(A x P%)

7

(%, V)=EfV)pol%; Y), TeM(Q), YeM(Q). (2.3)

We set exp(—o0)=0.
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From this fact and from (1.4), (2.1) one can easily derive the following formulae
for local density and correlation function

Pa(X)= MJQ ) exp[—h(X)—h(X|Y)]dP(Y), XeM(Q), (2.4)
{Qc
2p(X)= Afl exp [ —h(x)—h(x|Y)]dP(Y) (2.5)
where

W)= lim h(317)

There are general sufficient conditions for a state P to be a Gibbs random field
(see [26]). In particular, if P is an I-markovian® and conditionally locally absolu-
tely continuous (w.r.t. 2)° measure on M and if for any bounded Borel set QC R"

P(rg '0/B(Q%) >0
almost everywhere on M, then P is a Gibbs random field and its generating
function f(xX) vanishes if max [q—q¢'[> L.
q,q €X

We consider the Gibbs random fields whose generating functions satisfy the
following conditions:

(G)) {(xeM°: f(X)< +o0}=D° [see (1.8)];

(G,) a) the function f belongs to the class C* at each point XeD°,

b) for each n=1, 2, ... the functions exp [ — f(X)] and (flngg_( [V, exp[— f(X)]I+

|V, exp[— f(X)](] are bounded on M,nD°;
c)let f(q,v) be the restriction of f to M,, then lllim exp[— f(g,v)]=0 for

any ge R, and the integrals
[ lolexp[— f(g,v)]dv, [ [vlIV,exp[— f(g,v)]ldv, [ [V,exp[— f(q.v)]ldv
RY RY RY

converge and are bounded uniformly over ge R";

(G,) there exists n, =2 such that f(X)=0 for Xe D° and n(X) > n,(i.e., the number
of “interacting” particles is finite);

(Gy) for any (g, v), (¢, v')e M, such that |[g—¢'|=d,

ql,,ig}l, exXp [_ f((q’ U)U(q”a Ul))]
= ql,,igr‘ll, Wy expl— f((g, v)u(g”, v')]I
= lim 17, exp[ = /(@ 9)o(a’s )| =0

(Gs) there exists a constant d, =>d,, such that if Xe D°, n(X)>1 and diam x>d,
then

|f (%) < ¥(diamx), [max [V f @+ 1V, f ()] = P(diamX),
q, v)eX
8 A measure P is called [-markovian (I>0) if for any QCR’ and BeB(Q) with the probability
1(w.r.t. P) P(B/®B(£°)= P(B/B(W(£))) where I/K(Q):{qef)‘:{rig!f; ]q—q’]§l}.

®  The conditional local absolute continuity means that P(B/B(°)) =0 with the probability 1(w.r.t. P)
if A(mpB)=0, Be B(Q).
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where

diamxX= max |q—¢| (2.6)
4,9 X
and ¥P(r), r=0, is a non-increasing function such that

Y k2P <oo(Zt ={1,2,...}) ;

keZ*

(Gg) for any xe D° and (g, v)ex
[ Weexpl—f(q,v)—h((q’, )X+ exp[— f(g’v"]

M {ADO(F)
(W, exp[—h((g’, v)3)]+ exp[—h((g’, v)X) D] U (Ig—¢'Dldg'dv' < ¢,

where ¢, is an absolute constant.

The condition (Gg), unlike the precedents, is formulated in terms of the
function h(-|-). However, it is not hard to see that on account of (G,), (G;), and
(Gs), (Gg) follows from the condition (Gj), imposed directly on the function f:

(Gg) forany x=(q,v)u(q,v)eM,nD°
(exp[— SO+ |V, exp[— fC+ |V exp[— SN [U'([g—g' D =S¢,

where ¢, is an absolute constant.

Remarks. 1. The condition (G;) means that the generating function f has a
“hard core” of length equal to that of the potential U. The conditions (Gj)
and (G;) are, from our point of view, the most essential restrictions imposed on f.
All other conditions are needed only for the possibility to interpret in the usual way
each term on the left hand side of (1.8) and to apply known theorems about
changing the order of the integration, the derivation of an integral depending on
a parameter etc. (see Sect. 3).

2. Using the method, developed in [21-23,24], one can prove that for any
function f obeying (G,;—Gyg), there exists at least one Gibbs random field whose
generating function is f (for this one needs only conditions (G;—G;) and (Gjs)).
There is a widespread hypothesis that, generally speaking, a Gibbs random field
is not uniquely defined by its generating function (for a discussion of this problem
see [21-247), although, as far as we know, there is no concrete example of the
non-uniqueness so far *°,

Fix the numbers >0 and peR* and the vector v,e R” and let

(B2 v—vg, v—vop + B, X=xeM;, x=(q,0),
fo®)=1 BU(g—4q), XeM,nD°, x=(q,v)u(q,V), 2.7
0, xXeM,nD°, n>2,
and f,(X)= + oo for x¢ D°. Using (I, —1,), it is easy to verify that the function f
satisfies the conditions (G,—G5) and (Gy).
Definition 2.2. A Gibbs random field with generating function f, given by

(2.7) is called an equilibrium measure (state) corresponding to the Hamiltonian
H(xX) [see (1.10)].

10 We emphasize that only systems with one type of particles are considered. Outside of this class
such examples are known (see [27-28]).
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The parameters 3, 1 and v, in (2.7) have a physical meaning:  and p correspond
to the mean energy and the particle density in an equilibrium state, and v, is just
the mean velocity of the particles.

The non-uniqueness of the equilibrium state corresponding to a Hamiltonian
H and given values of the parameters f, u and v, (if it holds) is usually inter-
preted as the presence of a phase transition in the system of classical particles with
interaction described by the potential.

Main Theorem. Let P be a Gibbs random field with generating function f
obeying (G,—Gy). Suppose that the correlation function gp is a stationary solution
of the Bogoliubov hierarchy equations'*. Then f is given by (2.7), i.e., P is an equi-
librium state, corresponding to the Hamiltonian H.

This theorem seems to be an essential extension of the recent result of Gallavotti
and Verboven [30].
The proof of the main theorem follows from two theorems below.

Theorem 1. If the conditions of the main theorem hold then the generating
function f of the Gibbs random field P satisfies the equation

{fE,HE@}+ 3 {f(\), US\)}=0, xeD° (2.8)

yex

(if X=xe M, then the second term on the left-hand side of (2.8) is set equal to zero) 2.

Theorem 2. If the function f on M° obeys (G,—~G4)'? and satisfies Equation
(2.8) then f is given by (2.7).

In the present paper (in Sect.3) we prove Theorem 1. The proof of Theorem 2
will be given in the second part of the work.

Consider now the question under what conditions an equilibrium state
corresponds to a stationary solution of the Bogoliubov hierarchy equations.
This is completely solved by the following.

Theorem 3. The correlation function of an equilibrium state P is a stationary
solution of the Bogoliubov hierarchy equations if and only if

<00> )3 Vqu(>?)> =0 2.9

gex

where v, is the vector which appears on the right hand side of (2.7).

Condition (2.9) means the invariance of the state P with respect to the group
of transformations {S{"”,teR'} of the space M generated by the shifts in R"

11 As we shall show later, if the conditions (G;~G,) and (G,~Gy) hold, then the function g,(X) has
the required smoothness properties for its substitution in the equation (1.9).

12 Theorem 1 holds if one replaces the condition (G3) by an appropriate condition of decreasing
and reformulates correspondingly the condition (Gs).

13 1In the proof of Theorem 2 we use only the conditions (G,), (G,b), (G;) and the relation

lim _[/(9]=0

following from (Gs).

di.
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along the vector v,. By definition,
S X ={(q,0)e R x R*:(q—tvg, V)e X}, XeM.

There exists a hypothesis that the condition (2.9) can be violated only for v>2
(for v=1 the invariance property of P follows from that of the potential U, see
[31,32]; for v>1 it is proved if u=< C(f)< oo, see [33]). Theorem 3 extends the
result of Gallavotti [17] to the multiphase case.'*

Proof of Theorem 3. In the proof given below we use repeatedly such formal
manipulations as change of the order of integration, the derivation under the
sign of integral etc. Similar manipulations are used in a more general situation
in the proof of Theorem 1. Their validity follows from a set of auxiliary lemmas
formulated in Section 3 and proved in Section 4. These lemmas refer to an
arbitrary Gibbs random field whose generating function obeys (G,—Gg). Here
we need them only in the particular case of an equilibrium state corresponding
to the Hamiltonian H.

By Lemma 3.3 (ii) for any Xxe M°, X+@ and any (q, v)eX

Vaor(X)="[ V,exp[—ho(%)—ho(X|Y)1dP(Y) (2.10)
M
and
Viop(X)= [ V, exp[—ho(X)—ho(XI Y)]dP(Y) (2.11)
M
where index 0 means that hy(X) and hy(X]Y) correspond to f, given by (2.7).
In addition to (1.8) and (1.13) let
D={XeM: min |g—q'|>d, forany geX}
q'eX,q' *q
and
D(x)={XeD: min lg—q'|>do}, X+0.
gex,q's

By Lemma 3.1 (iii) the integrands in (2.10) and (2.11) are equal to zero as XU Y ¢ D.
Let now
M;={XeM:Xnx+0}, X=+0.

It follows from the definition of the measure A [see (1.1)] that

AM°AM7)=0. (2.12)
Then due to the local absolute continuity of P
P(Mg)=0 (2.13)

Note that fUYeD and Y¢ M if and only if Xe D® and Y e D(X). Therefore we can
replace M by D(X) in the integrals (2.10) and (2.11) and for xeD° we have
{op(X), HX)}= | {exp[—ho(¥)—ho(XIY)], H(Z)}dP(Y)
D(x)
= | {exp[—BH,, (D)~ PURIY)], HR)}dP(Y),
D(x)

14 In this theorem we use only the C*-smoothness property of the potential U instead of condition (I,).
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where
Hyp @) =4 Y, 00,0 = 0p) + U(R) +pn()
= H®— ¥ 000>+ -+ 3 (oo, vo)n(3) (2.14)
[see (1.7), (1.10), and (1.11)],
U(x]Y)= lim U(x]y)
y-Y
and
Uy =Y URl)= Y Ulg—q)
z€EY qex, q'ey

[see (1.12)].
One can rewrite the last integral as

- j_ exp [—ﬂHvo,u('f) - BU()E] Y)]
D(x)

: (—ﬁ{; v, 09 5 U(f)} +ﬂ{U(fl Y), ,; <v, v>})dP(Y)

=— | exp[—pH,, [(%)—BUXY)]

D(X)

- Y (Bvo, VU + B<v, VURIY)))AP(Y) (2.15)

(g, v)ex
and divide it into two terms, the first of which is
— | exp[—BH,, (X)—BUEF|Y)]
D(X)

+ 2, {Buo, VUX) + V,U(X|Y))dP(Y)

qex

=~ [ exp[—pH,, (D)~ PUEY)]

D(x)

=2, vo, Vy[BH., (%) + BURIY)]dP(Y)

gex

= [ 2 <vo, Vyexp[~BH,, ()~ BUFIY)]YdP(Y).

D(X) gex
By the above arguments, this integral equals
j Z <UO’ l7q eXp [ - BHV(), u(f)—ﬁU(ii Y)]>dp( Y)

M gex

= <Uo’ R CXP[—ﬁHUO,u(f)—BU(EIY)]dP(Y)>

gex M

= <vo, > ngp(>a> : (2.16)

gex
The second term arising from (2.15) is
—pB | exp[—pH,, (%) —BUFIY)]
D(x)

Y o=, URIYAP(Y). (2.17)

(g, v)ex
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Let Q be a Borel subset of R and
Dy(X)={XeM:X,eDX)}. (2.18)

If xe M(Q) is fixed and Q is bounded but sufficiently large then the integrand
in (2.17) is well defined on Dy(x). Under the same assumptions, D o(X)\D(X) C M \D.

Using the definition of the Gibbs measure [see (2.1)] one can easily prove
that (I,) (see Sect. 1) implies

P(D)=1. (2.19)
Hence P(Do(x)\D(X))=0 and we may rewrite (2.17) for sufficiently large Q as

- Afl Ipel Y) exp[—fH,, (X)—BU(X[Y)]

S (v—vy, VU(E|Y))dP(Y). (2.20)

(g.v)ex

Condition (I3) (see Sect. 1) and the definition of D(X) [see (2.18)] imply that
the integrand in (2.20) depends only on Y, (as Q is large enough). Thus formula
(1.3) is applicable and (2.20) is equal to

-p | exp[—BH,, (O)—BU})]
M(2)~DO(X)
© Y v—vy VUEP) po(D)AAG) .
(g, v)ex
On account of the relation
Po(XUP)=po(7) exp[— fH,, (X)—BU)], XeM(Q), jeM(Q)nD(x)

[see (2.4) and condition (I,)], the last integral equals
=B | paxUR) Y (oo, VURIFHAAT) .

M(2)nDO(X) (g, v)ex

Thus for sufficiently large Q2
{op(X), H(X)} = <00a Z VqQP(x >

qex

=B [ X0 Y v—ve, VURE)NAR). (2.21)

M(2)nDO(X) (g, V)X

Furthermore, by Lemma 3.3 (ii), (2.19) and Lemma 3.1 (iii),
I {op(®uz), Uxl2)}dz

MnDORR)
=— [ exp[—pBH,, [(Xuz)—BU(XULz|Y)]
M1nDYX) D(Xuz)
{BH,, (FU2)+ BU(RLz2Y), U(Fl2)}dP(Y)dz
=ﬁ J‘ j exp[—.ﬂHug,u(fuz)_ﬁU(fUZ'Y)]
MinDOX) M

Y, vo—vy, VU(X|z))dP(Y)dz .

(q, v)exuz
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Using Lemma 3.5, divide this integral into two terms. The first of them has the form
B | [ exp[—BH,, [(FUlg,v)—BUFEU(g, v)|Y)]
MinDOX) M

(v =g, V,U(Xl(g, v))>dP(Y)dgdv

and actually is equal to zero. To see this, change the order of integration and inte-
grate first over dv. The formula for H, ,(X) [see (2.14)] implies that the probability
distribution of a single velocity is Gaussian with mean v,. This gives the equality
claimed. The second term equals

ﬁM | )1&exp[—ﬁHvO,ﬂ(fuz)—ﬁU(fuﬂY)]
1nDO(X
=Y {v—1q, V,U(X]2))dP(Y)dz

(g, v)ex

=B | 3 o=y VU)X U2)dz

M 1 nDO(X) (q, v)eX

= | | pa(xuyuz) Y, (v—vq, V,U(lz))dA(y)dz (2.22)

M1~ DOX) M(£2) (g, v)ex

[here we used (2.5) and (1.5)]. Note that from condition (I,) and from (2.4)—(2.5)
it follows that

Po(X)=0p(X)=0, X¢D°, X=0. (2.23)

Thus we can integrate on the right hand side of (2.22) over M(2)nD°(X) [on dA(7)].
Then applying Lemma 1.1 to the function

pa(Xuyuz) Y, (v—0vo, VUR2), z2eM(QnD%),
@(j;, Z) — (q,v)ex

0, otherwise,
we can represent (2.22) in the form

Boo§ X paEUp) Y o=, VUKI2))dAG)

M(2)nDO(X) zey (g, v)EX
=f [ paXuUd) ) v—ve, VUXIP)HAAD) .
M(2)nDO(x%) (g, v)ex

Comparing the last integral with (2.21), we conclude that

{opx), HR)}+ | {op(¥U2), UlXlz)}dz

M1nDOX)

= (v, ), Vy@p(%)) -

gex

Q.ED.

3. Proof of Theorem 1

As we already said, the proof of Theorem 1 is based on a number of auxiliary
statements, which have been used partially in Section 2, in the proof of Theorem 3.
We formulate these statements as Lemmas 3.1-3.5 and prove them in Section 4.
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Let
Dj(X;Y)={zeD":ZCXUY, ZnXx=*0, ZnY+0, max |g—q|=d},
€znX,q'eznY
f;DO,q YeD(x), d>d,.
Lemma 3.1. Let a function f satisfy the conditions (G,—Gg). Then
(i) for any x, Y,xuYeD, d=d, (see (Gs)) and (g, v)ex
LI (@RS @RI E)Se, Y Pk (3.1)

where ¢4 depends only on n(X),
(i) the limit lim W(X|y)=h(X|Y) is finite if XU YeD and equals + oo otherwise,
moreover r

exp[—h(xY)]<c,, XeM®, YeM, (3.2)
where ¢, depends only on n(X),

(iii) for any YeM the function exp[ —h(x|Y)] (resp., exp[ —h(X)—h(x|Y)]) is
of class C* at each point Xe D, X+@ (resp., Xe M°, X+0) and

—exp[—h(x|Y)] Y Vf(z), XuYeD,

Vexp[—h(X]Y)]= (3.3)
0, xeD° xuYeD,
(resp., Vexp[ —h(X) — h(x|Y)]
exp[—h(x)]Vexp[—h(x]Y)]+(Vexp[—h(X)]) exp[—h(x]Y)], XxuYeD,
= (3.4)
0, xuYé¢D)
where V denotes the gradients V, or V, for any (q,v)eX (of course, the meaning
of V must be the same inside a given equality) *°.

From now on we shall assume (without specifying this every time again)
that P is a Gibbs random field with generating function f obeying (G;—Gy).
As above, the condition (G,) implies relations (2.19) and (2.23) and the local
absolute continuity of P implies equality (2.13).

For any Borel set QC R” and any Xe M(Q) let

Ro(X)= [ exp[—h(x|Y)]JdP(Y) (3.5)

M(Q¢)
[the integral exists by (3.2)].
Lemma 3.2. If Q is bounded and xe M(2)nD° then Ry(X)>0. Furthermore,
Ro(#) = P(M(Q°))= Py(0)>0.

Lemma 3.3. (i) For any bounded Borel set QCR" the function Ry(X) (resp.,
the local density po(X)) belongs to the class C* at each point Xe M(Q)nD° (resp.,

15 The symbol F will also be used with the same meaning further on.
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XeM(Q), X+=0) and

VRo(X)= [ Vexp[—h(x|Y)]dP(Y), XeM(Q)nD° (3.6)
M)
resp.,
Vpo(X)= | Vexp[—h(X)—h(X|Y)]JdP(Y), Xe M(Q)) , (3.7)
M(Q¢)

(i) the correlation function op(X) belongs to the class C' at each point Xe M°,
X=+0, and

Vop(X)= [ Vexp[—h(X)—h(X|Y)]dP(Y), xeM°, (3.8)
M

(iii) for any xe M°, ge R*
Illim op(x(g,v)=0. (3.9)
Let us turn immediately to the proof of Theorem 1. For any bounded Borel

set QCR® and Xe M(Q)nD°, comparing (2.4) and (3.5), using Lemma 3.2, and on
account of (1.6), we obtain

exp[—h(X)]=[Ro(¥)] " 'po(®)=[Ro()]™" | (= 1"op(XxLi)dAF).  (3.10)

M(2)
Writing [Rq(X)]~ ! in the form
[Ro(®)]™ " =[Pa(@)]™ " [1+ Q)] (3.11)
we have
exp[—h(®)]1=[Po@1~ ' [ (=1)"PopXUP)dAF)+[Pa(@)] 'pa(¥)Qa(%) .

M(Q)
By Lemmas 3.2 and 3.3 (i) Q4(X) and p(x) are of class C! at each point
xeM(Q)nD° and

{exp[—h(x)], H(>?)}=[Pg(ﬂ)]“1{ | (=1yDop(xui)dAd), H(f)}

M(Q)
+IPoD] ™" {pa(¥)Qa(%), H(X)} . (3.12)
Let us consider the sequence of the balls
Q,={qeR":|q|<n}, n=1,2,....

For any Xe MO there exists, of course, n; such that xe M(Q,) for n=n;. Now we
will show that for fixed xe D°

lim [P, (0)] " {po, (900, . H@D}=0. (3.13)
For this it is sufficient to prove that

lim [Po, )] " [V(pe,(¥)Q0, ()| =0, XeD°. (3.14)
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On account of (3.10) and (3.11),
[Po,(8)]1 'V(pg,(X)Qq, (%))
=V[(exp[—h(X)]) (1 -[Po,@)] " Ro,(X)], XeM(Q,)nD°,
and (3.14) will follow if we prove that
lim (1= [Py, (]! Ro, (€)= lim [Po,@] ™' VR, (D=0, %eD®. (3.19)
Now go back to the definition of R, (X) [see (3.5)]. We have
L=[Po, @] " Ro () =1~[Po @1 " | exp[—h(x|Y)JdP(Y)

M©5)
=[Po,@]1" | (1—exp[-h(XY)])dP(Y).
M(Q5)
On account of (2.19), one can integrate here only over M(Q)nD. If Ye M(Q5)nD
and n> max |q|+d, then, by (3.1),

qex

WEY)<c, ¥ Wk m=D=1  5epP, (3.16)

kZzky,
where k,=n—max|g|. Since the right hand side of (3.16) vanishes if n—oo0 [see

qex
(Gs)], we obtain for sufficiently large n the estimate

[Pa@17)| ] (1=exp[—hETNMAY)
M28)nD
<P @]t [ hEY)dp(v)s2 PFMEIOD) s oo -
" M(Q§)nD PQn(ﬂ) k=kn
=2¢, T W(lgko D1 (3.17)

kZky

Furthermore, by (3.6), (2.19), and (3.3), if n> max |g| +d,,
gex

VR, (X)= [ Vexp[—hFY)IdP(Y)= | Vexp[—h(xY)IdP(Y)

M5) M(Q8)nD
— [ exp[—HEY)] Y PfEER).
MQ§)nD ZCXUY,ENnX*0,Z2nY*0

Using (3.1) and (3.2), we obtain from this for n> max|g|+d, the estimate

gex

[Po, )] VR, (X)| = W(cg, expes) Y P(kkrro- -1
i Py, (0) e~

= (cyexpcs) Y, P(k)kr o~ b1, (3.18)
k= kn
From (3.17) and (3.18) we deduce (3.15) and hence (3.13).
Now return to (3.12). Using (3.13) we have
{exp [—h(x)], H(X)}
— lim [P, (0]~ { [ (=1, (EuRdAd). H(f)} . ReD°. (3.19)

n— o M(£2,)
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Lemma 3.4. For any bounded Borel set QC R and xe M(Q2)

Vo[ (=0 PepXup)di)= | (—1)"VVeuXUF)dA().

M(Q) M)

Note that by (2.23) the function gp(XU7j) vanishes for xuy¢ D On account
of this and using Lemma 3.1 and (2.12), we transform the Poisson brackets on the
right hand side of (3.19) as follows:

{Mj (— 1D gp(RUP)AAT), H(f)}

[ (= 1" ep(x 7)., HE)}AD)

() M(2,)
= | (=1y9uxuUy), HR)}AR)
M (2,)nDO(X)
= | (=19 {epxuy), HExU)}
M (2,,)n DO(X)
— {0p(XUP), UK}
— {0p(¥UP), HG)}1dA) . (3.20)

Lemma 3.5. For any bounded Borel set QCR® and xe M(Q)nD° the following
integrals converge

Y, hepxupuz) IV, U(Xl2)ldzdA5) , (3:21)

M(@)nDO(X) M1nDOX) (¢, v)exuz

| [Vep(Ruyuzuz)| +V,epTuiuzuz)(]
M(@)DO(X) M1(2) M1ADO(z)

U (g—qldz'dzdAy), z=(q,v), 2'=(q.v), (3:22)

and

| WVop(xuyuz)l-oldzd A7), z=(q.v). (3.23)

M(2)nDO(%) M(2)

Fix Xe M° and a bounded Borel set QC R", and consider the function

(7, 2)= (—1y"P{op(xuy), UXl2)}, 7e M(QNDX), ze M, nD*(X),
1> 2= 0, otherwise.

Since the integral (3.21) converges, one can use Lemma 1.1. We choose

n> max|q|+d, and set Q=Q,. Then on account of the condition (I,) of Section 1,
qex

U(&]2)=0 for z¢ M(®,). Finally we obtain

(= 1'ep(x ), UEP)}dAF)

M (2,)nDO(X)

= [ Y (—1Puxuy), UEl2)}dAF)

M(R,)nDO(X) zej

=— ) I (=1Pep(Ruyusz), Uxlz)}dzdAF)
M(2,)nDO(X) M 1(82,) nDOX)
- [ (= 1y9{uxuiuz), URl2)}dzdAp). (3.24)

M (£2,)nDO(X) M 11 DO(X)
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Now fix xe M°, 2’ =(¢', v")e M, and a bounded Borel set QCR". Let

(—1)yop(xuyuz), Ulg—q)}, ye M(Q)nD(z),
D,(, 2)={ z2=(q, )e M "Dz,
0, otherwise.

The convergence of the integral (3.22) implies that

Hep(Xuyuzuz), Ullg—q')}dzdAy)dz < + o0,

M1 M(2)nDO(z’) M1(2)nDO(z’)

z=(g,v), Z'=(q,v). (325)
Hence for almost all (w.r.t. my) z'e M,

Hep(Xuyuzoz), Ullg—q|)}dzd Ay)<co.

M)A DO%z") M1(2)nDO(z’)

This means that for almost all z’e M, we can apply Lemma 1.1, to the function
@,(3, z). Then we have

(=1 f Aepxuyuzuz), Ullg—q')}dzdA(3)

M)~ D°(z") M (2)nDO(z’)

=— Y (=1 Pepxuyuz), Ullg—q')}dAd)
M(2)nDOz’) z=(q, v)e}

=— | (=)"Pepxuyuz), UFlz)}dAp). (3.26)
M(Q)nDOz')

Using (3.25), we can integrate in the last expression over dz'. First integrate over
whole M,. This gives

(= 1)PepXuyuzuz), Ullqg—q')}dzdA§)dz
M1 M(2)nDO(z') M1(@)ADO(z")
=— | | (=1yPepxuiuz), UFIZ)dAG)z . (3.27)
My M(R2)ADO(z")

Both integrals in (3.27) are absolutely convergent. Hence, one can choose any
order of integration on the both sides of (3.27). Integrating the function
{op(XuyuzUZ), U(lg—q|)} over dv and dv’ and using the statement (iii) of Lemma
3.3 we obtain zero. Thus

[ (=0 {epFuiuz), UFlz)idzdA()

M(Q) My ADOG)
= | (=09 | A{epxuyuz), Ulz)}dzdA(3)=0.

M(2)nDO(X) M 1 nDO(x UF)

By the last equality and (3.24), for n> max|q|+d, ,
gex

(= 1y {ep(x05), Uxly)dAy)

M(§2n)n DO(X)

= | (—1y® {op(XxuFUz), U(XUi|2)}dzdA(F). (3.28)

M(2,)nDO(%) M~ DOX UY)
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Now integrate (3.26) over z'e M ,(Q). By repeating the above arguments we
obtain

[ (=@ | {euEuFUz), UFl2)}dzdi(7)=0. (3.29)

M(2) M1(2)nDOF)

The absolute convergence of the last integral enables us to apply Lemma 1.1
to the function

0. 2)= {(-U"‘W{Qp(fuf), UGNzl2)},  7eM(@nD°, zejy,
3W»2)= 0, otherwise.

On account of (3.29), we have

= [ (=1)"ep(xup), UF)IAG)

M)~ D°
=5 | (=19} {epxuy), UG\zl2)}dAF)=0. (3.30)
M(Q)nDO° zey

Finally, using the convergence of the integral (3.23) we apply Lemma 1.1
to the function

(_ 1)n(§)< VqQP(fuy)a U> > .)76 M(Q) 5 z =(q: U)Eia
0, otherwise.

Py, 2)= {

And so we obtain the relation

[ J (=19 pepxuyLz), vydiy)dz

M () M(R2)
=— | (=19 {ep(xuy), 3 Y. v, v>}dA7)
M(Q) veY

which together with (3.30) shows that

= (=1 ep(xud), HG)AR)

M)~ DO(X)

= [ | (—1)9W,0px05uz), v)dzd (7). (3.31)

M(Q) M1(2)

Comparing (3.20), (3.28) and (3.31), we obtain for n> max|q|+d;,

gqex

{ [ (=1)yDu(URAG) . H(f)}
M(2y,)

= | (=1"[{epsEu), HEUP}

M(2,)nDO(X)

+ | {op(XUFUZ), U(fuflz)}dz] dA(p)

M A DOFUF)

+ [ (=1)yOepxuyuz), vydAi)dz .

M1(2,) M(2y)
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Now we use the hypothesis that gp is a stationary solution of the Bogoliubov
equations. Hence,

{ [ (=1 Pou(xUP)AAF), H(f)}
M(2,)

= [ [ (=19 epxuyuz),vydiiydz, z=(g,v). (3.32)

M 1(2n) M(2,)

Using Lemma 3.4 and (1.6) we represent the right-hand side of (3.32) as
| < v, | (=1)Pgu(xuiuz)di(p), v> dz

M1(2y) M(2y)

= [ poFoz)vydz,  z=(q.v). (3.33)

M(25)

Let us introduce the notations:

qz(qun.’qv), v:(vl,.“’vv)’ qjavjERl, j=1,...,v,
a1‘]\41(‘Qn)= {qs D):qegm qi:()’ UERV} >
dg= [] ddq’, (qi)"=i(n2— )y (q")z)”z,

l=jsv, 1
j*i

. ll/\

J
iFi
1 +\i

9 =4 (@=(q" ....q" . (g%).q

H—I

wqY), zE=(@qF,v), i=1,...,v.

Then we can write

[ Vpg,(xuz),v)dz

M1(2,)

v

=3 [ VpeFEuz)—po XUz )ldgdv, z=(q,v). (3.34)

=1 0:M1(2)
Now turning to (3.19) and taking into account (3.32), (3.33), and (3.34), we obtain
—{exp[—h(x)], HX)}= exp[—h(x)] {h(x), H(x)}

v

1
=lim Y —— [ 0[pg (Xuz])—pg(Xuz;)]digdv, xeD°.  (3.35)
Po (0) om " "

n—o i=1 1(2n)

Let us represent the local density pg, (XUz;") in the form

Do, (Xuz)= exp[—h(X)] Rq, (X; z{), (3.36)
where [see (2.3)]
Ro %z )= | exp[—f(z")—h(Xlz) —h(xuz|Y)]dP(Y). (3.37)
M(©s5)

Then after substituting (3.36) into (3.35) we have

{h(x), H(x)}
=lim ) L | V'[RG, (X;z7)— R (X527 )]dgdv, xeD°. (3.38)
n—owi=1 PQn(g) 0. M 1(2n)
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Now we shall prove that the right hand side of (3.38) does not depend on x.
Of course, it is sufficient to verify that for i=1,2, ...,

lim [ V[Rp(F; 25) — Ry (0; 25)]digdv=0. (339)
n= oo Pﬂn(ﬂ) 0:M 1(£2,)

First of all we note that the integrand in the right-hand side of (3.37) vanishes
if Y¢D(zF). Hence we can integrate in (3.37) only over M(Q°)nD(zF). Further,
from the definition of Rf, , we obtain the following inequality

IR, (%; 27)— Ry (0; 27°)| = I exp[—f(z)—hzFY)]

M(Q5)D(z¢)

‘[l —exp[—h(Xlz{) —h(x|Y)—h(zlz{ | Y)]IdP(Y),
where

Wx|zE|Y)= lim Y fwouz).

JoY WCXUF, WAXF0,Wnj*+o

If n> max|g| +d, then, by Lemma 3.1 (i), for any Ye M(Q5)nD(zF)

gex

Ih(E12) + hEY) +h(F2E V) S3e; Y Pk

kZkn
where, as above, k,=n— max|q|. The right hand side of the last estimate vanishes
if n—>o0 [see (Gs)]. Henc‘g,xone can state that for sufficiently large n and any
Ye M(Q)ND(z})
1 —exp [ —h(x|zi")— h(x|Y) = h(x|z*| V)]|S6c5 ) PRk,

kZkn
The function exp[ —h(zF|Y)] is, by Lemma 3.1 (i), uniformly bounded in both
its variables. From what we have said above we obtain the following estimates

IR, (X, z5) — Ro, (0, z)|
ey P(M(Qp) exp[— f(z%)] Zk P(kk o~ D1

and

1 .
> v'[Rg (X, 2" ) — Ro, (0, zi" )Jdigdv
Po,(0) aiM{(g,.) o
<cy ), Pkt [ ilexp[— f(gf, v)ldgdv. (3.40)
k= kn 0. M 1(2n)
According to condition (G,, ¢), the right hand side of (3.40) does not exceed

cs Z 'P(k)kv(no_l)_lnv_l

k=ky

where c¢5 depends only on n(x). From condition (Gs) we see that this expression
vanishes if n—oco. Thus the relation (3.39) is proved.
Now (3.38) may be written as

(hx), HX)}=c,, xeD°, %+0
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where ¢ does not depend on Xx. Putting here x=x=(g,v)e M, and v=0, we
obtain that ¢, =0. Thus

{h(x), HX)}=0, XxeD°, xX#+0.
Finally, note that
(), HO}+ Y /@), Uy} = ) (=1)"he), HG)}.  (341)

yex

This completes the proof of Theorem 1.

4. Proof of the Auxiliary Lemmas

We shall use the following terminology: the points of M and M° will be called
the configurations of particles, and the pairs x =(g, v)e R x R*—the particles.
Proof of Lemma 3.1. (i) Let xe M°, Ye M, XU YeD and d=d,. First, suppose
that XnY =0, and therefore, Ye D(X). For any d'>d denote
Dy (%; Y):{2eD°:zchxsz4:ﬂ,2mY¢ﬂ, max |q—q’l<d/} @.1)
qeznX,q'ezny
and
Dy 4(X; Y)=Dg (X; Y)nDy (X; Y). 4.2)

Our first goal is to estimate the cardinality of D, ,(X; Y) denoted by |D, ,(X; Y)|'°.
For this fix an arbitrary particle x=(q, v) and integers k, n, n; such that k=[d],
1<n;<n=nyand n—n; <n(x) and consider the set

Ek(nﬁnlax)
={Z_EDMH(>€; Y):Zax,nEz)=nnEZnY)=n,, k< max |g—q'|<k+ 1}. 4.3)
q'eZnY

Clearly, Dy i+ (X Y)C U E(n,n,x)and hence le,k+1(>€; Y)= Z |En,ng,x)|.

To estimate |En, hll,’x)] we note that for any pair of ISzllfticles (', ),
(q",v")exu Y, |q —q"|>d, Hence, the number of particles (g, v')eXUY satisfying
the condition k<|q—¢q'| <k+1 is less then c,k*~! where ¢, is a constant. By the
same bound one can estimate the number of the particles (¢, v')e Y maximizing
the distance [g—¢q'| in (4.3). Furthermore the number N of particles (g”,v")e Y
satisfying the condition |g—gq"|<k+1 is less than c,k”. Then the number of
ways of choosing the intersection znY

( N )_N(N—l)...(N—n1+2) (cok"ym !
- (ny —1)! (ny =)t~

n,—1
Finally, the number of ways of choosing the intersection containing the given
particle x is

( n(x) )zn(f)(n(f)—l)---(n(f)—n+n1+2)

n—n;—1 (n—n;—1)!

IIA

16 A similar notation will be used below for any set of configurations. For the number of particles
in a given configuration Xe M° we preserve the notation (1.7).
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Thus we find that

lEk(n> n1> X)‘
< crk"” 1(C7kv)n'_ l[n(f)]n_nl_l

= (n, =D (n—n;—1)! S L
1 . 1 .

and
Dy 1(F: V)| S~ [a(R) ko= D1 = s 11

where ¢ depends only on n(x).
Note that, by condition (G3), a configuration Ze D (x; Y) gives a non-zero
contribution in the sum ) (If@|+|V,f@I+IV,f(Z)) so long as n(Z)<n,

zeD*(X,Y)
and, by condition (Gg), a single term in this sum is bounded by 3¥ (diam Z) [see
(2.6)] where ¥ is a non-increasing function. Therefore,

Y @I+ @I+, @D

zeD} (X;Y)
=3y Yo Pk)=3cy Y PRk DT
k2[d] ZeDy, 1+ 1(%; Y) k2 [d]

Consider now the case where XuYeD but XxnY =+¢. Then, as we remarked
above, Y \xeD(X) and

D}(%; Y)CD; (%; Y \X)U{ZCx:diamz=>d} .

Using the stated estimate for X and Y\X and condition (Gs) one can find that
in this case the left-hand side of the last inequality does not exceed

3¢y Y Wkt rom D14 3.2m0 ().

kz[d]
Clearly, this bound does not exceed

¢ Y Wllkrom D1

kz[d)
where ¢4 depends only on n(x). So (i) is proved.
(ii) First let XU YeD. To prove the existence of hm h(x| y) it is sufficient to find
for any ¢>0 a number d>0 such that |h(x|y)— h(x|y)|<s provided Y, CyCY
and Y, Cy CY, Q,={qeR":|q|<d}. Using the statement (i) and the convergence

of the series, in the right-hand side of (3.1), one can easily verify, that such a d may
be choosen from the conditions

d>d,+ maxlg|, c¢3 Y Pk V1<
gex k2 [d)
where

=d—max|q| .

gex
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Next we prove the estimate (3.2). By (3.1),
exp[—h(x|Y)]= GXP[— Y, f@O- % f(f)]

zZeDg,(X; Y) EeD;‘Z(f; Y)

<exp [— Y f(zj] exp {c3 Y. P(kkrrom b 1] . 44
ZeDg,(X, Y) kz[d>]

Using the above arguments one can show that |D,,(x; Y)|is bounded by a constant

depending only on n(X). Moreover, each factor exp[ — f(z)] contributing to the

first exponential on the right-hand side of (4.4) is bounded according to condition

(G,). The bound (3.2) follows from this in the case where XU YeD.

Let XuY¢D. Then one can find a ZCXUY such that Znx+0, znY+0 and
f(2)= + co. Hence, h(x|y) = + oo for any yC Y such that zn'Y Cj, and h(x]|Y) = + c0.
This proves (ii).

Remark 4.1. By similar arguments one can prove that for any X, je M° and
YeM

eXp |— Z f(Z)] Scy.

ZCxXuY: Er\_:'c*#_() LENY F 0

(iii) First consider the case when xe D® and Y e D(X). In this case the smoothness
of f(X) [see (G,,a)] implies that of exp[ —h(X)] and we have only to prove the
smoothness of exp [ —A(x]Y)] which follows from the similar property of A(x|Y).

We shall use a theorem on smoothness properties of the limit function (see
e.g [34], Th. 111) on account of the fact that h(x]Y) is, by definition, the limit
of functions of the class C*.

Fix x;=(q,v,) and denote X;=x\x,. Clearly there exists 6 >0 such that
if (g,v)eR"xR" and |g—q,|<d, X, (g, v)uYeD. We shall show that for any
&>0 there exists yC Y such that for all ge R” satisfying the condition |g—q,|<$,
for all veR" and all y CY containing y, the following holds:

Vh(x V(g )Ii") = Vh(x;U(g, v)Iy)l <&, (4.5)
where V, as usual, is V, or V.
Let

y={l¢g",v")e Y:max|q'—q"| <d+ 6}
q'ex

where d>d, is such that c¢3- ) Y(kk* ™ Y '<e Then for |g—g,|<d and
FCycy kZ[d]
Vh(x, (g, v)li7) = Vh(x (g, )Ip)| = > V@l

ZeDj (X1v(g,v); Y)

Applying the bound (3.1) we obtain (4.5). The existence and continuity of the
gradients Vh(x|Y) as formulae (3.3) and (3.4) follow from this immediately.

If XuYeD, but Y¢D(X) then XnY+0, xeD® and Y \xeD(x). In this case
we can apply the proved statement to the function h(x|Y\X) and then use the
identity

(| Y) = h(X| Y\Z) + h(T Y) + h(TA Y[E\Y) .
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Suppose now, that XU Y¢D. On account of the last identity we can restrict
ourselves to the case XN Y =#. The gradients

Vyexp[—h(XIY)], V,exp[—h(X)—-hX)|Y)], vexX,

exist and vanish since exp[ —A(X]Y)]=0 and the same holds for any change
of the velocity v. Now let us prove that the gradient V, exp[—h(X|Y)] (resp.,
V,exp[—h(X)—h(x|Y)]), geX, exists and vanishes for Xe qu (resp., Xe M°). Since
the arguments in the both cases are completely similar we consider only the first
of them.

If one can find ¢'ex and ¢”e Y such that 0<|q'—¢"| <d, then the statement
is trivial since the configuration (X\(¢, v))U(g, v)u Y ¢D for any Ge R" sufficiently
close to g, and consequently exp [ —A((X \(g, v))U(g, v)| Y)]=0. A similar argument
is applicable to the case when Y ¢ D. Thus we have to consider only the case where

xeD° YeDand min |¢ —q’|=d,. If, in addition, for a given gex,
q'ex,q"eY

minl|g—q"|>d,
q"eY

then V,exp[—h(x|Y)] =0 by the above arguments. Finally fix x=(q,v)eX and
consider the case when mlrﬁ lg—q"1=d,.
q"e

Let g=(q*,....q"), ¢'eR', i=1,...,v. Fix i and put for te R!

i+1

di=q'+7, (gi=0" ... dhqdt . q),
(x;=(q)»v) (X )= \x)u(xy); .

It is not hard to see that there are only four possibilities: (a) for any sufficiently
small 740 the configuration (x,);uYeD, (b) for any sufficiently small 7>0,
(x);uYeD but (x_,),uY¢D, (c) for any sufficiently small >0, (x);uY¢D but
(x_);wuYeD, (d) for any sufficiently small t=0, (x,);uY¢D. By (ii),

exp [—A((x)]Y)]=0

for any sufficiently small t<0 in the cases (b) and (d) and for any sufficiently
small >0 in the cases (c) and (d). Hence, in the case (d) the derivative

0/oq* exp[—h(x]Y)]=0,

and in the cases (b) and (c) the same is true for the left and right derivatives re-
spectively. This shows that the derivative 9/dq: exp[ —h((X,);|Y)] exists: in the
case (a) for all sufficiently small t+0, in the case (b) for all sufficiently small >0
and in the case (c) for all sufficiently small ¢ <O.

Thus we have to prove in the cases (a), (b), and (c) that all derivatives mentioned
above approach zero as t—0. For definiteness consider the case (a) and put ¢t>0.
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Using formula (3.3), we can write

O exp[—HEN = — expl—hENV] Y @

i i
0q, EC(®)UY,ZnY * 0, aq,

Z3(xe)

=-_ X exp[— > f@)

ZeD ((Feh; Y), Ze(xeh Z'eDj ((Xe)i, Y)

-y f(?)}%f(z‘)

2'eD, ((Xe)i; Y)

SR R

ZeDg,((%)i; Y), Za(x,): Z'eDf,((%e)is Y)

-3 f(f/)]aiqif(z‘). (46)

z'eDa, (X)) ¥)

We shall consider each of the two terms on the right-hand side of (4.6) separately.
For the brevity the index i will be omitted. By (3.1), the first term is bounded by

¢ ¥ Wk exp ey Y W(k)kw"o-“-*} exp [— DIAE)
kz[d>] kz[da] Z'eDa,((X4); Y)

=csexp [~ Y f@)],

2'eDg,((Xe); Y)

where cg does not depend on ¢ for sufficiently small > 0. Furthermore, the number
of factors in the product exp [—— Y f (Z’)] is bounded uniformly in ¢ if
2'eDi((Re); Y

t>0 is sufficiently small. Each factor ex(p [—) f(Z')] is bounded by condition (G,),
and at least one of them vanishes as t—0+ by condition (G,) (viz,, the factor
exp[— f(((g,), v)u(q", v"))] where ¢q"e Y is such that |g—gq"|=d,). Hence, the first
additive term on the right hand side of (4.6) vanishes as t—0+.

Let us pass to the second term on the right hand side of (4.6). We represent
it in the form

> exp [— ) f(f’)}
2eDg ;). Z'eDy; ((%0); Y)

- _6_ B
o [_ E,EDE,((J'C:Z);Y),zﬁf f(Z )} aqt eXp[ f(Z_)] .

The number of additive terms in the external sum is uniformly bounded for
sufficiently small t>0. Hence we have to consider the single term

exp [— X f@ - > f (5’)}

Z'eDJ, ((%c); ¥) 2'eDg,((Xe); ¥), 2" F2 .

exp

2 expl- 1),
4,

which, by (3.1), is less than

s %eXp[—f(Z‘)]

exp

- 2 f(?)]

2'eDq, ((%e); Y), 2" 2
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where ¢, does not depend on ¢ for sufficiently small t>0. The number of factors
exp[ — f(Z')] is bounded uniformly in ¢ if ¢ >0 is sufficiently small. Any such factor
is bounded by condition (G,b); the same is true for the factor |0/dq, exp[ — f(2)]I-
Finally note that there is at least one among these factors which vanishes as
t—0+ by the condition (G,). This is either the factor

10/0g, exp[— f(((¢2), )(g", v D] if  Z=((g,) v)U(g",v")
or

exp[— f(((g), v)olg”, v")] if Z+((q), v)V(g", v") .

Here (¢”,v")e Y is the particle mentioned above. Thus the second term on the
right hand side of (4.6) vanishes as t—0+. Hence lim 0d/dq, exp[ —h(X,|Y)]=0
t—>0+

and statement (iii) is proved.
Proof of Lemma 3.2. Let Q be a bounded Borel set. Using the equality (2.19)
we can write

Ro®= | exp[—hEY)dP(Y), XeM(Q). 4.7)
M(2°)nD

Since Ry =Ry, if Q,2Q,, it is sufficient to prove that Ry(X)>0 for Q=0Q, where
n>max|g|+d,. In this case the conditions Xe D°, YeM(Q)ND imply that

Xu YgéxD, and so, by (3.1),
WIS Y 1f@IScs Y Pllkro DT <o,

ZeD; (X3 Y) k=n

From this it follows that the integrand in (4.7) is strictly positive. Finally note
that according to the definition of the Gibbs random field [see (2.1)],

P@/BQ)(X)=Z51 (X q)>0
almost everywhere (w.r.t. P) and therefore
Py(0) = P(M(Q) = P(M(Q°)nD)>0.

This completes the proof of Lemma 3.2.

Proof of Lemma 3.3 (i). The proof of formulae (3.6) and (3.7) is identical and
we consider only the first of them. We use a theorem on the derivation of a
integral depending on a parameter (see [34], Th. 114). Thus we have to prove
that for any fixed xeD° |V exp[ —h(X'|Y)]| is bounded uniformly in X’ D° suf-
ficiently close to X and all YeM. It is sufficient to consider the case X'UYeD
since in the opposite case Vexp[ —h(x'|Y)]=0 [see (3.3)].

Fix xeD° and x=(g, v)eX. Fix further 6 >0 such that, if x'=(¢’, v)e M, and
|g—¢'| <6 then X'eD® where X' =(Xx \x)ux'. We shall show that for any such %'
and any Ye M

IV exp[—h(X'Y)]| <cy0 4.8)

where V' is V,, or V,, and ¢, , depends only on n(x).
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If XU YeD then by (3.3)
V'exp[—h(X'|Y)]
Sexp[-hE|Y)] Y W @I+ expl-hxH] Y IWVfE)I.

EEDJ’Z(J?/; Y) EEDd‘2 (X, Y)
By (3.1) and (3.2), the first term on the right hand side is bounded by
Cy exp[ c3 Y. Plkkrro~ D ”] )

kz[d2]

To estimate the second term we represent it in the form

> exp[—hE|V)]exp[— fEV exp[— fEN]]-

zeDg,(X'; Y)

The number of terms in this sum is uniformly bounded in X' and Y satisfying
the conditions X' e D%, XU YeD. By Remark 4.1 and condition (G,b), the product
of the first two factors in every additive term of the last sum is bounded by a
constant depending only on n(X). Other factors are bounded by the same condition.
This gives the bound (4.8).

Using the formula (3.6) and the bound (4.8), we obtain, by Lebesgue’s con-
vergence theorem, the continuity of the gradients VR,(x). The same property
of po(¥) is proved similarly.

Remark 4.2. For any xeD°, YeM and ye M° the following estimate holds

‘Vexp[— Y f@”éclo-
ECXUY,ENEH0,5nY+0,54F
This estimate is proved by the same arguments as (4.8).
(ii) The smoothness of the correlation function g, and the formula (3.8) are
proved by the same arguments as above. Note that it follows from (3.4) and
(3.8) that

Vop(¥)=0, 4.9)
if ¢ D°.
(iii) By (2.5),
op(XU(g, v))=exp[— f(g,v)]
~exp [ —h(X)—h(Xl(g, v))] | exp[—h(xU(g, v)|Y)]dP(Y)
M

As |v|—> o0, the first factor tends to zero [see (G,c)] and the other factors are
bounded according to (G,b) and (3.2). This gives equality (3.9). Lemma 3.3 is
proved.

Proof of Lemma 3.4. We use again the theorem on the derivation of an integral
depending on a parameter. We want to prove that |Fgp(XUy)| is bounded by a
function depending only on y whose integral over M(Q) [on dA())] is finite.
We shall show that if XUje M(Q), then

Vop(Xup)l=ci CXP[— ) f(q,v)] (4.10)

(g, v)ey
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where ¢;; depends only on Q. The estimate (4.10) implies the result since by the
definition of the measure 4 [see (1.1)]

J ew|= X flg0)|dii=exp|[ | expl~ Sl vkudg |, @11

M(Q) (g, v)ey

and the right hand side is bounded by condition (G,c).
On account of (4.9), we shall restrict ourselves to the case XUye M(Q)nD°.
By (3.8), statement (iii) of Lemma 3.1 and bounds (3.2) and (4.8), we then obtain

Vep(XUj)l= [ Vexp[ —h(xuy)—h(xUy|Y)1dP(Y)
M

=[Vexp[—h(xuy)] L exp[ —h(xXujlY)]dP(Y)

+exp[ —h(xU)] | [V exp[—h(xUFIV)]IdP(Y)
ScalVexp[—h(XUP)]I+cio exp[—h(EUF)] . (4.12)

Note that ¢, and ¢;, in (4.12) depend in general on n(xU7). But if xUye M(Q)ND°
then n(xuy), of course, does not exceed some constant depending only on Q.
So one can think of ¢, and ¢, in (4.12) depending only on Q. Furthermore,

[V exp [ —h(xuy)]|=|V exp [ —h(x\y) —h(E\FIP)]| exp [ h(7)]
< (exp [=hCIIPIV exp [ =AY + IV exp [—hGNFIP)] exp [ —A(N\P)])
"exp [— > f(i)} eXp[— > fGa v)], (4.13)

ZCy,n(z)>1 (g, v)ey
and

exp [ —h(xuy)]
=eXp[—h(f\y')]eXp[—h(f\fly_)]eXp{— > f(f)}exp[— > f(q,v)]-

ZCT.n(@) > 1 @ v)ey

(4.14)

Using condition (G,b) and the boundedness of n(xuUj) as Q is fixed, one can
verify that the right hand sides of (4.13) and (4.14) do not exceed

Ci1 CXp [— Y. fla v)]

(q, v)Ey

where ¢} ; depends only on Q. On account of (4.12) we obtain (4.10). Thus Lemma
3.4 is proved.

Proof of Lemma 3.5. Using (3.8) and Fubiny’s theorem we conclude that
the convergence of the integral (3.21) follows from that of the integral

YV, exp[—h(xXuyuz)—h(xuyuz|Y)]|
M@®Q)nDO(X) M M; nDO(XU¥) (q, v)exuz

-V, U(E|2)ldzd P(Y)dAG) . @.15)

Using (2.13) one can integrate in (4.15) over the set M ;=M \M;,; instead
of M. The number of additive terms in the integrand equals n(x)+1. Hence we

17 If j=0e M,, then the integrand on the left hand side of this equality is set to be equal to zero.
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can consider these terms separately. There are two possible cases: either (g, v)eX,
or (g, v)=z. Since the arguments in the both cases are essentially the same, we
restrict ourselves to the second one

For jeD°(X), ze M;nD°(XUy) and YeMs, ; one can rewrite the integrand
in the form

exp[—h(xuy)—h(xOyIY)]IV, exp [ - f(g, v) = h((g, v)Ix0yo V)] [V, UXI(g, v))] -

The factor exp [ —h(Xuj)—h(Xuj|Y)] in this product does not depend on z and
may be taken outside the internal integral. By Remarks 4.1 and 4.2 the product
of two remaining factors does not exceed

; U (lg—a'DI

q ( Fel=f@0-fa oo lew (- 3 S
+exp[— (g, v)— f((g v)9@, v)]-|V, exp { - Eciuyué*(ql’w fEu, v))] |)
éq% U (lg—q')l

“(calV, exp[— (g, v) = f (g, v) (g, V]I + 10 exp[ = £ (g, V) — [ (g, )G, V)

Condition (Gg) implies the convergence of the integral

I 1Ug =4

M1 nDO(EUY)
“(calVy exp[— f (g, v)— f(g, v)u(@, v)]|
+cy0exp[— f(g,v)— f((g, v)olg’, v')])dgdv

for all g'ex. Hence to prove the convergence of the integral (4.15) [and therefore
(3.21)] it is sufficient to show that

[ exp[—h(xUF)—h(xUF|Y)JdP(Y)dAp) < oo . (4.16)

M(2)nD%%) M

According to (3.2) exp [ — (XU Y)] < c,, where the constant ¢, may be considered
as depending only on Q. Now the function exp [ —h(XuUy)], is, like in the proof of
Lemma 34, less than c,, exp [— Y. f(g,v)] where ¢;, depends only on Q.

(g, v)ey

Substituting these bounds in to (4.16) we obtain, by (4.11), that the integral on the
left hand side converges.

We now pass to the proof of the convergence of the integral (3.19). As above
one can consider the integrals corresponding to each of two additive terms in
the square brackets separately. Since both integrals may be studied similarly we
shall prove the existence of one of them, namely

) IV,0p(Xuyuly, v)uld, v)

M M(2) M(2)nD%gq’,v")

U (lg—q'Dldgdvd A(y)dg'dv’ . (4.17)
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Using (3.8) and Fubiny’s theorem one can verify that the convergence of the
integral (4.17) follows from that of

) IV, exp [ —h(xuyu(g, v)u(q', v'))
M(@Q) M M M{(2)nD%gq’, v")
—h(xuyu(g, v)u(g V) Y)]|
U (lg—4'Dldgdvdq'dv'd P(Y)d A(y) (4.18)

By (2.12), (2.13), (2.19), and (3.4), we can replace the regions M,(Q)nD°(q, v"),
M, M, and M(Q) in (4.18) by M,(Q)nD°(xuju(q,v)uY), M;nD°(XxUjUY),
D(xuy), and M(Q)nD°(X) respectively. Then the integrand may be written in
the form

exp [ —h(xuy)—h(xui|Y)]
WVyexp[— flg, )= f(q',v)— (g, v)u(q', V) = h((g, v)u(g', v)IxUFU Y)]|
U (lg—4'DI.

The first factor does not depend on ¢, v, ¢, v and may be taken outside the double
internal integral in (4.18). By (3.2) and (4.8), the second factor does not exceed

exp[— f(q’, 0]

“(IV,exp[— f(g, v)— f((g, v)o(g’, v' )] exp [ —hl(g, v)u(q, V)KL Y)]
+exp[— f(g.v)— f(g, v)(q, V)]V, exp [ h((g, v)u(g', v)IXUyL Y)]I)
sexp[— f(4’ V)]

“(calVyexp[— f(g,0)— f((q,0)u(d, 0D +croexp[— f(g:v)— (g, ) (g, v)]) -

Here ¢, and ¢, are constants.
Let us consider now the integral

) exp[— f(q, v")]

My M(2)nDO((q’, v"))
H(ealVy exp L= f(g, v) = S (g )G, VI ero exp[— S (g, v) = f((g, )G, V)
U (lg —¢'ldgdvdg'dv . (4.19)

Condition (I,) enables us to replace M, in (4.19) by M () where Q' is a large
bounded Borel set containing Q. On account of this fact and the conditions
(G,c) and (Gg), it is not hard to see that the integral (4.19) converges. Then we
apply the bound (4.16) and this completes the proof of the convergence of the
integral (3.22).

Finally we prove the convergence of the integral (3.23). As above it is sufficient
to show that the following integral exists:

) IV exp [ —h(xuyu(g, v) —h(xUiU(g, V) V)]

M(2)nDo%X) M M (2)nDO(XU¥)

- 1vldgdvd P(Y)d(5) . (4.20)
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It follows from (3.2) and (4.8) that the integrand in (4.20) does not exceed

exp [ —h(xuy)—h(xupY)](V, exp[— f(g. v)]| exp [ —h((g, v)XLFU V)]
+exp[— f(g, v)] [V, exp[—h((g, v)Ix OO Y)]])|
sexp[—h(xUF)—h(xyY)] (calVyexp[— (g, v)]l+c1o exp[— flg, v)]) [o] .

By condition (G,c)

I (calVyexp[— flg, v)]+cy0 exp [ = (g, v)]) [oldgdv < o0 .

M ((£2)n DO(X L)

On account of (4.16) we obtain from this that the integral (4.20) is finite. Lemma 3.5
is proved.
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