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High Frequency Gravitational Radiation
in Kerr-Schild Space-Times*

A. H. Taub
Mathematics Department, University of California, Berkeley, California, USA

Abstract. Vaidya has obtained general solutions of the Einstein equations
Rab = σξaξb by means of the Kerr-Schild metrics gab = ηab + Hξaξb. The vector
field ξa generates a shear free null geodetic congruence both in Minkowski
space and in the Kerr-Schild space-time. If in addition it is hypersurface
orthogonal, the Kerr-Schild metric may be interpreted as the "background
metric" in a space-time perturbed by a high frequency gravitational wave.
It is shown that Vaidya's solutions satisfying this additional condition are
of only two types: (1) Kinnersley's accelerating point mass solution and (2) a
similar solution where a space-like curve plays the role of the time-like curve
describing the world line of the accelerating mass. The solution named by
Vaidya as the radiating Kerr metric does not satisfy the hypersurface ortho-
gonal condition.

1. Introduction

It is the purpose of this paper to apply the methods and results of Vaidya [1]
and of MacCallum and Taub [2] to the discussion of high-frequency gravitational
waves in Kerr-Schild space-times. The latter authors have described such waves
and their gravitational effects by assuming that they produce a space-time whose
metric tensor is given by

where the bar over a quantity denotes the complex conjugate operation.
Thus they assume that the "background" metric, gμv(X\ is a slowly varying

function of coordinates and that the perturbation due to the gravitational wave,
given by the coefficient of ε in Eq. (1.1) is described by a slowly varying complex
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amplitude αμv and a rapidly varying phase. The vector

lμ=6Ψ/dXμ (1.2)

determines the direction of rapid variation of various quantities.
If Qμv given by Eq. (1.1) is to satisfy the Einstein vacuum field equations to

second order in β, and not arise from gμv by a coordinate transformation we must
have

V = 0, (1.3)

V=0, (1.4)

where

2 (1.5)

0, (1.6)

where the comma denotes the partial derivative with respect to the variables Xμ\

N = aστάστ-^aά^0 (1.7)

and

Gμv = (ε2/2)Nlμl\ (1.8)

where Gμ v is the Einstein tensor computed from gμv(X), that is the "background"
Einstein tensor.

Equations (1.2) and (1.3) imply that lμ is a null, hyper-surface orthogonal,
vector. Equation (1.6) is a conservation equation for the quantity N. Equation (1.8)
describe the back reaction of the wave on the background metric gμv.

In this paper we shall assume that the background space time has a Kerr-
Schild metric. That is we shall assume that

gμv = ημv + Hξμξv, (1.9)

where ημv is the metric tensor of Minkowski space and ξμ is a null, geodesic and
shear free vector field in both the Minkowski space and in the space-time with
the metric given by Eq. (1.9).

The solutions of Eq. (1.8) subject to Eq. (1.9) that are needed for our discussion
are a subset of those described by Vaidya and are obtained by imposing the
additional condition that ξμ be hypersurface orthogonal. That is, that

εμvστξσ,τξv = 0 (1.10)

where sμvστ is the Levi-Civita alternating tensor density.
It will be shown that this latter condition restricts the solutions to two types:

(1) Kinnersley's accelerating point mass solution [3] and (2) a similar solution
where a space-like curve plays the role of the time-like curve describing the
world line of the accelerating mass. It is noteworthy that the solution that Vaidya
labels as the radiating Kerr metric [4] does not satisfy Eq. (1.10) and hence cannot
be interpreted by means of high-frequency gravitational wave perturbation.
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Since solutions of Types (1) and (2) determine Kerr-Schild space-times, there
is an associated Minkowski space-time and a correspondence between shear
free geodesies in these two space-times. The source of the gravitational field in
the Kerr-Schild space-time may be said to be determined by a curve in the
Minkowski space-time from which the congruence of null shear-free geodesies
in the latter space-time emanates. On the image of this curve in the Kerr-Schild
space-time, the metric becomes singular.

2. Vaidya's Results

These results, given in [1], may be conveniently described in terms of a tetrad
of null vectors in Minkowski space. In an inertial coordinate system in this
space we have

We may write two real null vectors and a complex one as

ξ= — sin α cos/? d/dx1 — sin α sin/?fi/fix2 — cosα fi/fix3 + fi/fix4

η = sinαcos/? d/dx1 + sinαsinβ d/fix2 + cosα fi/fix3 + d/dx4

M= — (cosα cos β + i sin β)d/ fix1 — (cosα sin β — i cos β)d/ fix2 + sin ad/ fix3.

Then

ξaηa=-MaMa = 2

and all other scalar products formed from this tetrad of vectors vanish. Further

nab = ittflb + ξb1a) ~ UMaMb + MaMh).

We also define the vector

where the comma denotes the partial derivative with respect to the xa's.
It follows that the condition that ξa be a geodesic, shear-free vector field is

equivalent to the requirement that

as may be verified from the fact that

ξb,a = AaM

and

Mbta= -A

We define

and
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Then we have

z = θ-iΩ = 2ΛaMa.

Vaidya's geometric parameters V and W and two other useful parameters
may be defined as follows:

u = xaξa

v = x«ηa (2.1)

Hence

and

yb = Mb + y cot aAb + (v — u — y cot oc)Ab.

It is a consequence of the above results that α, β, u, and y are solutions of the
equations

ξaf,a = 0.

We take α, β, and u as independent solutions and regard

y = y(u,a,β).

In this case

where

7M=5y/5w ya=δy/δ(X yβ=dy/dβ.

On equating the two expressions for ytb we find that we must have when zφO

yyu+ya-ycotoc-iyβcosQca=0.

yyu + ya + y cot α + zŷ  cosec α + u — υ = — 4z/zz

Acη
c = yuAcM

c

It then follows that

We may then write

ξb = utb-yAb-γAb

(2.3)

Mb = γuξb-4zAb/zz

and thus readily express the metric of space-time in terms of the variables u, v, α,
and β, when y and z are known as functions of u, α, and β.
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The space-time with the metric tensor

where ξa is defined as above has been shown in [1] to have

Rab = σξaξb (2.4)

provided γ and z are related by Eq. (2.2),

H=-M(z + z)/2=-Mθ,

and M is a real function of u, α, β above such that

yMu + Mα — iMβ cosec α + 3yMM = 0 .

In this case

σ=±Muzz. (2.5)

The two real equations determining M may be written as

0

u + 3MWu-MβcosQca = 0.

When neither of these equations is satisfied identically as a result of restrictions
imposed on the quantities M, V9 W, the integrability conditions of these equations
leads to the result

where

p=VWu + Wa = i(z-z)/zz.

In addition one must have

[(I/P) (WuVβ -WVβu + W2 Vm sin α - Pβ)\ = 0.

Given γ(u,v,β) satisfying the first of Eq. (2.2) we may invert Eq. (2.1) and
express xa as functions of u, v, α, β. The curves of parameter v are the curves of the
null, geodesic, shear-free congruence determined by the vector field ξa. The values
of θ and Ω for this null congruence are determined by the second of Eq. (2.2).
Equation (2.3) enable one to readily express the line element in Minkowski
space-time in terms of the coordinates u, v, α, β. The function M satisfying Eq. (2.6)
for given γ determines M and hence the Kerr-Schild metric such that Eq. (2.4)
are satisfied with σ given by Eq. (2.5).

3. The Condition Ω = 0

In order to carry out the program outlined in the introduction we must restrict
the vector field ξa so that Eq. (1.13) and their equivalents, Eq. (1.14) are satisfied.
These equations are in turn equivalent to the statement that

Ω = i(z-z)/2 = 0. (3.1)
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Thus we must determine a complex valued function γ such that

Jlu + ?α - 1 c o t α " ty/ϊ cosec α = 0 (3.2)

ya)=o, (3.3)

and then determine the real function M(w, α, /?) satisfying Eq. (2.4).
If we write

Eq. (3.3) becomes

VWu+Wa = 0. (3.4)

It is convenient to write

and hence

l/θ=-KVVu+VΛ+$(u-v)]. (3.5)

In terms of the variables V and W Eq. (3.2) may be written as

VVu-WWu+Va-Vcota + WβcosecoL=0, (3.6)

WVu+VWu+Wa-Wcotac-Vβcosec<x = Q. (3.7)

We shall limit our discussion of the solutions to Eqs. (3.4), (3.6), and (3.7) to the
situation when Vβ = 0. In that case it follows from the first and third of these
equations that

and hence we have either

or

Case B : Fw =

or both.
Case A has been treated by Vaidya [5] and has been shown to consist of

his radiating star metric, Robinson and Trautman metric and Kinnersley's
accelerating point mass metric. In Case A Eq. (3.6) becomes

VVu+Va-V cot oι = O (3.8)

and admits the solution V = 0. Equation (2.4) then state that M is an arbitrary
function of w. Equation (3.5) becomes

θ = (υ-u)/4 (3.9)

and the line element becomes that denoted by Vaidya as the radiating star metric

[4]
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Another special solution is given by

(3.10)

Equation (2.4) becomes

where x = cosα. Hence M is a homogeneous function of degree — 3 in the variables
u and cosα. Equation (3.4) becomes

(3.11)

The general solution of Eq. (3.8) is given by

F = s i n α % ) , (3.12)

where h is an arbitrary non-constant function,

g = u + Vcotoί = u + h(g)cos(x (3.13)

and hence

Vgu + ga = 0 (3.14)

since

^ ( l - ή ' G r t c o s α Γ 1 (3.15)

ga=-(l-h(g)cosay1h(g)sma=-Vgu. (3.16)

It follows that

VΘ=-Kg-ϊ(u + v)-] (3.17)

and

(3.18)

where the prime denotes the derivative of h(g) with respect to its argument and
m(g) is an arbitrary differentiable function of g.

In the next section we shall see the relation between the metric obtained when
W = 0 and Fis given by Eq. (3.12) to that given by Kinnersley.

In CaseB, when Vβ = 0, it is no restriction to choose constants of integration
such that the general solution to Eqs. (3.4) and (3.6) is given by

u = K(ω) sin α sin (ω — β)

V = K(ω) cos α sin (ω — β) = u cot α (3.19)

W = K(ω)cos(ω-β).

Then

θ = 2/t = 4/(u + v) (3.20)

and

M = m(ω)ρ~\ (3.21)
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where

ρ = sin α[K' sin (ω — β) + K cos (ω — /?)] (3.22)

and K denotes the derivative of K(ω) with respect to its argument.
In Section 5 it will be shown that the metrics determined by the above ex-

pressions for V and W are similar to those given by Kinnersley. They differ in
that a time-like curve which plays a key role in the latter metrics is replaced by a
space-like one.

4. The Radiation Energy Density, Case A

The results of the preceding section together with Eq. (2.3) enable us to determine
the Kerr-Schild metric in a coordinate system in which the variables (α, /?, υ, u)
are regarded as the coordinates of an event in space-time. This follows from the
fact that

ηabdxadxb = (ξadxa) (ηbdxb) - (Madxa) (Mbdxb)

and Eq. (2.3) allow one to readily calculate the right hand side of this equation.
The resulting Kerr-Schild metric

ds2 = ηabdxadxb - Mθ(ξadxa)2

satisfies the field equations

Since we have imposed the condition that Ω = 0we may write

where la is the gradient of a scalar. If we identify the inertial coordinates xa used
in Sections 2 and 3 with the variables Xa used in Section 1, and the gab of the
former sections with gab of Section 1 we see that

ρ2θ2Mu = N. (4.1)

The conserved quantity \ε2N is interpreted as the energy density of the high-
frequency radiation as measured by an observer with four velocity if such that
ifla=l.

In this section we shall determine ρ for Case A when Eq. (3.12) hold. We have
from Eq. (2.3)

It follows from Eqs. (3.15) and (3.16) that

that is,

ξb = (l-K(g))cosagtb. (4.2)



Gravitational Radiation 193

If we define

we use Eq. (2.3) to determine ξadxa, ηadxa and Madxa. We also have

H(ξadxa)2= -2m(g) (dg)2/(l -h'(g) cos φ (4.3)

since

θ = 2/r, M = m(g)/(l - h'(g)cosα)"3.

It is evident that the variables α, β, r, g may be used as coordinates instead of
α, β, u, v.

It is of interest to write the inverses of Eq. (2.1) and express the inertial coordi-
nates in Minkowski space in terms of the variables α, β, r, g. We find that these
equations may be written as

xa = rξa+Ya(g), (4.4)

where

(4.5)

and is the world line of a particle moving on the x3 axis. Thus the Kerr-Schild
metric we are discussing is the one given by Kinnersley [3] for an accelerating
point mass as has been pointed out by Vaidya in [4].

Kinnersley has used as coordinates a set of variables (α, β, R, τ) instead of
(oc,β,r,g). The variables R and τ have a direct geometrical interpretation in
Minkowski space and are related to r and g as follows: τ is the proper-time along
the world line given by Yμ(g) and hence is related to g by the equation

The quantity τ may be considered as a function of x" by virtue of the fact that

ηab(x"-Ya(τ))(xb-Yb(τ)) = 0.

Then

τ,a = (xa-Ya(τ))/R,

where

R = (dYb/dτ)(xb-Yb(τ)).

The equations of the null geodesies emanating from the world line Yμ(τ) are then
given by

(4.6)

and jR is the affine parameter along a particular null geodesic.
If we set
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and

Equation (4.2) becomes

Equations (4.4) and (4.6) become identical if we let

# = r ( l - / z ' c o s α ) ( l - / z ' 2 Γ 1 / 2 .

It follows from the values of the various quantities involved that

MM = m'(l — /ί/cosα)~4 + 3mft"cosα(l — h'cosa)~5.

If we now define

μ = m(g)(l-h2y3/2

and consider ^ a s a function of τ, we may write Eq. (4.1) as giving

N=-(4/R2)(μ-3μΫaτJ (4.7)

for the energy density of the radiation, where Ya is given by (4.5); the dot refers
to differentiation with respect to τ. In terms of these variables the line element
takes the form given by Kinnersley, namely

gμv = ημv-(2μ/R)τfμτfV. (4.8)

In case h is a constant, that is, the particle is not accelerating, we may introduce
a new set of variables (α*, β, R, τ) instead of (α, β, R, τ) in terms of which the line
element (4.7) becomes Vaidya's radiating star metric. We require \h'\ < 1 and then
the angle α is defined in terms of α by the relation

sin α* = j / l —/z/2sin α/( ί — h cos α)

thus

cos α* = (cos α — h')/( l — h'cosoc)

and

Equations (4.4) become

x*a = Rξa(a*)+Y*a

9

where the starred quantities are related to the unstarred ones by the Lorentz
transformation which carries the world line given by Eq. (4.5) into the time
axis and £α(α*) is obtained from ξa by substituting α* for α.

It may be verified from Eq. (4.3) that we may write the line element for Case A
when h is not necessarily constant as

ds2 = 2(1 + h2)ll2d(R(ί + h2ylί2)dτ + dτ\\ - 2μ/R)

dβ2), (4.9)
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where h is considered as a function of τ, the dot refers to differentiation with
respect to τ, μ is an arbitrary differentiable function of τ and

R = r((l+h2)ί/2-hcos<ή. (4.10)

Note that when h = 0 and 2μ<R, the curves of parameter τ are timelike in the
space-time with the line-element given by Eq. (4.9).

5. The Radiation Energy Density, Case B

The discussion of this case can be carried out along the lines used in the discussion
of the preceding section. We begin with the evaluation of the inverses of Eq. (2.1)
when Eq. (3.19) hold. It follows from Eq. (3.19) that

xa = tξa+Ya(ω), (5.1)

where

Y\ω) = K(ω) sin ωδ\ - K{ω) cos ωδa

2 (5.2)

and are the coordinates of a point on a space-like curve in the x*,x2 plane.
Equation (5.1) are evidently similar to Eq. (4.4); they do, however, involve a
space-like curve instead of one which is time-like when hf < 1 in the latter equations.

It follows from Eqs. (2.3) and (3.19) through (3.22) that

ξ dxa = pdω
U (5.3)

ηadxa = 2dt-ρdω

Madxa = [_{Kf cos α sin (ω — β)-\-K cos α cos (ω — β))dω — tdoc]

+ i[(K'cos(ω-β)-Ksin(ω- β))dω +1sinddβ~] ,

where ρ is given by Eq. (3.22). If τ denotes the arc length along the curve given by
Eq. (5.2) we have

1/2. (5.4)

When we set

T = tρ(K'2+K2y1/2

Eq. (5.1) may be written as

χa=Tηabτtb+Ya(τ)

the direct analogues of Eq. (4.6). Equations (3.2) and (3.21) then give

H(ξadxa)2 = Mθ(ξadxa)2 = (2μ/T)dτ2 ,

where

The metric tensor is then
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where ηabdxadxb may be calculated from Eq. (5.3). The energy density N is again
determined from Eq. (4.1) and a calculation leads to the equation analogous
to (4.7) namely

N=-(4/T2)(μ-3μΫaτJ, (5.5)

where the dot refers to the differentiation with respect to the arc length along
the curve given by Eq. (5.2), that is with respect to the variable τ.

It follows from Eq. (5.3) and the above discussion that we may write the line
element in this case as

ds2 = 2{\-K2)ll2K~1dτd(TK{\-k2)-112)

-{l-2μ/T)dτ2-t2\_da2 + ήn2adβ2~] , (5.6)

where

T = tήna[_kύn{ω-β)-{\-k2)ιl2cos{ω-β)] (5.7)

and K is a function of τ, K is its derivative with respect to its argument μ and ω
are functions of τ. The latter is determined by Eq. (5.4) which may be written as

We observe that when K = 0, the curves T = constant, α = constant, β=constant
arc space-like curves provided T>2μ in contrast to the situation that pertains
in Case A when h = 0.
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