

© by Springer-Verlag 1976

Thermodynamic Limit of Correlation Functions in a System of Gravitating Fermions

Bernhard Baumgartner

Institut für theoretische Physik der Universität Wien, Wien, Austria

Abstract. We show that the correlation functions in a system of gravitating fermions converge as tempered distributions in the thermodynamic limit, if the system is not at the point of phase-transition. The densities converge to the density of the Thomas-Fermi-theory and are not correlated in the limit.

I. Introduction

It has been shown by P. Hertel et al. ([1,2]) that non-relativistic gravitating fermions have a kind of thermodynamic limit and that in the limit the system is governed by temperature-dependent Thomas-Fermi- (T.F.-) equations. What is unusual in this limit is the dependence of parameters on the particle-number N: the system is confined to a region, the linear dimensions of which vary as $N^{-1/3}$ and the temperature is set proportional to $N^{4/3}$ or the energy proportional to $N^{7/3}$, if one works with the microcanonical ensemble.) The free energy divided by $N^{7/3}$ has then a definite finite limit when N tends to infinity. To make things conceptually simpler and to obtain a certain similarity to the usual thermodynamic formulas, we transform the Hamiltonian

$$H_N = \sum_{i=1}^{N} p_i^2 / 2m - \kappa \sum_{i < j} |x_i - x_j|^{-1}$$
 (1)

with the unitary transformation

$$x \mapsto N^{-1/3}x, p \mapsto N^{1/3}p \tag{2}$$

and divide it by $N^{4/3}$.

The resulting Hamiltonian,

$$\tilde{H}_{N} = N^{-2/3} \sum_{i=1}^{N} p_{i}^{2} / 2m - \kappa / N \sum_{i < j} |x_{i} - x_{j}|^{-1}$$
(3)

with Dirichlet boundary-conditions in $L^2(V)$, (V does not depend on N) serves to define a canonical ensemble with temperature β^{-1} (which is also N-independent).

208 B. Baumgartner

We thus obtain a sequence of ensembles, for which there exists the "thermodynamic" limit of the free energy per particle

$$f(N,\beta) = -(\beta N)^{-1} \log \operatorname{Tr} \exp(-\beta \tilde{H}_N). \tag{4}$$

In this paper we investigate the corresponding thermodynamic limit of the local density and correlation-functions.

II. The Strategy

The density at a point g(x) cannot be obtained as an expectation value of an operator, it is only a quadratic form [3]. Therefore, we shall deal with integrated densities

$$\varrho(w) = \int d^3x \varrho(x) w(x), \text{ w is any test-function in } \mathcal{S}(R^3). \tag{5}$$

We normalize the density so that its integral over all space equals 1. In a system with N particles, (5) is then the expectation value of the operator

$$\hat{\varrho}_N(w) = N^{-1} \sum_{i=1}^{N} w(x_i). \tag{6}$$

With the help of the symmetrized product of n test functions

$$S(x_1 \dots x_n) = n!^{-1} \sum_{\text{Permutations } p(\alpha)} \prod_{\alpha=1}^n w_{\alpha}(x_{p(\alpha)})$$
 (7)

we define the operator for integrated correlation functions:

$$\hat{Q}_{N}(w_{1}...w_{n}) = N^{-n} \sum_{i_{1}...i_{n}} S(x_{i_{1}}...x_{i_{n}}).$$
(8)

All operators of the form (6) or (8) are bounded. Their equilibrium values can therefore be written as derivatives of concave functions ([4, 5]):

$$\langle \hat{\varrho}_{N}(w_{1}...w_{n})\rangle_{\beta} = \operatorname{Tr}\left\{\hat{\varrho}_{N}(w_{1}...w_{n})\exp\left(-\beta\tilde{H}_{N}\right)\right\}\exp\beta N f(N,\beta,0)$$

$$= \frac{\partial}{\partial\lambda}f(N,\beta,\lambda)|_{\lambda=0}$$
(9)

$$f(N, \beta, \lambda) = -(\beta N)^{-1} \log \operatorname{Tr} \exp \left[-\beta (\tilde{H}_N + \lambda N \hat{\varrho}_N(w_1 \dots w_n)) \right]. \tag{10}$$

The basic concept we shall follow is to show that the thermodynamic limit exists for $f(N, \beta, \lambda)$ and the limit of derivatives equals the derivative of the limiting function $\phi(\beta, \lambda)$ (which is also concave in λ).

III. The Thomas-Fermi-Equations

Following [1], we have to approximate $V(x, y) = \kappa/|x-y|$ by $V_s(x, y) = \kappa(1 - \exp(-s|x-y|)/|x-y|)$, then we have to divide the Volume V into cells $A_a(a=1...g)$ and to approximate again $V_s(x, y)$ from below by potentials $V_{s,g}(x, y)$,

Gravitating Fermions 209

which are constant in each pair of cells. In the same manner we define $S_{s,g}(x_1...x_n)$ to be step functions, which are constant in each *n*-tuple of cells and approximate $S(x_1...x_n)$. S_s can be taken equal to S.

In analogy to (3) and (4) we define:

$$H_{N,\sigma}(\lambda) = N^{-2/3} \sum_{j} p_i^2 / 2m - \frac{1}{N} \sum_{i \le j} V_{\sigma}(x_i, x_j) + \lambda N^{-n+1} \sum_{i_1 \dots i_n} S_{\sigma}(x_{i_1} \dots x_{i_n}), \quad (11)$$

$$f_{\sigma}(N, \beta, \lambda) = -(\beta N)^{-1} \log \operatorname{Tr} \exp\left[-\beta H_{N, \sigma}(\lambda)\right]. \tag{12}$$

The index σ stands for either s, g or s or none.

Without complications, the results of [1] for $\lambda = 0$ may be generalized:

$$\exists \lim_{N \to \infty} f_{s,g}(N,\beta,\lambda) = \phi_{s,g}(\beta,\lambda), \qquad (13)$$

$$\exists \lim_{N \to \infty} f(N, \beta, \lambda) = \lim_{s \to \infty} \lim_{g \to \infty} \phi_{s,g}(\beta, \lambda). \tag{14}$$

 $\phi_{s,q}$ is the free energy of the T.F.-theory:

$$\phi_{\sigma} = \mu_{\sigma} + \int_{V} d^{3}x \varrho_{\sigma}(x) \left[\frac{1}{2} U_{\sigma}(x) - \lambda (n-1)/n S_{\sigma}(x) \right] - \beta^{-1} \int_{V} d^{3}x \int d^{3}p (2\pi)^{-3} \log \left\{ 1 + \exp \left[-\beta (p^{2}/2m - \mu_{\sigma}(x)) \right] \right\},$$
(15)

$$U_{\sigma}(x) = \int_{V} V_{\sigma}(x, y) \varrho_{\sigma}(y) d^{3}y, \qquad (16)$$

$$S_{\sigma}(x) = n \int_{V^{n-1}} S_{\sigma}(x_1 x_2 \dots x_n) \prod_{i=2}^{n} \varrho_{\sigma}(x_i) d^3 x_i.$$
 (17)

The ϱ 's and μ 's are solutions of T.F.-equations:

$$\mu_{\sigma}(x) = \mu_{\sigma} + U_{\sigma}(x) - \lambda S_{\sigma}(x) , \qquad (18)$$

$$\varrho_{\sigma}(x) = \int d^3p (2\pi)^{-3} \left\{ 1 + \exp\left[\beta (p^2/2m - \mu_{\sigma}(x))\right] \right\}^{-1}.$$
 (19)

The value of the constant μ_{σ} has to be chosen such that

$$\int_{V} \varrho_{\sigma}(x)d^{3}x = 1.$$

Consider:

$$\Psi_{\sigma}(\varrho, \beta, \lambda) = -\frac{1}{2} \int_{V \times V} d^3x d^3y \varrho(x) V_{\sigma}(x, y) \varrho(y) + \lambda \int_{V^n} S_{\sigma}(x_1 \dots x_n) \prod_{i=1}^n \varrho(x_i) d^3x_i + \int_{V} d^3x \varrho(x) \mu(x) - \beta^{-1} \int_{V} d^3x \int_{V} d^3p (2\pi)^{-3} \log \left\{ 1 + \exp\left[-\beta(p^2/2m - \mu(x)) \right] \right\}.$$
 (20)

 $\mu(x)$ is here a function of $\varrho(x)$, implicitly defined by Equation (19). One verifies easily the validity of the variational principle:

$$\phi_{\sigma}(\beta, \lambda) = \min_{\varrho \in \Omega} \Psi_{\sigma}(\varrho, \beta, \lambda),$$

$$\Omega = \{ \varrho \in L^{1}(V) : \varrho(x) \geq 0, \int_{V} \varrho(x) d^{3}x = 1 \}.$$
(21)

B. Baumgartner

IV. Behavior of the T.F.-Theory When g and s Tend to Infinity

Our aim is to show that $\phi(\beta, \lambda) = \lim_{s \to \infty} \lim_{g \to \infty} \phi_{s,g}(\beta, \lambda)$. The proof follows [2], but we have to be careful about technicalities, since rotational invariance is broken by $S_{\sigma}(x_1...x_n)$.

As functions of x, all $V_{\sigma}(x, y)$ are in a uniformly bounded set in $L^{p}(V)$ (p < 3):

$$||V_{s,q}(x,y)||_{p} \le ||V_{s}(x,y)||_{p} \le ||\kappa|x-y|^{-1}||_{p} \le ||\kappa|x|^{-1}||_{p} = c_{p}.$$
(22)

The $U_{\sigma}(x)$ are convex combinations of the $V_{\sigma}(x, y)$; hence, its *p*-norms are also bounded by c_p . The S_{σ} 's are bounded in all L^p 's by some constant k.

It is more difficult to find a bound to the set of constants μ_{σ} . We study the function

$$g(\beta, \mu) = \int d^3 p (2\pi)^{-3} (1 + \exp \beta (p^2 - \mu))^{-1}. \tag{23}$$

With this function, (19) can be written as $\varrho_{\sigma}(x) = (2m)^{3/2} g(\beta, \mu_{\sigma}(x))$. $g(\beta, \mu)$ has the properties:

$$0 < \frac{\partial}{\partial \mu} g(\beta, \mu) \le \beta g(\beta, \mu) \quad \text{(monotonicity in } \mu\text{)}, \tag{24}$$

$$g(\beta,\mu) = \beta^{-3/2} g(1,\beta\mu) \le \theta (1-\beta\mu)\beta^{-3/2} g(1,1) + \theta (\beta\mu - 1)(6\pi^2)^{-1} (\mu^{3/2} + \frac{3}{2}\mu\beta^{-3/2} + \frac{3}{2}\beta^{-3/2}).$$
(25)

Because of the L^p -boundedness of the potentials, there exists a number b such that

$$\int_{V} d^3x \theta(|\mu_{\sigma}(x) - \mu_{\sigma}| - b) < v/2 \left(v = \int_{V} d^3x\right).$$

And with $A_{\sigma} = \{x : \varrho_{\sigma}(x) > (2m)^{3/2} g(\beta, \mu_{\sigma} - b)\}$, this implies

$$\int_{V-A_{\sigma}} d^3x < v/2.$$

We can define $\hat{\mu}$ by $\frac{1}{2}v(2m)^{3/2}g(\beta,\hat{\mu}-b)=1$, and the inequality $\mu_{\sigma} < \hat{\mu}$ follows from the monotonicity (24) and

$$1 = \int\limits_{V} \varrho_{\sigma}(x) d^3x > \int\limits_{A_{\sigma}} \varrho_{\sigma}(x) d^3x > \frac{1}{2} v (2m)^{3/2} g(\beta, \mu_{\sigma} - b) \; .$$

Up to now we know that all $\mu_{\sigma}(x)$ form a bounded set in each L^p if p < 3. (25) tells us that $\varrho(\mu)$ does not grow stronger than $\mu^{3/2}$ so that the $\varrho_{\sigma}(x)$ are in a bounded set in every $L^{2p/3}$:

$$q < 2 \Rightarrow \exists d_a : \|\varrho_{\sigma}(x)\|_a \le d_a. \tag{27}$$

Now we use Hölders inequality:

$$\max_{x \in V} \left\| \int V_{\sigma}(x, y) \varrho_{\sigma}(y) d^{3} y \right\| \leq \max_{x \in V} \left\| V_{\sigma}(x, y) \right\|_{p} \left\| \varrho_{\sigma}(y) \right\|_{q} \leq c_{p} d_{q}, \tag{28}$$

where the following relations must hold:

$$2 .$$

Gravitating Fermions 211

This gives a uniform L^{∞} -bound for all densities:

$$|\varrho_{\sigma}(x)| \le (2m)^{3/2} g(\beta, \hat{\mu} + c_p d_q + k)$$
 (29)

To be able to make statements about convergence, we define, in addition to $U_{s,g}(x)$, functions $W_{s,g}(x) = \int\limits_{\mathcal{U}} d^3y \, V_s(x,y) \varrho_{s,g}(y)$ and

$$T_{s,g}(x) = n \int_{V^{n-1}} S(x_1 x_2 \dots x_n) \prod_{i=2}^n \varrho_{s,g}(x_i) d^3x_i$$

which are uniformly continuous:

$$|\vec{\mathcal{P}}W_{s,g}(\vec{x})| = \left| \int_{V} d^3y \varrho_{s,g}(y) \mathcal{V}_x \mathcal{V}_s(x,y) \right| \le \|\varrho_{s,g}\|_{\infty} \int_{V} |\mathcal{V}(1/|x|)| d^3x = \text{const} < \infty . \tag{30}$$

They therefore form two conditionally compact sets (theorem of Ascoli), and have pointwise converging subsequences as $g \to \infty$, which is also true for the $U_{s,g}$, since

$$\lim_{g \to \infty} |U_{s,g}(x) - W_{s,g}(x)| = 0,$$

and equally for the $S_{s,g}$.

The same applies to the limit $s \to \infty$. The densities also have a converging subsequence (say to $\tilde{\varrho}$) since they are well behaved functions of the $U_{\sigma}(x)$ and $S_{\sigma}(x)$.

To see that the limits are again solutions of T.F.-equations we observe that the Ψ_{σ} 's are continuous as functionals over $L^1 \cap L^{\infty}$ and converge pointwise as $g \to \infty$ and $s \to \infty$. Therefore:

$$\lim_{s \to \infty} \lim_{g \to \infty} \Psi_{s,g}(\varrho_{s,g}, \beta, \lambda) = \lim_{s \to \infty} \Psi_{s}(\varrho_{s}, \beta, \lambda) = \Psi(\tilde{\varrho}, \beta, \lambda). \tag{31}$$

On the other hand one certainly has:

$$\min_{\varrho \in \Omega} \Psi(\varrho, \beta, \lambda) \ge \lim_{s \to \infty} \lim_{g \to \infty} \min_{\varrho \in \Omega} \Psi_{s,g}(\varrho, \beta, \lambda), \tag{32}$$

so that the minimum is attained at $\tilde{\varrho}$:

$$\Phi(\beta, \lambda) = \Psi(\tilde{\varrho}, \beta, \lambda) = \lim_{s \to \infty} \lim_{g \to \infty} \Phi_{s,g}(\beta, \lambda) = \lim_{N \to \infty} f(N, \beta, \lambda).$$
 (33)

V. Taking the Derivative

In order to be able to apply Theorem A2 of the appendix, we have to make sure that the $\tilde{\varrho} = \tilde{\varrho}(\lambda)$ vary continuously with λ at $\lambda = 0$. We can use the same considerations for the limit $\lambda \to 0$ as for $g \to \infty$ and $s \to \infty$: there are converging subsequences $\tilde{\varrho}(\lambda_i) \to \tilde{\varrho}(0)$ as $\lambda_i \to 0$. This implies continuity, if $\tilde{\varrho}(0)$ is unique. We claim the following

Theorem. If β is not the critical value β_c , then the solutions of the T.F.-Equations (18) and (19) in a spherical volume and at $\lambda=0$ are rotation invariant and unique.

Proof. We characterize classes K_m of densities ϱ by real-valued functions m(r):

$$K_{m} = \left\{ \varrho \in \Omega : \int_{V} \theta(r - \varrho(x)) d^{3}x = m(r) \,\forall \, r \right\}. \tag{34}$$

212 B. Baumgartner

Every term of the form $\int_V F(\varrho(x)d^3x)$ is a functional, which depends only on the class K_m of ϱ . In $\Psi(\varrho, \beta, \lambda)$ only the term $\int_{V \times V} d^3x d^3y \varrho(x) V(x-y)\varrho(y)$ is not of this form. But this term is minimized by the unique spherically symmetric and decrasing function in K_m [6]. (We specify now that V shall have the form of a sphere.) For spherically symmetric functions one knows that the solution of (18), (19) at $\lambda=0$ are unique $(\tilde{\varrho}(0)=\varrho_{TF})$ unless the system is at the critical point β_c , where a phase-transition occurs [2].

In the last step we use (9), (33), Griffith's Lemma [7] and Theorem A2. The result is:

$$\lim_{N \to \infty} \langle \hat{\varrho}_{N}(w_{1} \dots w_{n}) \rangle_{\beta} = \frac{\partial}{\partial \lambda} f(N, \beta, \lambda)|_{\lambda = 0} = \frac{\partial}{\partial \lambda} \Phi(\beta, \lambda)|_{\lambda = 0}$$

$$= \frac{\partial}{\partial \lambda} \Psi(\varrho_{TF}, \beta, \lambda)|_{\lambda = 0} = \prod_{i=1}^{n} \int \varrho_{TF}(x) w_{i}(x) d^{3}x, \quad \text{if} \quad \beta \neq \beta_{c}.$$
(35)

This means that the expectation values of the density converge as tempered distributions to the T.F.-density and are not correlated in the limit. A related result for the T.F.-theory of atoms ([8, 9]) suggests that the densities converge as distributions over the test-function space $L^{5/2}(V)$.

Appendix: Two Theorems on Concave Functions

Theorem A1. Let a concave function $f(\lambda)$ be defined by a variational principle:

$$f(\lambda) = \min_{\varrho \in \Omega} F(\varrho, \lambda)$$

and such that the minimum is attained at some ϱ_{λ} :

$$f(\lambda) = F(\rho_2, \lambda)$$
.

Furthermore, we suppose that the partial derivatives

$$F'(\varrho, \lambda_0) = \frac{\partial}{\partial \lambda} F(\varrho, \lambda)|_{\lambda = \lambda_0}$$

exist for all pairs (ϱ, λ_0) . Then the following relation holds:

$$f'_{+}(\lambda) \leq F'(\rho_{1}, \lambda) \leq f'_{-}(\lambda)$$
.

 $f'_+(f'_-)$ is the right- (left-) hand-side derivative, which exists, since f is concave [10]. \Box

$$\begin{split} Proof. \qquad & f'_{+}(\lambda) \!=\! \lim_{\varepsilon \to 0} (1/\varepsilon) \big[F(\varrho_{\lambda+\varepsilon}, \lambda+\varepsilon) \!-\! F(\varrho_{\lambda}, \lambda) \big] \! \leq \! \lim_{\varepsilon \to 0} (1/\varepsilon) \big[F(\varrho_{\lambda}, \lambda+\varepsilon) \\ & - F(\varrho_{\lambda}, \lambda) \big] \\ & = F'(\varrho_{\lambda}, \lambda) \!=\! \lim_{\varepsilon \to 0} (1/\varepsilon) \big[F(\varrho_{\lambda}, \lambda) \!-\! F(\varrho_{\lambda}, \lambda-\varepsilon) \big] \\ & \leq \! \lim_{\varepsilon \to 0} (1/\varepsilon) \big[F(\varrho_{\lambda}, \lambda) \!-\! F(\varrho_{\lambda-\varepsilon}, \lambda-\varepsilon) \big] \!=\! f'_{-}(\lambda) \,. \end{split}$$

Theorem A2. If it is possible to attach a topology to Ω such that $F'(\varrho, \lambda)$ is a continuous function on $\Omega \times R$ and if there exists a path of minimizing ϱ_{λ} , continuous at λ_{0} , then $f(\lambda)$ is differentiable at λ_{0} and

$$f'(\lambda_0) = F'(\varrho_{\lambda_0}, \lambda_0)$$
.

Proof. Since f is concave, for x > y the relations $f'_{+}(x) \le f'_{-}(x) \le f'_{+}(y)$ hold. For $\varepsilon > 0$ and with Theorem A1:

$$F'(\varrho_{\lambda_0+\varepsilon},\lambda_0+\varepsilon) \leq f'_{-}(\lambda_0+\varepsilon) \leq F'(\varrho_{\lambda_0},\lambda_0) \leq f'_{-}(\lambda_0) \leq f'_{+}(\lambda_0-\varepsilon) \leq F'(\varrho_{\lambda_0-\varepsilon},\lambda_0-\varepsilon).$$

The difference between the right- and left-hand-side tends to zero with $\varepsilon \rightarrow 0$ because of the continuity. Q.e.d.

Acknowledgements. This work has been done as part of a doctoral thesis at the "Institut für theoretische Physik" at the university of Vienna. It is a pleasure to express my gratitude to Prof. W. Thirring, from whom I learned mathematical physics, to my colleagues, and to Prof. P. Hertel for uncountable useful discussions.

References

- 1. Hertel, P., Narnhofer, H., Thirring, W.: Commun. math. Phys. 28, 159—167 (1972)
- 2. Hertel, P., Thirring, W.: Thermodynamic Instability of a System of Gravitating Fermions. In: Dürr, H.P. (Ed.): Quanten und Felder. Braunschweig: Vieweg 1971
- 3. Thirring, W.: Vorlesungen über mathematische Physik T7: Quantenmechanik. Lecture notes
- 4. Narnhofer, H., Thirring, W.: Acta Phys. Austr. 41, 281-297 (1975)
- 5. Maison, H.D.: Commun. math. Phys. 22, 166—172 (1971)
- 6. Lichtenstein, L.: Math. Z. 3, 8-10 (1918)
- 7. Griffiths, R.B.: J. Math. Phys. 5, 1215-1222 (1964)
- 8. Baumgartner, B.: The Thomas-Fermi-Theory as Result of a Strong-Coupling-Limit. To be published
- Thirring, W.: Vorlesungen über mathematische Physik T8: Quantenmechanik großer Systeme. Lecture notes
- 10. Roberts, A., Varberg, D.: Convex Functions. London: Academic Press 1973

Communicated by G. Gallavotti

Received November 7, 1975