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Thermodynamic Limit of Correlation Functions
in a System of Gravitating Fermions

Bernhard Baumgartner
Institut fiir theoretische Physik der Universitdt Wien, Wien, Austria

Abstract. We show that the correlation functions in a system of gravitating
fermions converge as tempered distributions in the thermodynamic limit,
if the system is not at the point of phase-transition. The densities converge
to the density of the Thomas-Fermi-theory and are not correlated in the limit.

I. Introduction

It has been shown by P. Hertel et al. ([1,2]) that non-relativistic gravitating
fermions have a kind of thermodynamic limit and that in the limit the system is
governed by temperature-dependent Thomas-Fermi- (T.F.-) equations. What is
unusual in this limit is the dependence of parameters on the particle-number N :
the system is confined to a region, the linear dimensions of which vary as N ™1/
and the temperature is set proportional to N*?* or the energy proportional to
N773_if one works with the microcanonical ensemble.) The free energy divided
by N7/3 has then a definite finite limit when N tends to infinity. To make things
conceptually simpler and to obtain a certain similarity to the usual thermodynamic
formulas, we transform the Hamiltonian

N
Hy= ) pi2m—x ), |x;—x|™* 1)
i=1 i<j
with the unitary transformation
x—>N"13x, p—>N13p (2)

and divide it by N*/3,
The resulting Hamiltonian,

1/3

N
Hy=N""3 p/2m—i/N ¥ [xi—x " ©)
i=1

i<j
with Dirichlet boundary-conditions in L*(V), (VV does not depend on N) serves
to define a canonical ensemble with temperature 8! (which is also N-independent).

4
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We thus obtain a sequence of ensembles, for which there exists the “thermo-
dynamic” limit of the free energy per particle

f(N, B)=—(BN)" "' log Tr exp(—BH,) . 4

In this paper we investigate the corresponding thermodynamic limit of the
local density and correlation-functions.

II. The Strategy

The density at a point g(x) cannot be obtained as an expectation value of an
operator, it is only a quadratic form [3]. Therefore, we shall deal with integrated
densities

o(w)= [ d*xo(x)w(x), w is any test-function in #(R?). (5)

We normalize the density so that its integral over all space equals 1. In a
system with N particles, (5) is then the expectation value of the operator

N
dw)=N"1 ) wix,). (6)
i=1
With the help of the symmetrized product of n test functions

n

S(xy...x)=n!""1 > [T walXp) (7)

Permutations p(a) a=1
we define the operator for integrated correlation functions:
On(wy...w)=N"" Z S(xi, - %y, - ®)
i1.c.in

All operators of the form (6) or (8) are bounded. Their equilibrium values can
therefore be written as derivatives of concave functions ([4, 5]):

On(Wy...w,)»p=Tr {gx(w,...w,) exp(— BH )} exp N f(N, B, 0) Q)
0
=af(N’ Ba ’1)|}.=O
f(N, B, 2)=—(BN)" " log Tr exp[ — B(H y+ ANGy(w; ...w,))] . (10)

The basic concept we shall follow is to show that the thermodynamic limit
exists for f(N, B, A) and the limit of derivatives equals the derivative of the limiting
function ¢(f, 4) (which is also concave in A).

ITI. The Thomas-Fermi-Equations

Following [1], we have to approximate V(x,y)=«k/|[x—y| by V(x,y)=
k(1 —exp(—s|x—yl)/lx—yl, then we have to divide the Volume V into cells
Afa=1...g) and to approximate again V(x, y) from below by potentials V; ,(x,y),
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which are constant in each pair of cells. In the same manner we define S, ,(x;,...x,)
to be step functions, which are constant in each n-tuple of cells and approximate
S(xy...x,). Sy can be taken equal to S.

In analogy to (3) and (4) we define:

N

1
HN,(,(/’L):N"2/32p1~2/2m—N~ YV (xpx)+ AN TN S (xg,.x), (1)

i<j i1...0n

foN, B, ))==(BN)"" log Trexp[—BHy ,(2)] . (12)

The index o stands for either s, g or s or none.
Without complications, the results of [1] for A=0 may be generalized:

3 1im £, (N, B, D)= 8. ). (13)
3 lim f(N. B, )= Tim lim ¢, (6. 3. (14)

¢s.4 is the free energy of the T.F.-theory:

bo=tis+ £ d*x0,(x)[FU ,(x) = An —1)/nS ()]

15

— @ [pm) og {1 +exp L 2m— 1) -

U,(x)= i V(% Yoy, (16)
S.9=n | S, [] eaedds. (17)

yr-t i=2
The ¢’s and p’s are solutions of T.F.-equations:

:uo'(x) =pst Uo‘(x) - )‘Sa(x) ’ (18)
0,(x)= | &*p2m) {1 +exp[B(p*/2m—pu(x))]} " . (19)

The value of the constant u, has to be chosen such that

[ o (x)d*x=1.

Consider:

V0.8, )=—% [ dxd’yo(x)V,(x, y)o(y)+ 2 VI So(xy...x,) [T o(x)d>x;
n i=1

VvV

+ lf/ d*xo()u(x)—p " | d®x [d’p(2m) > log {1 +exp[ — B(p*/2m—pu(x)]} . (20)

u(x) is here a function of g(x), implicitly defined by Equation (19). One verifies
easily the validity of the variational principle:

¢a(ﬁ> }*) = Iglslg lllo-(aQ’ .87 ’1) > (21)
Q={0eL'(V):0(x)20, [ o(x)d*x=1} .
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IV. Behavior of the T.F.-Theory When g and s Tend to Infinity
Our aim is to show that ¢(8, /)= lim lim ¢, (B, A). The proof follows [2], but
s> g—w

we have to be careful about technicalities, since rotational invariance is broken
by S,(x;...X,).
As functions of x, all V,(x, y) are in a uniformly bounded set in L?(V) (p<3):

Vs g%, D= 1V W), < el — y1 I, < lclxl ™ =2, - (22)

The U, (x) are convex combinations of the V,(x, y); hence, its p-norms are
also bounded by c,. The S,’s are bounded in all L”s by some constant k.

It is more difficult to find a bound to the set of constants u,. We study the
function

9(B, W=[d’p2m) (1 +expf(p* — ) " . (23)
With this function, (19) can be written as g,(x)=(2m)*'?g(B, u,(x)). g(B, n) has the
properties:

0<£g(ﬁ, W=Pg(B. 1)  (monotonicity in ), 24)

9B, w)=PB~"*g(1, fr) =01 — BB ~*2g(1, 1)+ 0(Bp— 1)(6m%) ™! (1
+3up2+347). @3

Because of the LP-boundedness of the potentials, there exists a number b such
that

| &3x0(|u,(x)— yal—b)<v/2(1)= | d3x) :
14 14

And with 4,= {x:0,(x)>(2m)*"*g(B, u,—b)}, this implies
[ dx<v)2. '

V-As

We can define 4 by Lv(2m)*?g(B, i—b)=1, and the inequality u,</i follows
from the monotonicity (24) and

1= [ 0,(x)dx> [ 0,(x)d*x>5v(2m)*?g(B, u,—b).
14 Ag
Up to now we know that all 1,(x) form a bounded set in each L? if p<3. (25)

tells us that g(1) does not grow stronger than p*/ so that the g,(x) are in a bounded
set in every L??:

q<2=3d,:lle,(0)ll,=d,. : 27)
Now we use Holders inequality:

max | [V,(x, ), ()d>yl < max [ Vo(x, )l ,lles) g < cpdy (28)
where the following relations must hold:

2<p<3,32<q<2,1/p+1/g=1.
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This gives a uniform L®-bound for all densities:
loo()| < 2m)*"2g(B, i+ c,d,+K). (29)

To be able to make statements about convergence, we define, in addition to
U, ,(x), functions W, ,(x)= [ d*yV(x, y)o, ,y) and
14

Ts,g(x)=n f S(x1x2'“xn) H Qs,g(xi)daxi >
t i=2

yn-
which are uniformly continuous:

I?Ws,g(§)|=' £ Ay, V)V V(x, Y)’ éIIQs,glloo£ IP(1/lx]ld°x =const <co.  (30)

They therefore form two conditionally compact sets (theorem of Ascoli), and
have pointwise converging subsequences as g— o0, which is also true for the

U, > since

lim |Us,g(x) - Ws,g(x)l =0 5
g—

and equally for the S; ,.

The same applies to the limit s—oo. The densities also have a converging
subsequence (say to ) since they are well behaved functions of the U (x) and
S,(x).

To see that the limits are again solutions of T.F.-equations we observe that
the ¥_’s are continuous as functionals over L'nL*® and converge pointwise as
g—o0 and s—o0. Therefore:

lim lim 'Ps,g(Qs,g’ ﬁ> }')= lim 'IIS(QS, B9 ’{)= 'P(é9 ﬁa /1) . (31)
g— o s~ 0

§— 0

On the other hand one certainly has:

min ¥(g, f, )= lim lim min ¥, (o, B, 4), (32)
0ef s g gefR ’

so that the minimum is attained at §:

V. Taking the Derivative

In order to be able to apply Theorem A2 of the appendix, we have to make sure
that the § = §(4) vary continuously with 4 at A=0. We can use the same considera-
tions for the limit A—0 as for g— oo and s— co: there are converging subsequences
0(4;)—8(0) as A,—0. This implies continuity, if 3(0) is unique. We claim the following

Theorem. If f is not the critical value ., then the solutions of the T.F.-Equations
(18) and (19) in a spherical volume and at A=0 are rotation invariant and unique.

Proof. We characterize classes K,, of densities ¢ by real-valued functions m(r):

K,= { 0eQ:[ 0(r— o(x))d*x = m(r)Vr} ) (34
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Every term of the form f F(o(x)d?x is a functional, which depends only on the

14
class K,, of ¢. In ¥(g, B, 2) only the term | d>xd’yo(x)V(x—y)o(y) is not of this
Vxy
form. But this term is minimized by the unique spherically symmetric and decrasing

function in K,, [6]. (We specify now that V' shall have the form of a sphere.) For
spherically symmteric functions one knows that the solution of (18), (19) at A=0
are unique (9(0)=grp) unless the system is at the critical point f,, where a phase-
transition occurs [2]. Q.ed.

In the last step we use (9), (33), Griffith’s Lemma [7] and Theorem A2. The
result is:

]\1,21:0 {(On(wy .- ..W,.)>ﬂ= 6_Af(N’ B, Als—o= i DB, 5o (35)
0 n
=—67 W(QTF, ﬂ, l)|l=0= 1__[1 IQTF(x)Wi(x)d3x , lf ﬁ:'zﬁc .

This means that the expectation values of the density converge as tempered
distributions to the T.F.-density and are not correlated in the limit. A related
result for the T.F.-theory of atoms ([8, 9]) suggests that the densities converge as
distributions over the test-function space L>/3(V).

Appendix: Two Theorems on Concave Functions

Theorem Al. Let a concave function f() be defined by a variational principle:
f(A)=minF(g, 1)
e ,
and such that the minimum is attained at some @, :

J(A)=Fg; 4).

Furthermore, we suppose that the partial derivatives

0
F'(o, Ao)= B F(o, l)'a:ao

exist for all pairs (9, o). Then the following relation holds:
JHA=SF(en ASF(A).

[ (f) is the right- (left-) hand-side derivative, which exists, since f is concave

[10). O
Proof. [ ()=lm(1/e)IF(@; 0 2+8)— Fle, A< lm(Ve)F(es A+2)
—Flgs )]
= F (0, A=lim(1/5)[F(0;, ) — Floss 2—2)]
<lim (1/6)[F(es A~ F(@1 - A=) =1"-().
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Theorem A2. If it is possible to attach a topology to Q such that F'(g, 2) is a conti-
nuous function on Q x R and if there exists a path of minimizing @,, continuous at Ay,
then f(1) is differentiable at A, and

f/(lo)=F/(Q,10a Ao) -

Proof. Since f is concave, for x>y the relations f, (x)< f_(x)< f".(y) hold. For
£¢>0 and with Theorem Al:

F’(anﬂs Aote)= (4 +8)§FI(Q/10, o) f-(A) = fi (o -3)§F’(QAO—E’/10 —&).

The difference between the right- and left-hand-side tends to zero with &¢—0
because of the continuity. Q.ed.
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