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Thermodynamic Limit of Correlation Functions
in a System of Gravitating Fermions

Bernhard Baumgartner
Institut fur theoretische Physik der Universitat Wien, Wien, Austria

Abstract. We show that the correlation functions in a system of gravitating
fermions converge as tempered distributions in the thermodynamic limit,
if the system is not at the point of phase-transition. The densities converge
to the density of the Thomas-Fermi-theory and are not correlated in the limit.

I. Introduction

It has been shown by P. Hertel et al. ([1,2]) that non-relativistic gravitating
fermions have a kind of thermodynamic limit and that in the limit the system is
governed by temperature-dependent Thomas-Fermi- (T.F.-) equations. What is
unusual in this limit is the dependence of parameters on the particle-number N :
the system is confined to a region, the linear dimensions of which vary as IV~1 / 3

and the temperature is set proportional to N4/3 or the energy proportional to
N7/3, if one works with the microcanonical ensemble.) The free energy divided
by JV7 / 3 has then a definite finite limit when N tends to infinity. To make things
conceptually simpler and to obtain a certain similarity to the usual thermodynamic
formulas, we transform the Hamiltonian

ι = l i<j

with the unitary transformation

xt->N~1/3x,p^N1/3p (2)

and divide it by N4/3.
The resulting Hamiltonian,

HN = N~2/3 Σ p*/2m-κ/N £ fri-XjΓ1 (3)
i = l ί<j

with Dirichlet boundary-conditions in L2(V\ (V does not depend on N) serves
to define a canonical ensemble with temperature β~l (which is also N-independent).
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We thus obtain a sequence of ensembles, for which there exists the "thermo-
dynamic" limit of the free energy per particle

f(N9 β}=- (βN) ~ * log Tr exp (- βHN). (4)

In this paper we investigate the corresponding thermodynamic limit of the
local density and correlation-functions.

II. The Strategy

The density at a point ρ(x) cannot be obtained as an expectation value of an
operator, it is only a quadratic form [3]. Therefore, we shall deal with integrated
densities

ρ(w) = Jd3xρ(x)w(x), w is any test-function in ^(R3) . (5)

We normalize the density so that its integral over all space equals 1. In a
system with N particles, (5) is then the expectation value of the operator

(6)
i = l

With the help of the symmetrized product of n test functions

S(x 1...X n) = f l ! - 1 Σ Π Wα(^(α)) (?)
Permutations p(v.} α= 1

we define the operator for integrated correlation functions:

All operators of the form (6) or (8) are bounded. Their equilibrium values can
therefore be written as derivatives of concave functions ([4, 5]):

(9)

, β,λ)=- (βN) ~ ί log Tr exp [ - β(HN + λNρN(w, . . . wπ))] . (10)

The basic concept we shall follow is to show that the thermodynamic limit
exists for f(N, /?, λ) and the limit of derivatives equals the derivative of the limiting
function φ(β, λ) (which is also concave in λ).

III. The Thomas-Fermi-Equations

Following [1], we have to approximate V(x9 y) = κ/\x — y\ by Vs(x, y) =
κ(l — Qxp( — s\x — y\)/\x — y\9 then we have to divide the Volume V into cells
Λa(a = ί . . . g ) and to approximate again Vs(x, y) from below by potentials Vs>g(x,y),
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which are constant in each pair of cells. In the same manner we define Ss>g(x1 ...xn)
to be step functions, which are constant in each rc-tuple of cells and approximate
S(xί...xn). Ss can be taken equal to S.

In analogy to (3) and (4) we define:

HNja(A) = N-2/3£p2/2m-^£^(x,x,.) + AJV-" + 1 £ S^.-.xJ, (11)
^ i<j il...in

fσ(N,β,λ)=-(βNΓ1 logTrexp[-j3#N.ΛΛ)]. (12)

The index σ stands for either s, g or s or none.
Without complications, the results of [1] for Λ,=0 may be generalized:

3 lim/s>a(N,/U)=0s,fl(/U), (13)
N-+ oo

3 lira f ( N , β, λ) = lim lim φ,tj(β, λ) . (14)
N— >• oo s— >• oo g-*x>

,. fl is the free energy of the T.F.-theory:

σ(x) - λ(n - l)/πSσ(x)]

(15)
β(P

2/2m-μσ(Xm},

(16)
F

SJ(x) = n f S,(x1x2...xn)Πρσ(x ίM
3x ί (17)

]/n - 1 j = 2

The ρ's and μ's are solutions of T.F. -equations:

μa(x) = μσ+Uσ(x)-λSσ(x), (18)

ρσ(x)=μ3p(2π)-3{l+exp[)S(p2/2m-μff(x))]}-1 . (19)

The value of the constant μσ has to be chosen such that

v

Consider:

n

Ψσ(ρ,β,λ)=—^ j d3xd?'yρ(x)Vσ(x, y)ρ(y) + λ J Sσ(xί...xn) Y\ ρ(xi}d3xi
VxV Vn i = ί

+ J d3xρ(x)μ(x)-β~^d3x|d3p(2π)-3 log {1 + exp [-β(P

2/2m-μ(x))]}. (20)
V V

μ(x) is here a function of ρ(x), implicitly defined by Equation (19). One verifies
easily the validity of the variational principle:

ρeΩ

V):ρ(x)>0, \ ρ(x)d*x=l} .
/ *~ V / J >-, \ J )
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IV. Behavior of the T.F.-Theory When g and s Tend to Infinity

Our aim is to show that φ(β, λ)= lim lim φSίβ(β, λ). The proof follows [2], but
s-»oo 0->oo

we have to be careful about technicalities, since rotational invariance is broken
byS^...^).

As functions of x, all Vσ(x9 y) are in a uniformly bounded set in LP(V) (p<3):

Ίlp-:^. (22)

The Uσ(x) are convex combinations of the Vσ(x9y)'9 hence, its p-norms are
also bounded by cp. The Sσ's are bounded in all Lp's by some constant k.

It is more difficult to find a bound to the set of constants μσ. We study the
function

μ))-1 . (23)

With this function, (19) can be written as ρσ(x) = (2m)3/2g(β, μσ(x)). g(β,μ) has the
properties :

0 < -r g(β, μ) ̂  βg(β, μ) (monotonicity in μ) , (24)
dμ

^^
(25)

Because of the ZΛboundedness of the potentials, there exists a number b such
that

j d\θ(\μσ(x)-μσ\-b)<v/2(v= j d

And with Aσ= {x:ρσ(x)>(2m)3/2g(β, μσ — b)}9 this implies

j d*x<υ/2.
V-Aσ

We can define μ by ^v(2m)3/2g(β, μ — b)= 1, and the inequality μσ<μ follows
from the monotonicity (24) and

Up to now we know that all μσ(x) form a bounded set in each Lp if p<3. (25)
tells us that ρ(μ) does not grow stronger than μ3/2 so that the ρσ(x) are in a bounded
set in every L2p/3:

dq. , (27)

Now we use Holders inequality:

max I f Vσ(x, y)ρσ(y)d3y\ίmax || V.(x, ^Hpllβ^ll^c^, , (28)

where the following relations must hold:

2<p<3,3/2<β<2,l/p + 1/4=1.
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This gives a uniform L^-bound for all densities:

\ρj(x)\ ^ (2m)3/2#(/?, ft + cpdq + k) . (29)

To be able to make statements about convergence, we define, in addition to
U8tβ(x)9 functions WStJ(x) = $ d*yVs(x, y)ρs>g(y) and

v
n

τ

s,g(x) = n ί

= const <oo . (30)

which are uniformly continuous:

\rWStβ(x)\= J d*yQatJ(yWxVJ(x9y)

They therefore form two conditionally compact sets (theorem of Ascoli), and
have point wise converging subsequences as 0->oo, which is also true for the

UStg, since

and equally for the SStS.
The same applies to the limit s-»oo. The densities also have a converging

subsequence (say to ρ) since they are well behaved functions of the Uσ(x) and

Sσ(x).
To see that the limits are again solutions of T.F.-equations we observe that

the Ψσ's are continuous as functionals over Z/nL00 and converge pointwise as
0->oo and s->co. Therefore:

lim lim Ψs,g(ρs,g, β, λ)= lim Ψs(ρs, β, λ) = Ψ(ρ, β, λ). (31)
s-*oo g~*αo s-»oo

On the other hand one certainly has:

min ψ(ρ, β, λ) ̂  lim lim min <FS>, β, λ), (32)
ρeΩ s->oo g-*αo ρeΩ

so that the minimum is attained at ρ:

Φ05,λ)=Ψ(Q,β, λ)= lim lim Φ8tJ(β9 λ)= lim /(JV,β, λ). (33)
s—>• oo g-*oo N-+CQ

V. Taking the Derivative

In order to be able to apply Theorem A2 of the appendix, we have to make sure
that the ρ = ρ(A) vary continuously with λ at /l=0. We can use the same considera-
tions for the limit λ->0 as for #-»oo and s->oo: there are converging subsequences

O. This implies continuity, if ρ(0) is unique. We claim the following

Theorem. // β is not the critical value βc, then the solutions of the T.F .-Equations
(18) and (19) in a spherical volume and at λ=0 are rotation invariant and unique.

Proof. We characterize classes Km of densities ρ by real-valued functions m(r):

(34)
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Every term of the form j F(ρ(x)d3x is a functional, which depends only on the
v

class Km of ρ. In Ψ(ρ, β, λ) only the term j d3xd3yρ(x)V(x — y)ρ(y) is not of this
V xV

form. But this term is minimized by the unique spherically symmetric and decrasing
function in Km [6]. (We specify now that V shall have the form of a sphere.) For
spherically symmteric functions one knows that the solution of (18), (19) at λ = Q
are unique (ρ(Q) = ρTF) unless the system is at the critical point βc, where a phase-
transition occurs [2]. Q.e.d.

In the last step we use (9), (33), Griffith's Lemma [7] and Theorem A2. The
result is :

\im^ρN(w1...wn)yβ = ̂ f(N,β,λ)\λ = 0 = ̂ -Φ(β,λ)\λ = 0 (35)
N->oo dλ dλ

,β,λ)\λ = =ρ(x)w(x)d*x, if

This means that the expectation values of the density converge as tempered
distributions to the T.F.-density and are not correlated in the limit. A related
result for the T.F. -theory of atoms ([8, 9]) suggests that the densities converge as
distributions over the test-function space L5/2(V).

Appendix : Two Theorems on Concave Functions

Theorem Al. Let a concave function f(λ) be defined by a υariational principle:

f(λ) = mmF(ρ,λ)
ρeΩ

and such that the minimum is attained at some ρλ:

f(λ) = F(ρλ,λ).

Furthermore, we suppose that the partial derivatives

exist for all pairs (ρ, λ0). Then the following relation holds :

/'+(/'_) is the right- (left-) hand-side derivative, which exists, since f is concave
[10]. D

Proof. f'+ (λ) = lira (\/ε)[_F(Qλ + ε,λ + ε)- F(ρλ, A)] ̂  lim (l/e)[F (ρλ, λ + ε)
ε-> 0 ε->0

= F'(ρλ, λ) = lim (l/ε)lF(ρλ, λ) - F(ρλ, λ - β)]
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Theorem A 2. // it is possible to attach a topology to Ω such that F'(ρ, λ) is a conti-
nuous function on Ω x R and if there exists a path of minimizing ρλ, continuous at λ0,
then f(λ) is differ entίable at λQ and

Proof. Since /is concave, for x>y the relations / + (x) rg /'_ (x) ̂  /'+ ()>) hold. For
ε>0 and with Theorem A l :

F(ρλo + ̂  + ε)^/iμo+ε):gF(ρv^^

The difference between the right- and left-hand-side tends to zero with ε->0
because of the continuity. Q.e.d.
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