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Applications of the Stochastic Ising Model
to the Gibbs States*
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Abstract. The stochastic Ising model is used as a tool to prove theorems
concerning analyticity of the correlation functions and strong cluster proper-
ties of the Gibbs states.

0. Introduction

The stochastic Ising model has been used as a model for the time evolution of the
configuration of spins in the classical Ising model. From a physical point of view
the model has the unfortunate feature that the dynamics do not come from a
Hamiltonian and are not well motivated. Nevertheless it is possible to learn
something about a Gibbs state by studying the semi-group of the stochastic
Ising model which has that Gibbs state as its stationary measure. The results
proved in this paper demonstrate this technique.

Let Zd be the d-dimensional integer lattice and let { JR : R a finite subset of Zd}
be a potential which satisfies

(0.1) JR = JR + k for all RcZd and kεZd

and

(0.2) £ |JΛ |<oo.
RsO

Let E= { — 1, l}zd be the set of configurations of spins and give E the product
topology. The elements of E are denoted by letters such as η or σ, and we denote
the spin at k in the configuration η by ηk. Let & be the Borel sets of E and if FcZd

let ^F($F) denote the σ-algebra generated by {ηk:keF} ({ηk:kφF}). We say a
probability measure μ on & is a Gibbs state for the potential { JR} if a regular
conditional probability distribution of μ on 3${k} given J*{/c} is given by

(0.3) ρk({ηk}\ήk) = \l+exp\2 % JR Π
[ [ Rak jeR
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We are going to study mixing properties of the Gibbs states as well as the
analytic dependence of their correlation functions on the potential. For example
let the potential {JR} be fixed and let μβ be a Gibbs state for the potential {βJR}.
Theorem (3.8) implies that if

(0.4)
R3θ

then μβ is unique and for all finite AcZd, J γ[ ηjdμβ(η) can be continued ana-
JeA

lytically to the region ί /?e(C:|/?| < Π I Σ \JR\\- As to the mixing properties, an
1 / ReO J

application of Theorem (4.24) shows that if (0.4) holds and the potential has finite
range, then there is an α>0 such that for all finite Λ0cZd there is a constant
A(Λ0) for which

(0.5) sup \\μ(B\^)-μ(B)\\^A(Λ,)e-«δ,
Be&Λ0

where Λ0CA and δ is the distance from A0 to the complement of A The inequality
(0.5) of course implies that there is an exponential decay of correlations.

Both the analyticity and mixing results are true if (0.4) is replaced by other
conditions [see Theorem (3.10) and (4.24)]. For example, if fe^(E) (the con-
tinuous functions on E) let ||/|| be the supremium norm of/. For keZd and
/e#(E) let

(0.6) A k f ( η ) = f(kη)-f(η),

where kη is the configuration obtained from η by reversing the spin at k. If the
potential has finite range and if

(0.7) X iμW{ }| ) l l < l ,
fcΦO

then not only is the Gibbs state unique, but (0.5) holds.
As we mentioned the tool used to prove these theorems is the stochastic

Ising model, which we now describe. Let 2= [ f E ^ ( E ) : A k f = Q for all but finitely
many k}. Let

(0.8) ck(η) = 2ρ^{-ηk}\ήk),

and let 5f be the operator on 3) given by

(0.9) <?f(η)= £ ck(η)Δj(η).
keZd

Under the condition (0.2) alone, it is not known whether 5£ admits a closure which
generates a strongly continuous positive contraction semigroup {Tt:t^Q} on
«ΌE). However, if £ \JR\<π/4 or if £ IIΛ^oCHI )ll <°° holds> then not only

R3θ k Φ O

is there one such semi-group, but there is only one (see [5, 6, 3] and Theorems (1, 8)
and (A.2)). Whenever there is exactly one such semi-group {TJ ί^O} for a given
choice of potential {JR}, we call it the stochastic Ising model with potential {JR}.
Fora description of the corresponding Markov process see [3] or [5]. If {Tt:t^Q}
is the semi-group for the stochastic Ising model with potential {JR} and μ is a
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Gibbs state with potential {JR} then μ is TJ-stationary. That is for all
and all

(0.10) STff(η)dμ(η)=lf(η)dμ(η)

(see [4]).
It is easy to understand, in general terms, why the stochastic Ising model is a

powerful tool in the study of the equilibrium state. The point is that it is easier
to see how the semi-group {T^ ί^O} depends on the J '̂s than it is to understand,
directly, the dependence of the Gibbs states on the potential. (This circumstance
is not at all surprising, since the correspondence between {J^} and {Tt:t^0} is
one to one far more often than that between { JR} and the Gibbs states.) If one
knows, in addition, that {Tt:t^Q} tends to equilibrium fast enough, then one can
show that the nice dependence of (7^: t ̂ 0} on {JR} is inherited by the equilibrium
state. These are the basic facts of which we are going to take advantage.

In Sections 1 and 2 we prove some general facts about interacting stochastic
processes. In those sections the flip rates, cfc's, are not required to have the form
(0.8) for some potential {J^}. Section 3 contains the analyticity results and Sec-
tion 4 contains the mixing results. In the latter two sections we always assume that
the c '̂s are given by (0.8).

1. The Perturbation Technique

In this section we show that the generalized stochastic Ising model [i.e. ck's not
required to satisfy (0.8)] can sometimes be thought of as a perturbation of the
process in which each of the spins flips independently of the others.

The results in this section are a generalization of the results in Sections 6 and 7
of [3], and the reader is referred to [3] for many of the details

If F is a finite subset of Zd and |α| < 1 let

l if F = 0
|F| if

Here |F| denotes the cardinality of F. Note that for a given α, {χp'.F finite} is the
set of eigenfunctions for ̂  = ]Γφ4fc, where cl(η)=l + (xηk. Let

k

LΛ=lf:f=ΣMti where

For/eLα we denote ||/||α= £ \f(F)\. If vα is the product measure
F

(i i) v^

(vα is the unique stationary distribution for =£?α), then for /eLα we have

(1.2) /(f) = (l - |α|Γ'F' f tffa) f(n)dv\η) .
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Thus each /eLα has a unique representation in terms of the ;$, and the series
converges uniformly. In fact if/eLα, then

(1.3)

Now consider flip rates which are of the form

(1.4)

For/eLα and / la complex number not in { — 2fc :/c=l,2, ...} define

Σ
G F keZd Hc(F\{k})nG

f(F) α 2«

where /F( ) is the indicator function of F.

(1.6) Lemma. // there is an α^O swc/z ί/zαί

/or α/ί

then for all complex Λφ — 2, —4,.. . we have

(1.7)

2N "/ι-

Summing over H first and using the equality

2|α|

a cVnGU

and then summing over G and using the hypothesis we obtain

from which the result is obvious.
The only difference between the proofs of Lemma (7.1) and Theorem (7.10)

of [3] and the proof of Theorem (1.8) below is contained in the previous lemma.

(1.8) Theorem. Let ck be as in (1.4) and suppose that the hypotheses of Lemma (1.6)
hold with a<l. Then there is a unique positive strongly continuous contraction semi-
group {Tt:t^Q} on ^(E) whose generation agrees with J£= ^ckΔk on Q). Moreover

k

if for /eLα we define Πf by

(1.9) Π/=f Σ
E n = 0
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then there is a y>0, depending only on α, and for each /eLα a constant D(f\
depending only on a and /, such that for all t ̂  0

(1.10) \\Ttf-Πf\\^D(f)e-*.

Proof. The proof follows almost verbatum the proofs in Section 6 and 7 of [3].
We indicate here only the necessary changes.

Let ^a= £(l + α/? fc)zlk. Then since
k

the resolvent, ΛJ, of <£* is given as follows. I f/- Σf(F}χa

FeLa and AΦO, -2,
F

— 4, — 6, ..., then

Since

*lk Σ yfa G) XG(?I) A kXF(^) ~ ~ 2 Σ ~\—"
G G 1 +

and

2α \ | j

we see that for /eLα

The proof now follows exactly along the lines of [3].

(1.11) Remark. (1.10) implies that the semi-group has a unique stationary meas-
ure, μ, and (1.9) implies that for /eLα

(1.12) j / d μ = j Σ
n = 0

2. The Theorems of Dobrushin and Sullivan

In this section we prove a theorem which is related to a theorem of Dobrushin [1]
and is a particular case of a theorem due to Sullivan [6]. The reason for including
another proof here is that it can be greatly simplified in the case which we are
considering.

Recall that Akfis given by (0.6). Since the operators Ah are analogous to partial
derivatives with respect to the fc* variable, we will often write ffk for Akf. For

let

(2.1) I l l / I l l =Σ
k
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Let ^1(E)={fe(g(E):\\\f\\\ < oo}. It is known (see [3]) that if

(2.2) sup[||ck | | + |||ck|||]

then there is exactly one positive, strongly continuous contraction semigroup
{T^ ί^O} on <&(£) whose generator agrees with 5f — ΣckAk on 2. Moreover, if

k _

we denote the generator of Tt by J£, then the domain of 5f includes (^1(E); and if

(2.3) |||7;/|||^

(2.4) Theorem (Dobrushin-Sullivan). Let {ck:feeZd}c C+(E) satisfy (2.2). Let

y= inf mϊ(ck(η) + ck(kη))- sup Σ \\ckj\\ -
k η k j Φ f c

Set <£ = Σck^k on ̂  and let {Tt:t^0} be the associated Feller semi-group on
k

Then

\\\Ttφ\\\^e-^\\\φ\l t^O and φeV(E).

In particular, if y > 0, then there is a unique probability measure μ on E such that

where M= sup |
k

Proof. From (4.1 1) in [3], we know that (2.3) holds. Thus if λ> C and / = Rλφ for
some ψe^\E\ then |||/||| ̂  |||φ|||/(λ- Q and

Thus

λfM=(p,k+ Σ cj(tf)fj
jΦk j 'Φfc

Since E is compact and fίk(kη)= — f,k(n\ we can fmd η*tE such that

/^*)= max |/^)| .

Note that ftkj(η*) ^ 0 for all j ana

+ ck(η*) faάη*)

Hence

+ Σ \\cjj\\fj\\
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and so

k,η

+ Σ Σ IM

Thus if /I > max (-7, C), then |||KA<p|||^IW/(A + }'). Using the well-known formula

Ttφ = l ime- A t J (λ2ί
Λ->oo w = 0

one easily gets

Finally, if y>0 and <pe #*(£), then

a
and so

Hence

||7>-Tsφ||^M£Γ^|φ||| for t^s.

The last part of the theorem follows immediately from this.

3. Analyticity of the Correlation Functions

Let U be a connected open set in the complex plane and let (JR(z): R a finite
subset of Zd} be a collection of analytic functions which satisfy (0.1) and (0.2).
Assume also that there is at least one real ze U and that JR(z) is real for real zeU.
Then for real zeU there is at least one Gibbs state, μz, corresponding to the
potential {J R (z)} 9 and we know that whenever one of the perturbation techniques
of section one can be applied there is exactly one such Gibbs state. The goal of
this section is to obtain conditions under which, for all /e^, J /' dμz can be
continued analytically to an open set containing the intersection of U and the
real axis.

(3.1) Lemma. Let U be a connected open subset of C containing at least one real
number. For keZd and finite G C Zd, let y( ,k, G) be a function on U with the property
that for some αe(— 1,1) and αe[0,1)

(3.2) φ, η) = l+*ηk + ηkΣ 7(z, k, G)χ«G(η)
G

is non-negative for real zeU and

(3.3) sup
zeU
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If zεU is real let 7J(z) be the Feller semi-group determined by ^f(z)= ^cfe(z, ')^k
k

By Theorem (1.8) there is, for each real zel/, a unique probability measure, μz,
such that

lTJdμt=lfdμt for all feV(E).

If in addition to (3.3) we assume that

(3 .4) γ(z fc, G) is an analytic function of z e U for allkeZd and GcZd and for each k,
£ |y(z; k, G)\ converges uniformly in ze U ,
G

then for all /e^, I f dμz may be continued analytically to U.

Proof. Since 3) cLa, it follows from Theorem (1.8) that if /e® and ze (7 is real then

(3.5) \fdμz=\ Σ(A$>γfdV,
n = 0

where ,4(

0

z) is defined by (1.5) using γ(z; fe, G). But from (3.4) it is easily checked that
the right side of (3.5) is an analytic function of ze U.

(3.6) Theorem. Let U and (JR(z)} be as in the first paragraph of this section.
Assume that there is an αe( — 1, 1) and an ae [0, 1) such that if y(z; fc, G) is given by

(3.7) y(z:k,G) = (l-\a\ΓlGl$χ«G(η}\tznhίΣJR(η) fl ηλ-^dAη),
\R3k jeR\{k] I I

then y(z; k, G) satisfies (3.3) and (3.4). Then for all real ze U there is a unique Gibbs
state, μz, with potential {JR(z}}, and if fe@, J / dμz can be continued analytically
to U.

Proof. For zeL7^ let

R3k jeR

/ Σ JR(Z) Π
\R3k jεR\{k}

If zeU is real let μz be the stationary measure for the semi-group determined by
£cfc(z, - ) A k . Then by Theorem (1.8) and (0.10), μz is the unique Gibbs state for
k

the potential {J#(z)}. The rest now follows from Lemma (3.1).

(3.8) Theorem. Let U and [JR(z)} be as in the first paragraph of this section. Assume
that ^ | /R(Z)| converges uniformly for ze U and that

R3θ

(3.9) sup Σ \JR(z)\<π/4.
zeU R3θ

Then for each real zeU there is a unique Gibbs state, μz, with potential {JR(z}}
and for each /e Q), \ f dμz can be continued analytically to U.

Proof We take α = 0 in (3.7) and check that there is an αe[0, 1) such that (3.3)
and (3.4) hold. The analytic! ty of each y(z; k, G) follows from the dominated con-
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vergence theorem since for each η, £ JR(z) J~] ηj is an analytic function which is
Rsk jeR\(k}

bounded by π/4.
The verification of (3.3) and the uniformity statement in (3.4) is deferred to

Theorem (A.2) of the Appendix.

(3.10) Theorem. Let U and (JR(z)} be given as in the preceding, and assume, in
addition, that

(i) the series

(3.11) X |JΛ(z)|3l*l
RθO

converges uniformly for zeU,
(ii) J{0](z)Φ0 for any zeU and

(3.12) CΠ1Λ

1— / I — exp/ — f X \JR(z

\ \ \R\^2
P 1 7 (7\\zeU \J{Q}\Z)\

)|3 | jR|\\ i"

J).
Then for each real zεU there is a unique Gibbs state μz. Moreover, there is an
open set VQU such that Un{reals}£V and for all fe2 the map z-+\ f dμz,
zet/n{reals}, admits an analytic continuation to V.

The proof of Theorem (3.10) is deferred to Theorem (A. 14) in the appendix,
where it is shown that each real z0 e U is contained in an open set UZo C U on which
(3.3) and (3.4) hold.

4. A Strong Cluster Property

Let {JR} be a potential such that there is only one Gibbs state, μ, corresponding
to {JR}. Dobrushin has shown (see [2]) that this is equivalent to the condition
that for all /e® and all sequences {Λn} of finite subsets of Zd such that AnQAn + 1

(4.1) lίm ||£"[/ 1*1-] -£"[/] | |=0.

Our goal in this section is to find conditions on the potential { JR} which guarantee
that the convergence in (4.1) is exponentially fast.

The technique is to represent Eμ\_f \^n~\(ξ) as the expectation of /with respect
to the stationary measure of the semi-group generated by the bounded operator
£*»>* given by

(4.2) <£**
keΛn

where σ(An, ξ, η) is the element of E given by

ηk if keΛn

if
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If μ '̂̂  ) is the probability measure on { — 1, l}Λn with

(4.3) /
#rvl n Φ0

where Z(An, ξ) is the normalizing constant, then for all /e^({ — 1, l}Λn

(4.4)

and

(4.5)

Since JSf1"^ is a bounded operator, there is no doubt that it generates a unique
semi-group {7*^:^0} and that

(4.6)

for all /

(4.7) Theorem. Suppose a is a positive number with the property that for all A,
ξεE, and fe&!(A) = {f<E@> : Akf=0 for kφA}, there is an A(f)<ao, not depending
on A, such that:

(4.8) llΊf tf

Then {Tt : ί^O} admits exactly one stationary distribution μ and for

(4.9) \\Ttf-lfdμ\\£A(f)e-«, ί^O.

Assume in addition that there is an M<oo such that

(4.10) Ajck = 0 if |j-/c|^M,

or equivalently, that

(4.11) Jκ = 0 if Oe^ί[-M,M]d.

Then if Ac A and ρ is the distance between A and the complement of A, one has for
fε@(A)andξeE:

(4.12) \lfdμ- j fd^\^2(A(f) + \\\f\\\}e-^cM,

where C=max(||c0 | |5 |||c0|||) and ye(0, 1) solves

Proof. That (4.8) implies (4.9) is an easy consequence of the fact that Tt

An'ξf-+Ttfas
AnsZd (see [3] or [5]). To prove the second assertion, note that:

(4.13)

To bound \Ttf(η)-1?'ξf(η)\ we observe that
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and

Thus

and

(4.14) \Ttf(η)-1?>*f(η)\£2\ £ \\ct\\\\ΔkTJ\\ds,
0 kφΛ0

where Λ0 = {jeZd=ih.e distance from j to the complement of A is at least M}. We
need the following lemma.

(4.15) Lemma. Assume that (4.10) holds and let fe@(Λ) and C be as in (4.12). Set
Λ(N]={keZd:άist(k,Λ)^NM}. Then

(4.16) Σ \\ΔkTJ\\^ cc*-
N

We postpone the proof of the lemma and complete the proof of the theorem.
Let [ρ/M] be the integral part of ρ/M and set JV = [ρ/M]-l. Then y!03/ί(]V)

and the right side of (4.14) is bounded by

ί

(4.17) 2CJ
0 fc^lW) 0 \ J = Q J ]

Combining (4.13), (4.14), and (4.17) we have

(4.18)

Setting ί = 7([ρ/M] + l)/C and using the bounds k\^kke~k and [ρ/M] + 1 ̂  ρ/M,
we get the desired conclusion.

Proof o/ Lemma (4.15). Let / be as in the statement of the lemma and note that

(4.19) -j-
01

and

(4.20) Aj
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The solution of (4.19) with initial data (4.20) is

(4.21)
0 k

Note that ifjφΛ we have Ajf = 0 and hence

(4.22) \ \ A j T t f ( ' ) \ \ ^ l ^ \ \ A j C ^ ) \ \ \\AkT8f( )\\ds.
0 k

Thus

(4.23) Σ IM/Γi/ΠII^JΣ Σ
JM(N) 0 k j£l<*r

^ί Σ
0

Since Σ \\AjCk\\ ^ C we have

0 jφ.

The proof is now completed by induction, beginning with (2.3).

(4.24) Theorem. Let {JR} be a potential satisfying (0.1), (4.11), and one of the
following:

a) ]

b) I

c) |J,0,|>-K«/1- l-exp/-f

Then there is exactly one Gibbs state μ with potential {JR}. Moreover, there is a
y>0 such that for each fe!2 there exists a constant A(f)<oo with the property
that if fe@(Λ) then

where A^A and ρ is the distance from A to the complement of A.

Proof. We need only check the hypotheses of Theorem (4.7). To do this, note that
Theorems (2.4) and (1.8) apply to finite as well as infinite systems, and the con-
clusions of Theorems (2.4) and (1.8) imply the hypotheses of Theorem (4.7). Thus
we need only check the hypotheses of Theorems (2.4) and (1.8). The inequality a) is
easily seen to imply the hypotheses of Theorem (2.4) and Theorems (A.2) and
(A. 14) in the appendix show that Theorem (1.8) is applicable under conditions b)
and c).

(4.25) Remark. Dobrushin [2] has proved uniqueness of the Gibbs state under
condition a) of Theorem (4.24), but the other conclusion of Theorem (4.24) does
not follow merely from uniqueness of the Gibbs state and finiteness of the range
of the potential. The two dimensional nearest neighbor ferromagnetic potential
at the critical temperature provides a counter-example.
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Appendix

For — 1 <α<l let χ£ and Lα be as in section one. For α^l let

(A.I) Lemma. Lα is a Banach algebra for all α> — 1.

Proof. That Lα is a Banach space is obvious. Thus we need only check that
Il/ 0 l l α ^ l l / l ϋ l 0 l l « Consider first the case |α|<l. Let f,geLΛ, /=

F

a n d g f = Σ g ( F ) χ " F . Then
F

F G

\W /I \n\\\FnG\-\H\

F G

Therefore
-lαl\ | F n G |" | H |

F G

Now consider α^l.

F G

Thus

F G

F G

(A.2) Theorem. Under the hypotheses of Theorem (3.8) both (3.3) with α =
(3.4)

Proof. Let α = tan sup £ \JR(z)\. Because of (3.9), α< 1.
zeϋ R30

Now if |ω| < π/2 then

(A.3) tanh(ω)= £ 22"(22"-l)£2πω2"~1/(2rc)!
n = l

and

tan(ω)= | 22"(22"- l)|B2Jω2Λ-1/(2π)!,

where the J32n's are the Bernoulli numbers. Thus it follows from Lemma (A.I)
applied to L0? and the bound

o^arctan(α),
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that for all ze U

tanh/ Σ JR(Z)XR\«U

i.e. that (3.3) holds. With regards to (3.4), we have already seen in the proof of
Theorem (3.8) that each y(z; /c, G) is analytic in ze U. The uniform convergence of
Σ\y(z',k,G)\ follows easily from Lemma (A.I) and Equation (A.3), since we are
G

assuming that Σ I MZ)I converges uniformly for ze U.

(A.4) Lemma. Let |α|<l and /eL1 + 2H. Then /eLα and ||/||α^ ||/||1+2|α| -

Proof.

Xpfa)= Π (α+^j ~~α)= Σ Π
jeF HcF jeH

HCF

Thus

/= Σf(F^F= Σ Σ /(^)(i-
F F HcF

Both conclusions of the lemma follow now from

l l α ^ Σ Σ

F

(A.5) Lemma. If h> \v\then

(A.6)
k = l

Prαo/. Since ft>|t;| the summation on the right side of (A.6) converges. The proof
is accomplished by performing the summation and using the definition of tanh.

(A.7) Lemma. // V(η)= Σ JWίίuojMe^a and H> \\V\\s then there is an

RsO

αe (0,1) such that

(A.8)

and

(A.9)
G k=l

Proof. Since \V(η)\^\\V\\3<H, it follows that l>tanh(F(f?) + H)>0 for all η.
Letting vα be as in (1.1) we have

f tanh ( V(η) + H}dv«(η)-a
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is positive for α = 0, negative for a=l and continuous as a function of α. Thus
there is an άe (0, 1) such that

(A.10)

Now using Lemma (A. 5) we have

(A.ll) ttmh(V(η) + H)

k=l

Lemmas (A.I) and (A.4) imply that

(A. 12) 1-ά- -2H + 2
k=l

Also the integral of (A.12) with respect to v* is zero. Hence when (A.12) is expanded
in terms of χ|'s the constant term is zero. Thus

(A.13) +2

= 2
,-2H

1-α- o-2ff

= 1.

(A. 14) Theorem. Under the assumptions of Theorem (3.10) eαc/z real zQeU is
contained in an open set UZQCU on which (3.3) and (3.4)

Proof. Fix a real z0e£7, set H= J{Q}(ZQ) and

JR(z0) if

0 if

We do the proof under the assumption that ί/>0.
One easily checks from (3.12) that

(A.15) H> £ l/a lS"* '- 1 ,

and thus the hypotheses of Lemma (A.7) are satisfied.
We also have from (3.12) that

(A.16) 2. e
k=l

-2kH exp

Now the continuity of each JR(z) together with (3.11) implies that
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is continuous on £7; and thus, from (A. 15), we see that there is an open UcU
containing z0 such that

ϋ=sup
zeU

Now let

u - Izcϋ T \J fc) J (=I O ~Γ L l R ( ) κ l o 8exp[2(t>-ί/)]

Again because of the continuity of each JR(z) and (3.11), UZQ is open and clearly
contains z0 .

We now let α be as in the conclusion of Lemma (A.7) and a = (1 + b)/2 and check
that (3.3) and (3.4) hold on UZQ. Because of (0.1) it suffices to check them for k=Q.
Let

V(z,η)= Σ JR(Z) Π 1j-H.

Then C0(z9η) = l+uη0 + η0(tanh(V(z9η) + H)-<ή. But (A.17) implies that for all
zεUZQ, H>\V(z9η)\. Therefore by Lemma (A.5), just as in (A.ll), we have

β- oo

«-ΓΓ^F +2 Σ (-
J-^^ fc=l

+ 2 Σ (-l)kβ-2

fc=l

According to Lemma (A.7) the α norm of the first term on the right side of (A. 18)
is bounded by

2 β-2^(
k = l

By using Lemmas (A.I) and (A.4) and the increase of ||F(z, )||y as a function of
y ̂  1, it is easily checked that the α norm of the second term is bounded by

00

4 X fcexp[2fc(t>-H)] W(z, )-V(z0, )| |3,
fc=l

which is less than (l-b)/2 for zeί/zo. Applying these two bounds to (A. 18) we
obtain

k=l

Σ e-2(l//(exp[2/c||F(z0,
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Since F(z0, •) does not have a constant term when expanded in terms of the
χ°'s, it follows that (exp[2fc||F(z0, )l lι+2α]~l)/(l+α) is an increasing function
of α. Thus, using (A. 16), we may bound the right side of (A. 19) by

proving (3.3).
To prove (3.4) note that (A. 17) implies that for zeUZQCU

(A.20)
#30

JR(Z)

The analyticity of y(z,0, G) follows from (3.11), (3.7), (4.20), and the dominated
convergence theorem. The uniform convergence of Σ |y(z> 0, G)|, ze UZQ is proved

G
as in Theorem (A.2) using the first equality in (A. 18).
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Note Added in Proof. The authors have recently received a preprint of [7] which contains another
proof of Theorem (3.8) together with analogous results for other models.






