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Abstract. The expectation value of a quantum mechanical operator, taken
in coherent states and suitably rescaled, is the solution of an initial value
problem for the heat equation on phase space, in which h plays the role of
time, and the classical observable is the distribution of temperature at ft = 0.

Introduction

A recent paper by Hepp [1] is devoted to the classical limit of (rescaled) expectation
values in coherent states and to their time evolution. Here we sharpen some
results of [1] by relating the classical limit to an initial value problem in h. This
is done with the help of a quantization formula derived in [2].

Notations

Denote by E a 2v-dimensional real vector space with a symplectic form σ. (Phase
space for v<oo degrees of freedom.) Elements of £ will be denoted by α, ί>, t;....
Fix on £ a σ-allowed complex structure J, i.e. a linear map satisfying J2= — 1,
σ(Jα, Jv) = σ(a, υ) and σ(α, Jα)>0 for αφO. Introduce the orthogonal form s(a, v) =
σ(a,Jv\ and the (phase space) Gaussian Ω(v) = e~πs(v>v\ Normalize the invariant
measure dv on E by the requirement §Ω(v)dυ = l. This is equivalent to the re-
quirement F2 = 1 where F is the symplectic Fourier transform:

Ff) (v) = f(v) = j e2iπ«(v> v']f(υ')dυ' .

In the Hubert space L2(E; dv) consider the family of functions Ωa:

Denote by Jf7 the closed linear span of the family Ωα, with the scalar product
inherited from L2(E\dυ). For any ΦeJf one has (Ωfl, Φ)~kΦ( — a\ with
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Also, for every ΦeJf one has FΦ = MΦ, where M is the parity operator:

(MΦ)(v) = Φ(-υ).

Define (W(a)Φ)(v) = e~2iπσ(a'v}Φ(v + a). The Weyl operators W(a) act irreducibly
injff.

A convenient way of writing (even very unbounded) linear operators A in Jήf
is to consider the associated kernel: A(a, b) = (Ωa, AΩb). One proves then

(AΦ) (a) = (l//c2) f A( - a, - b)Φ(b)db .

Weyl Quantization

It consists in associating, to a function fc on phase space, the operator Q(fc)
defined formally by

β(/c)= ί fc(v)W(-v/2)dv= j fc(v/2)W(v)Mdv . (1)

It has been shown in [2] that the two expressions coincide. In order to avoid
a discussion of the convergence of the operator-valued integrals, we replace (1)
by the kernel

(fl«, Q(fc)Ωb) = I fe(v)(P *>(- υ/2)dv = $ fc(v/2)&*> ~b\υ)dv (2)

where

Ω(a>b)(v) = (Ωa, W(v)Ωb) = ke2ίπσ(b>a)e-2ίπσ(a+b>v}Ω(v-a + b). (3)

Heat Equation on Phase Space

Define the Laplacian, A, on E, by A= —FsF, where s is the operator of multi-
plication by s(υ,v). Consider on E the heat equation:

(4)

Let fc be a function in the uniqueness and correctness class for (4); this is only
a very mild requirement. Define /(ft, v) as the solution of (4), with initial data fc(υ\
In other words, /(ft, v) is the distribution of "temperature" at "time" ft, resulting
from an initial distribution /(O, v ) = fc(v).

Theorem. One has

/(ft, υ) = (ί/k) (Ω*-*" , β(/c(ftM)β*~*'0 (5)

where fc(tft ) is the function v-+fc(tftv). Π

Equation (5) describes very intuitively the way in which a (suitably rescaled)
matrix element tends to a classical function. We shall apply it in a forthcoming
paper to the study of time evolution.

In order to prove (5), specialize (2) to

(Ωa, Q(f)Ωa) = k j f(v/2)Ω(v - 2a)dv
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and notice that Gλ(υ) = λ~vΩ(λ~*v) is the elementary solution of the heat equation
dG/dλ=πAG.

It is possible to derive analogous equations for off-diagonal matrix elements,
and equations in which the initial data are given by fc.
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