Heat Equation on Phase Space and the Classical Limit of Quantum Mechanical Expectation Values

A. Grossmann
Centre de Physique Théorique, C.N.R.S., F-13274 Marseille Cedex 2, France
R. Seiler
Freie Universität Berlin, FB 20, Physik, D-1000 Berlin 33

Abstract

The expectation value of a quantum mechanical operator, taken in coherent states and suitably rescaled, is the solution of an initial value problem for the heat equation on phase space, in which \hbar plays the role of time, and the classical observable is the distribution of temperature at $\hbar=0$.

Introduction

A recent paper by Hepp [1] is devoted to the classical limit of (rescaled) expectation values in coherent states and to their time evolution. Here we sharpen some results of [1] by relating the classical limit to an initial value problem in \hbar. This is done with the help of a quantization formula derived in [2].

Notations

Denote by E a $2 v$-dimensional real vector space with a symplectic form σ. (Phase space for $v<\infty$ degrees of freedom.) Elements of E will be denoted by $a, b, v \ldots$ Fix on E a σ-allowed complex structure J, i.e. a linear map satisfying $J^{2}=-1$, $\sigma(J a, J v)=\sigma(a, v)$ and $\sigma(a, J a)>0$ for $a \neq 0$. Introduce the orthogonal form $s(a, v)=$ $\sigma(a, J v)$, and the (phase space) Gaussian $\Omega(v)=e^{-\pi s(v, v)}$. Normalize the invariant measure $d v$ on E by the requirement $\int \Omega(v) d v=1$. This is equivalent to the requirement $F^{2}=1$ where F is the symplectic Fourier transform:

$$
F f)(v)=\tilde{f}(v)=\int e^{2 i \pi \sigma\left(v, v^{\prime}\right)} f\left(v^{\prime}\right) d v^{\prime}
$$

In the Hilbert space $L^{2}(E ; d v)$ consider the family of functions Ω^{a} :

$$
\Omega^{a}(v)=e^{-2 i \pi \sigma(a, v)} \Omega(v+a)
$$

Denote by \mathscr{H} the closed linear span of the family Ω^{a}, with the scalar product inherited from $L^{2}(E ; d v)$. For any $\Phi \in \mathscr{H}$ one has $\left(\Omega^{a}, \Phi\right)=k \Phi(-a)$, with

$$
k=(\Omega, \Omega)=2^{-\nu} .
$$

Also, for every $\Phi \in \mathscr{H}$ one has $F \Phi=M \Phi$, where M is the parity operator:

$$
(M \Phi)(v)=\Phi(-v) .
$$

Define $(W(a) \Phi)(v)=e^{-2 i \pi \sigma(a, v)} \Phi(v+a)$. The Weyl operators $W(a)$ act irreducibly in \mathscr{H}.

A convenient way of writing (even very unbounded) linear operators A in \mathscr{H} is to consider the associated kernel: $A(a, b)=\left(\Omega^{a}, A \Omega^{b}\right)$. One proves then

$$
(A \Phi)(a)=\left(1 / k^{2}\right) \int A(-a,-b) \Phi(b) d b .
$$

Weyl Quantization

It consists in associating, to a function f_{c} on phase space, the operator $Q\left(f_{c}\right)$ defined formally by

$$
\begin{equation*}
Q\left(f_{c}\right)=\int \tilde{f_{c}}(v) W(-v / 2) d v=\int f_{c}(v / 2) W(v) M d v \tag{1}
\end{equation*}
$$

It has been shown in [2] that the two expressions coincide. In order to avoid a discussion of the convergence of the operator-valued integrals, we replace (1) by the kernel

$$
\begin{equation*}
\left(\Omega^{a}, Q\left(f_{c}\right) \Omega^{b}\right)=\int \tilde{f_{c}}(v) \Omega^{(a, b)}(-v / 2) d v=\int f_{c}(v / 2) \Omega^{(a,-b)}(v) d v \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega^{(a, b)}(v)=\left(\Omega^{a}, W(v) \Omega^{b}\right)=k e^{2 i \pi \sigma(b, a)} e^{-2 i \pi \sigma(a+b, v)} \Omega(v-a+b) . \tag{3}
\end{equation*}
$$

Heat Equation on Phase Space

Define the Laplacian, Δ, on E, by $\Delta=-F s F$, where s is the operator of multiplication by $s(v, v)$. Consider on E the heat equation:

$$
\begin{equation*}
\partial f / \partial \hbar=(\pi / 4) \Delta f \tag{4}
\end{equation*}
$$

Let f_{c} be a function in the uniqueness and correctness class for (4); this is only a very mild requirement. Define $f(\hbar, v)$ as the solution of (4), with initial data $f_{c}(v)$. In other words, $f(\hbar, v)$ is the distribution of "temperature" at "time" \hbar, resulting from an initial distribution $f(0, v)=f_{c}(v)$.

Theorem. One has

$$
\begin{equation*}
f(\hbar, v)=(1 / k)\left(\Omega^{\hbar-\frac{1}{2} v}, \quad Q\left(f_{c}\left(\hbar^{\frac{1}{2}} \cdot\right)\right) \Omega^{\hbar-\frac{1}{2} v}\right) \tag{5}
\end{equation*}
$$

where $f_{c}\left(\hbar^{\frac{1}{2}}\right.$.) is the function $v \rightarrow f_{c}\left(\hbar^{\frac{1}{2}} v\right)$.
Equation (5) describes very intuitively the way in which a (suitably rescaled) matrix element tends to a classical function. We shall apply it in a forthcoming paper to the study of time evolution.

In order to prove (5), specialize (2) to

$$
\left(\Omega^{a}, Q(f) \Omega^{a}\right)=k \int f(v / 2) \Omega(v-2 a) d v
$$

and notice that $G_{\lambda}(v)=\lambda^{-v} \Omega\left(\lambda^{-\frac{1}{2}} v\right)$ is the elementary solution of the heat equation $\partial G / \partial \lambda=\pi \Delta G$.

It is possible to derive analogous equations for off-diagonal matrix elements, and equations in which the initial data are given by $\tilde{f_{c}}$.

Acknowledgement. This work was partially supported by contract SE 2871 of the Deutsche Forschungsgemeinschaft.

References

1. Hepp, K. : Commun. math. Phys. 35, 265 (1974)
2. Grossmann, A.: Commun. math. Phys. 48, 191-194 (1976)

Communicated by H.Araki

Received November 10, 1975

