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Statistical Mechanics of a One-dimensional Lattice Gas
with Exponential- polynomial Interactions
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Abstract. Some properties of the transfer-matrix for a one-dimensional clas-
sical lattice-gas with exponential-polynomial pair interactions are studied
using Hilbert space techniques.

1. Introduction and Statement of Results

We are concerned here with the statistical mechanics of a classical, one-dimen-
sional lattice-gas, or equivalently of a spin system with exponentially decreasing
pair interactions of the type

o, (n)=A" i ent (0<i<l) (1.1)
i=0

as well as potentials which are a finite sum of decreasing exponentials,

k
oam)= Y ¢t (0<A<1) (L2)
i=1
potential (1.1) will be termed exponential-polynomial type. Ruelle [1]! has
established the absence of phase transitions in one-dimensional systems with
translationally invariant two-body interactions that satisfy the condition
Y. il9(0, )] < o0 (1.3)
icIN
where INis the set of all integers >0.

*  Permanent address: Department of Physics, Simon Fraser University, Burnaby 2, British Colum-
bia, Canada.

! Ruelle’s results actually extend to many-body translationally invariant interactions which satisfy
the following criterion

z ilI‘P(Hl)(O’in ig,..,0)| <0

1>0 0<iy<iz<...<i

where ¢+ 1 is the (I+ 1) body potential.
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Furthermore Ruelle [1] has shown that the study of the statistical mechanics
of one-dimensional lattice systems that satisfy (1.3) is greatly simplified by intro-
ducing the following operator % on the space C(K .) of functions continuous on
K, =[0,1]NIf feC(K,), xeK; i€, x={X;}ien:

ZLf(x)=f(0,x)+7yexp (— ) xiqo(i)) f(Lx). (L4)

icIN
The operator £ defined above is continuous but not compact. In order to intro-
duce a compact operator one proceeds as follows [2]. One first notes that in [1],
one utilizes the Banach space character of C(K ) which contains the functions

#"1, ne N. However, #"1 is an entire function of ), x;¢(i). This suggests that
ieIN
we consider changing to a variable z(x) defined by

0

Zx)= Y 4% x={xh.neK. . (1.5)

k=1

Let D be a closed disk with center at the origin and of radius R> A/(1—A). Let,
further,

AD)=(f:feC(K.), f(2)=o(z(x))
where ¢(z) is an analytic function in a circle of radius |z| <R such that, if ¢(z)=
i C,z", then i R*"|C,|* < oo. Then the restriction %, of the operator % acting
no;OA (D) can ‘t’;; ;een to be defined by

Lpo(z)=@(Az)+yexp(—cz)p(A+ 4z). (1.6)

Proposition 1. #,,4,(D)C A,(D).

The proof follows immediately from the above definition.

Definition. Define on A,(D) a scalar product

flg>= iRZ”Cm

where f(z)=) C,Z" and g(z)=) y,z" Then A,(D) becomes a Hilbert space
A (D). Ferrero [2] has shown that, provided 0<A<1/2, % in (1.6) is compact. It
is not necessary in what follows to restrict A<1/2. We shall require only that
0<A<1. In this article we establish some further properties of % and elucidate
its connection with the transfer matrix. In particular we establish the following
theorems.

Theorem 1. The operator £} in (1.6) is a trace-class operator YN 21, and its
largest eigenvalue coincides with the largest eigenvalue of ¥~ on C(K ) (which is
unique and positive).

Corollary 1. The principal eigenvector of &£ is of the form h(x)= ¢(z(x)), where
@(z) is an entire function of z.

Corollary 2. The largest eigenvalue of ¥ on C(K ) depends analytically on vy
in the neighborhood of 7y real.
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In what follows we drop the suffix D on the operator %,

Theorem 2. Tr(#") is, up to a multiplicative constant (1— i), the partition
function Qy for a one-dimensional lattice-gas containing N-sites interacting through
a pair potential

o) =ci" (1.7)

with periodic boundary conditions.

By this we mean: A given site i(0<i=< N) interacts with all the sites of Z to
its right. (Z = the set of integers =0.) The occupation x; for i = N is determined by

xl‘ +N=— xi (1 .8)
where
_ [0 ifsite i isempty
" |1 ifsite i isoccupied. (1.9

Theorem 3. We form the function

2= exp| 3 0y (110
where
On=(1—-2N)Tr L™, (1.11)

Then E(z), which is analytic in the neighborhood of z=0, extends by analytic con-
tinuation to a meromorphic function in the entire z-plane.

In Section III, we extend our results to systems with exponential-polynomial
interactions of the form (1.1). The operator £ now acts on a Hilbert-space (D)
of functions of (p+ 1) complex variables, holomorphic on open polydisc D, ).

Lf(z)= f(AAz)+y exp(—¢C-2) f(MAz+])) (1.12)
where
Zo
Zy
Z=|2, (1.13&)
Z.

()= (j) it j<i
0=i,j<p, (1.13b)

=0 otherwise
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ie. Aisa (p+1)x(p+1) triangular matrix.

1
1 14
I=|.| and Zoz= ) ¢gz;. (1.13¢)

i=0
1

Finally we indicate how some obvious generalizations can be made to systems
with pair-interactions of the form 1.2.

II. Proof of Theorems 1-3
Lemma 1. The operator £ defined in (1.6) admits the following representation.

2= T T 0 e @)
where ’
Q5> =ye ™z 2.2)
and
PPN gee=1/2mi a:ﬁDf (2)(z—2x)"""Vdz
=1/n! ff’(/lx)s " f . 2.3)

Note that {¢{”},,, is a complete orthonormal basis in #'(D). Furthermore
(Y| f 4« is a linear functional in the dual #* of #(D) and hence it follows
from Riesz’ theorem that there exists a unique &,e (D) such that

W 5=l &N Doy VfeH(D)
and that
1E ey = 1T e - (2.4)
Proof of Lemma 1. Let f(z)e #(D). Then
ZLf@)=2 X5 W1 s
= Y A fM0)/nl+y Y e (A2 f1(A)/n!

nz0 nz0

= f(Az)+ye”“f(A+Az). (2.5)

Proof of Theorem 1. Recall [3,4] that an operator A is of trace class if and
only if

Tr[A]< oo (2.6)

where [4] = + ]/ A*A.
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Now by Riesz’ theorem, .# can be written as
L=3 2oy &P Dy - @7
Denote Tr[.Z ] by ©(£), then
(L) =Tr[Y 2o &1 >]
= ';‘l”f(lcoh")> <ER1)

= Z A ||(0fux)||yf(1)) ”éf.x)”x’(b) . (2.8)

The following estimates are easily verified.
o =R"
lpV | <yR" exp(c*R?/2)
lwi?I<1/R"
Iy II=R™"(1—2/R)=* D
substituting these estimates in (2.8) one finds that
(L)< 1/(1-2) {1+ Ry exp(C*R?/2)/(R—2/(1 - 1))}

provided R>4/(1—A). This is precisely the restriction we had imposed on the
radius R of the disk at the beginning. Compactness of % follows at once as a
corollary of Theorem 1.

2.9)

Proposition 2.
Tr,g’:l/(l—i){l—i-y exp(—c Y A”)}. (2.10)
n=1

Remark. (1—2) Tr & can be interpreted as the partition function for a system
with one site (site 1) interacting with all other sites n>1 to the right with the
pair potential (1.7) and x,,,=x,. For all n>1.

Proof. Choose an orthonormal basis {x,} in # (D). Then

Tr & =Y (x| L|x,> (2.11a)
= me’"(wi,’f’kpff‘)»f* (2.11D)
= Z y"/l'"ange_’“z-z’"(z — %)~ Dz 27 (2.11¢)
= '\;“’J;X/u —7) asﬁpe""‘z(z —Ax/(1—2) " dz/2mi (2.11d)
=1/(1-/1){1+y exp — (cniz")}. 2.11e)

(2.11d) follows from the fact that ) (iz/(z— l))’”v is uniformly convergent for
|z|>A/(1—-4) 0<i<]).
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Proof of Theorem 2.

Tr#N= ZTI‘( Lo L) (2.12a)
{x.}
— Z Z H(,{n <w(xN) (x1)>% <1P(xl)|‘P(x2)>x*
fx} (m} i
L pEN D gl (2.12b)
N
=Z(w I 116 ¢ 11w
{x) (n} i doD k=1

I N

-2mi) N exp(—c g: xk+lzk) ﬁ (zk)”k“/f; [T @@= Axy=*t. (2.12¢)
k=1 k=1 k=1

In above %, is that part of # that corresponds to x=0 in (2.1) and %, is the
part with x=1.

Xpen=2X, and ng y=n,. (2.13)
In (2.12¢) 8,D is the distinguished boundary of DV;i.e

0oD=0yD{x gD, x...x 9yDy .
The N-fold summation is uniformly convergent if Az |<|z,,,—A|(k=1,...,N)

and in particular if the radii R, of J,D, are all equal and such that R,=R,>
A/(1=4); (Vk). Thus

TrépN=Z § ndzk2m

{x} CoD
N
‘eXp(—szkﬂzk)/ [T s —Axkr 1 =42 (2.14)
k k=1
Define a new variable
Zk+1_Zk=Wk+1 With Wk+N=wk (k=1,...,N). (2.15)
In matrix notation (2.15) reads
AZ=W (2.16)
where
N Columns
10. .. -1 z(wy)
—-4A10. 0|2
= 0 £ zor wy=| 20| 2.17)
ml .
Z .
0. .. —i1 Zy(Wy)
Inverting (2.16) we get
N
z;=1/(1—=2") Z Wi AN TE, (2.18)
k=1

[1@z)=1/1 =2 ] dw,. (2.19)
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Inserting (18) and (19) into (2.14), one gets

TrN=1/1-MY § [] dwk(v%xk)

{x:} oD k

exp (=l Y ey T2 | [T (=m0,

A
Clearly, if |z,]> W(Vk), on applying Cauchy’s theorem we pick up the con-

tribution from the poles at w,=Ax,Vk, and we obtain the following.

TreV=1/1-"} (ﬂ A"k) exp <—c/1/(1 — N i Xis 1 szl /lN'ixk+i> (2.212)
k=1 i=1

X3\ k
N N 0 )
=1/(1—/1N)Z(ny"k) exp(—c NS z<~'+~-l+1>). (2.21b)
o\ k k=1 =1 =0

Let k+i (modN)=s, (0<k,i<N) and N+1—i=t. Imposing the condition
Xy n=X; (0<i< N) we can write (2.21b) as

N e} Xk
TrgN=1/(1—M Y exp(—c EDY xmi‘)(ﬂ/% ) (222)
{xi} s=1 t=1

Thus Tr £V is (1—A¥) times the partition function for a lattice gas of N sites
subject to the boundary conditions imposed earlier.

Proof of Theorem 3. From (1.10) and (1.11) it follows that

E(z)= exp( i Y/ (1=2NTrZ N)
N=1

—exp T - T A 223)
N=1

L4

where {1,} are the eigenvalues of & repeated according to their multiplicity. For
convenience we assume that the set {4,} is ordered, i.e.; 1, =4, 24, =...24,=....
From the compactness of % it follows that 1,—0 as k—oo. Performing the sum
over N, we obtain, provided that |z| < 1/|4,], the following

2(z)= exp(z {ln(1—2,Az)—In(1 —ikz)}) (2.24a)
]
=[1(1=242) / [T0-%2) (2.24b)
) )
=f(A2)/f(2). (2.24¢)

The infinite products in (2.24b) are convergent on any compact domain of the
complex plane and thus define in (2.24c¢) a ratio of two entire functions of z.
Thus E(z) which is analytic in a small neighborhood of z, extends by analytic
continuation into a meromorphic function in the entire complex plane.
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So far we have used the lattice-gas language. To translate it into the spin
language we only need to redefine & as follows

b=%.+ L
&, f(2)=-exp(cz) f(— A+ 12) (2.25)
ZL_f(2)=exp(—cz)f(A+12).
Then all the results in this section are valid and in particular

TrgN=1/(1-) ¥ exp(—C%Jiidmil). (2.26)
i=0 1=1

fo.==%1}

IT1. Exponential-Polynomial Interactions

We briefly indicate how the above analysis can be carried over to accomodate
potentials of the form (1.1);

on)=i" io cnt. 1.1)

Ferrero [2] has shown that the operator .# defined in (1.12) is again compact.

Proposition 3. The operator & defined in (1.12), acting on a Hilbert space
A (D) of functions of (p+ 1) variables, holomorphic on an open polydisk D, admits
the following representation

&= - Z >U @) P 3 0Gh> Wil s (3.1)
where ) !
9> = exp(—x2o2) [] (A2 (3.2
and o

p

RN = § ﬂ (dz) 2mi)~®* D f({z;}) / [@—2x)™h. (3:2b)
doD i= i=0

(See Section 1 for notations.) We have dropped the factor y in (3.2a) as this can

easily be incorporated in the end if one wishes.

Proof. The representation (3.1) is an obvious generalization of Lemma 1 to
p+1 complex variables.

Tr & and Tr.#" can be calculated in a manner analogous to the calculations
in Section 2. However there are some important differences in the convergence
arguments. This is best illustrated by calculating Tr.#. From (3.1) and (3.2), it
follows that

Tez=Y 5 110" <o (3.3a)

{ni} {x} i=0

=3 Y10 § [ldz)em e[ A

{n} (x) i=0 doD(*)  «

- exp (—x f cizi) / [T (z— Ax)®+0. (33b)
0 i
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Now the series

oo}

> (/IZAijzj)""/(zi—/lx)”" (i=0,1,...,p)

n;=0 J

are uniformly convergent provided that

ZAijzj/(zi—ix)‘<1//1 (i=0,1,...,p).

This is accomplished if one chooses the radii R§?, R{,...,R$? of the polydisk
0oD™ = 03,D§ x ... x 3,DY such that R$’>R% ;> ...> R’ and

x+ Y (’) R}")} . (34)

J=0\j

RW> 1/(1—2)

Thus for x=0 one chooses the radii R{”) in (3.3b) such that

RO 2/(1—7) [if (3) R}O)] (3.5)
and for x=1
0 _ N (1 g
RO>1/01-A |1+ 3 )R] (3.6)
j=0

Now the summation and integration can be interchanged and we obtain for

TrZ = - dzyexp(—z Y ¢z,)2mri)~ @+ D Zi—Ax—AY A;:z;).
y . LAz

(x) oD =0 i

Let 3.7
wi=z,—AY A;z; (i=0,1,...,p). (3.8)
j
In matrix form
W=(1-14)z. (3.9)
Since (1 — AA) is non-singular, we can invert (3.9) to obtain
z=Y B;w, (3.10)
j
where
B=(1-14)""'. (3.11)

Clearly det B=(1—A)?*! and B is again triangular matrix. The Jacobian of the
transformation is easily seen to be (1—4)"?*1). Applying Cauchy’s theorem to
(3.7), the only contribution comes from the point W =AI. Hence

Tr L =(1—-4) "™y exp(—xAC(1—24)~ 1

(x)
=(1-2) ey exp(—lx i C‘(AA)"I). (3.12)
(x) n=0
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Now
p P
CA'l= Z Z ci(An)lj
i=0 j=0
= Z A Ay - A1 j
i=0 j=0 ki kn-1
(%)
= Ci e .
; ; (ki) (k1) (kz J
P
=Y cn+1y, (3.13)
i=0
o P
Tr;ﬁ:(l—l)‘(l’“){l—{— exp(—— Yoy can“)}. (3.14)
n=1 «=0

Similarly one can calculate TrZ " and one finds the following

N e} p
TrZN=(1—/1N)_(”+”ZeXP(— L Xs X Xoerd" ) can“>‘ (3.15)
{x.} s=1 n=1 a=0

One constructs Z(z) analogous to (1.10)

E(z):exp( i ZN/N(1—Nyp+1 Trf”)

—exp (Ej 2NN pg (p ;L 1) (=Y, zf,f) (3.16)

where {1,} are the eigenvalues of .# repeated according to their multiplicity.
Performing the sum over N, we obtain

2(z)=exp (pf(— 1)+t (” : 1) ] —M“z)) . (3.17)
a=0 k
Defining f(z) by
f(Z)=FkI(1—/1kZ) (3.18)

which is an entire function z, one obtains for 3.17

E(Z): €Xp <pi1 (— 1)“"' 1 (p+ 1) In f(/{az)>
a=0 o
p+1

=[] Lfeeze o ah, (3.19)

Thus Z(z) is a ratio of a finite product of entire functions. Hence it is meromorphic.
The approach to the transfer matrix outlined above can easily be generalized
to pair potentials which are a finite sum of exponentials of the form

M )4
d(n)= ;1 At 21 (c; jnf) . (3.20)
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