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Abstract. A general scheme of constructing a canonical structure (i.e. Poisson
bracket, canonical fields) in classical field theories is proposed. The theory is
manifestly independent of the particular choice of an initial space-like surface
in space-time. The connection between dynamics and canonical structure is
established. Applications to theories with a gauge and constraints are of
special interest. Several physical examples are given.

0. Introduction

Recent development in the theory of geometrical quantization (cf. [7,11,13]) has
caused a growth of interest in the canonical structure of classical theories. There
does not exist however up to now a general canonical formulation of classical
field theory. Excepting few simple cases (e.g. the scalar theory (Π + m2)φ = G(φ\
cf. (1,14]) it is not clear which physical quantities are to be taken as canonical
variables and how to define Poisson brackets. Especially difficult are theories
with a gauge. It seems that the best way to achieve good results in more com-
plicated cases is "to make a lucky hit" of Poisson brackets. For theories in flat
Minkowski space-time the Lorentz invariance is an important guide (cf. [3]).
We think, however, that the existence of such fundamental structure as Poisson
bracket in a given field theory can not depend on the question if 10 pc away the
space-time is curved or not.

In the present paper we are going to formulate a general scheme of the
canonical formalism which is consistent with all particular theories known to
us. The starting point of our considerations is the finite-dimensional canonical
formalism (theory of multisymplectic manifolds) given by one of us [9]1. It appears
that after a deep reformulation one can apply this approach to a large class of
observables (physical quantities, dynamical variables) which contains all physi-
cally interesting examples.

1 Similar results concerning a finite-dimensional approach to canonical formalism was recently
presented by Goldschmidt and Sternberg [17].
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The scheme we present here is very general and can be used for very wide class
of (non-linear) theories. The price of this generality is that we have had to ignore
certain deep mathematical questions connected with non-linear theories (e.g.
the geometrical structure of the set of solutions for a given non-linear theory).
Most of these problems can only be dealt with in concrete examples. It appears,
however, that most of these difficult problems do not interfere with our con-
siderations. We need only some properties of finite-dimensional families of solu-
tions. These properties can be formulated as a set of axioms which are satisfied
in theories which have been studied deeply (cf. [8,12]).

In this way we have been led to the very natural notion of an inductive dif-
ferential manifold (IDM) which is a generalization of a differential manifold. It
seems to us that this notion is much more adequate to study the structure of the
set of solutions of field equations than the notion of an infinite dimensional dif-
ferential manifold. The problem of constructing a differentiable structure in the
set of solutions of field equations seems to be extremely difficult in general.

One of the advantages of our theory is the connection established between
the canonical structure and the dynamics. Both are defined by the same multi-
symplectic structure. The Poisson bracket is not a supplement to the field equa-
tions but is one of its fundamental structures. The problems (very difficult in
general) of covariance of the canonical formalism are automatically solved in
our approach. Physical quantities are not functional in the set of Cauchy data
over some space-like surface σ (and testing if the Poisson brackets do not depend
on σ is a rather difficult procedure) but are functionals on the set of complete
solutions of the field equations. Our approach gives a considerably simplified
treatment of theories with gauge. It appears that physical quantities (for which
the Poisson bracket is defined in a natural way) are gauge-invariant functionals.
Thus in electrodynamics we do not need to worry about the Poisson brackets
for potentials.

In Section 5 we give several examples, but many important observables (e.g.
generators of the Poincare group) have been omitted since they have been
examined in [9].

The notation of the present paper is the same as in [9]. In particular, if Ω is
a submanifold of ̂  embedded by a mapping i\Q-+& and α is a differential form
on 0> we denote α|Ω: = i*α.

Recently one of us W. Szczyrba, using the general theory elaborated in the present paper has
obtained a natural symplectic structure for a set on Einstein metrics in General Relativity. These
results will be submitted for publication in Commun. math. Phys.

The authors would like to thank Proffessors K. Maurin and I. Birula-Biaϊynicki for lively interest
in their work and fruitful discussions.

We thank also very much Professor D. Simms for his deep comments which were very valuable
for us during the preparation of the manuscript.
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1. Multisymplectic Structure

The canonical formalism in field theory is usually defined by analogy with me-
chanics. It appears, that the natural tool is the notion of multi-phase space.
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Definition. By an π-phase space we mean a pair (̂ , y) where & is a r-dimen-
sional (r>n) differentiable manifold and y is a closed differential (Vι-l-l)-form on
0>:dy = 0.

The whole dynamics is contained, in this approach, in the form y because of
the following:

Definition. A submanifold Ω embedded in ̂  is called y-singular if for every
vector field X tangent to ,̂ defined on Ω the following is true:

(*J?)|Ω = 0. (1.1)

Definition. By a state in multi-phase space (̂ , y) we mean any maximal (i.e.
which is not contained in any other) y-singular submanifold of &.

In further considerations we shall always assume the regularity condition of
(&•> Y) (cf. [9]) which assures that each two states are submanifolds of the same
dimension.

In mechanics n=l, & is the (ί, q\ PJ)- phase space, of Cartan's homogeneous

formalism, y = d(^pjdqj — Hdt), and states are the usual Hamiltonian trajectories

(cf. [9]).
In a field theory Eq. (1.1) are simply field equations and every state is a graph

in multi-phase space & of a solution of the field equations.
As an example take the scalar field theory. We start from the bundle of

4-co vectors j\ T*(W) in the space J/F = lRx M where M is space-time. Take in W
4

a coordinate chart (φ, xμ). There is the canonical 4-form in the bundle /\ T*(W)

3

(o = ηdx° Λ dx1 Λ dx2 Λ dx3 + ^ημdx° Λ ... /\dφ Λ ... Λdx 3 , (1.2)
μ = 0 £

4

where (φ, xμ, 77, τ?μ) is a coordinate chart in /\ T*(W) given uniquely by the chart
(<p, xμ) in FT.

4

As the 4-ρhase space we take the 9 dimensional submanifold of /\ T*(FF)
given by equation

η + H(φ,x^ηv) = 0. (1.3)

The form y is given by: y = dω\0> = d(ω\£P).
It can be easily shown (cf. [9]) that if we parametrize a state by space-time

coordinates :

then Eq. (1.1) are equivalent to the field equations:

dφ/dxμ=dH/dημ

Σ dημ/dxμ=-dH/dφ.
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Taking e.g. H = ̂ (ημημ + m2φ2) — F(φ) we obtain equations:

(where G(φ) = F'(φ).
The above approach can be called the multiphase formulation of a field

theory. It follows from the geometrical theory of the calculus of variations (see
[5, 16]) that for a given Lagrangian theory there always exists a multiphase
formulation of it. A very interesting question is whether this formulation is more
general than a Lagrangian one. It is a problem of constructing a multi-phase
space for a given system of (partial) differential equations. This problem has
already been partially solved and the results will be published soon. In the present
paper our starting point is a multisymplectic manifold (@>, y) and we do not need
any assumption about its origin.

The set of all states of our theory will be denoted by Jjf(0>, y) or simply Jtif.
We shall assume in the sequel the "hyperbolic" character of (̂ , y). This means
that there exists in 0> a sufficiently large family # of (n—ΐ)- dimensional sub-
manifolds of ̂  playing the role of "initial data" for the field Eq. (1.2). This has
to be understood in the following way: for any cCΉ there exists a state ΩeJtf
(not necessarily unique) containing c (i.e. c is a submanifold of Ω). For the further
development of the theory we assume that ^ satisfies the set of natural axioms
formulated in [9]. In relativistic field theories over space-time M (where & is
a tensor bundle over space-time) the set of all Cauchy data over all space-like
surfaces of M satisfies those axioms and can be taken as #.

Elements of the family ^ will be called admissible initial surfaces (a.i.s.). Our
goal is to define a canonical structure (Poisson brackets) for functionals (of a
certain class) defined on the space of states ffl. Such functionals will be called
physical quantities (observables, dynamical variables).

Previously one of us has given a theory of local observables [9]. It appears,
however, that there are only very few such quantities (cf. also [17]). A more
general approach will be presented in Section 3.

2. "Pseudo-Differentiable" Structure of the Space of States

Our main goal in this paper is to find a natural symplectic structure in the space
ffl. It is known that such a structure defines Poisson brackets and the connection
between canonical vector fields and physical quantities.

If the set 3? was an infinite-dimensional manifold the symplectic structure
would be represented by a differential 2-form Γ, closed and non-degenerate (in
some sense). But a construction of a differentiable structure in ffl is in general
very difficult. For our purposes it is more natural to use the notion of an
"inductive differential manifold" (I.D.M.) which will be defined below.

An inductive differentiable manifold is, roughly speaking, a space in which
the notion of finite-dimensional submanifold is defined, and which is "exhausted"
by its finite-dimensional submanifolds, in the sense given below. None of these
submanifolds, however, may be "thick" enough to fill a neighbourhood of Ω.
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Definition. By an inductive differential manifold of class Cs we mean a pair
(JT,<O where:

1. ^f is a set.
2. s$ is a family of injective mappings (κ, P^) of open fc-dimensional cubes Pk

(where fc = 0, 1,2,...) in R*:

into Jf i.e. κ:Pk-+Jf.
3. The following axioms are satisfied:
a) For every point ΩeJf there exists at least one mapping (κ, P/Je^ such

b) For each two maps (κl5 Pfcl), (κ2, Pfc2) with intersecting images [i.e. κ^P^n
κ2(Pk2) is non-empty] there exists (κ, P^) such that κl(Pkί)Cκ(Pk); κ2(Pk2)Cκ(P^.

c) If (κ l9Pkl), (κ2,Pfc2)e^ and %i(Pfel)Cκ2(Pfc2) then κ2 ^κ^P^P^ is a Cs

diffeomorphism onto a submanifold embedded in Pfc2.
d) If (κ,Pfc)e^/ and φ:Pkl-»Pk is a Cs-diffeomorphism onto a submanifold

embedded in Pk then (κ°φ, Pkί)e^.
The family j/ will be called an atlas of ^f. Its elements will be called finite

dimensional (parametrized) surfaces in Jf7.
The axiom d) plays the role of a completness axiom for the atlas jtf. The

family ja/ defines in Jf the inductive topology (cf. [4]).
We shall now define the tangent space at the point ΩE 2tf . Consider the family

Ωeκ(Pk)

where "e" is a vector in IRΛ We introduce in ^Ω the following equivalence rela-
tion: (Pfcl, κ l 9 ^ι)^(Pfc2? κ2, β2) if and only if for every surface (κ3, Pfc3) containing
(κx, Pkl) and (κ25 Pfe2) [in the sense of axiom b)] the following equality holds:

(κ3-
 1 oκJίκΓ H^))^ =(κj Ioκ2)' (*ί 1(Ω)>2 ? (2.1)

where Fr(x) ^ denotes the derivative of the mapping F taken at the point x and
acting on the vector e.

The quotient space TΩ = 3/~Ω/~ will be called the tangent space to Jf at Ω.
It inherits a natural vector space structure from that of the set of representatives :

α(Pfc? κ, *) + flPfc, κ, /) = (P* κ, αe + βf) ,

where α, jβ are real numbers. The self-consistency of this definition can be easily
proved.

For a given inductive differential manifold $f we can define in a natural way
such geometrical objects as Cs-mappings, tangent mapping, vector fields, dif-
ferential forms, exterior derivative, submanifolds (of finite dimension), Lie deriv-
ative etc. (cf. [10]). All these definitions use the possibility of pulling back the
corresponding object to IRfc using our mappings (κ, Pfc).



188 J. Kijowski and W. Szczyrba

For example:
The mapping ϊtf 3Ω-+Ϋ(Ω)e TΩ(J4?) is said to be a Cs-vector field in 2tf if for

every Ω there exists a surface (κ, P )̂ passing through Ω [i.e. Ωe κ(Pk)] such that
Ϋ is a Cs-vector field tangent to κ(P^ in a neighbourhood of Ω on κίP^).

The last statement is to be understood in the following sense: there exists
a vector field (of Cs-class) e(x) in some neighbourhood of κ~1(Ω) in Pk such that
(Pfc, κ, e(κ~ \Ω)}) represents Ϋ(Ω).

As a second example we can take the commutator of two vector fields. We
use the fact that "locally" both fields are contained in a common finite-dimen-
sional surface (κ, Pk). The commutator is thus defined with the use of the com-
mutator of finite-dimensional fields.

Now we shall construct the structure of I.D.M. in the space Jtf of states of
a given multi-phase space (̂ , y) by means of families of transformations in £P.
As we have already noticed (Section 1) there are in general few transformations
of & which carry all states onto states. But for defining local Cs-surfaces "in a
neighbourhood" of Ω we need only such transformations which carry Ω onto
states :

Definition. The I.D.M. structure in jjf is given by the family j/ of all mappings
of the following form:

where

(2.2)

and ψ is a smooth mapping PkxέP-*& such that
1. For every (t1,...,t1ϊ)ePkψ(t1,...9tk; ) is a diffeomorphism of ̂  such that

image of Ω is a state i.e. ψ(tί,...9tk'9Ω)eJ#'.
2. V(0 l 9...,0;.) = id^
3. ψ satisfies the non-degeneracy condition which will be formulated in two

stages :
a) If fc=l then for every tePl there exists peΩ such that the following

mapping: Pi^t-^ip(t;p)e^) is transversal to Ω at (t p) [i.e. d/dtιp(t9p)φTp(ΩJ].
b) If τ-»(f1(τ),...,tΛ(τ))ePΛ is a curve in Pk with non-vanishing tangent vector

then the map φ(τi ) = ψ ( t ί ( τ ) 9 . . . , t k ( τ ) , ) fulfils the condition a).
The fundamental problem of our theory is to prove that such mappings

satisfy Axioms 3 a) and 3b) of the definition of I.D.M. (the other axioms are
satisfied). It is a question about the global geometry of the set of solutions of a
given system of field Eq. (1.2). We know, however, that our axiomatics is not
empty. It is satisfied by the large class of relativistic, globally hyperbolic field
theories. In this case & is a tensor bundle over space-time M, and states are global
sections of this bundle. By hyperbolicity we mean a possibility of parametrization
of the space ffl by the space of Cauchy data over a fixed space-like surface σ C M.
Cauchy data are here sections of the bundle ( σ̂, π|σ, σ) which is the reduction
of (̂ , π, M) to σCM. Now we can limit ourselves to transformations ψ\0*σ of the
space 0>σ (and not the whole space 3P\ If constraints imposed by the theory on
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the space of initial data are not too complicated (as is the case in all reasonable
theories) we can easily prove that the set j/σ of mappings generated in 2tf by
families ψ\^σ,ψes/ satisfies our axioms. Now it remains to prove that different
atlases ^σ obtained by choosing different space-like surfaces σ in M are com-
patible (i.e. are the same). This is a consequence of global hyperbolicity of our
theory.

The I.D.M. approach is even in this case less complicated than a construction
of a differentiable structure in ffl by using e.g. Cauchy data as local coordinates.
In the last case we should have to worry about a topology in the space of Cauchy
data, a notion of Frechet derivative etc. which are very hard problems in the
general case. We would like however to mention that our approach can be useful
even for theories in which there are no global solutions (because states may have
singularities at some points at space-time).

If ιp is such as in 2 a) then

t-+Ωt={ιp(t',p)e0>:peΩ} = κ(t) (2.3)

is a smooth curve in ffl such that Ω0 = Ω. Let us take the vector field generated
on Ω by ψ:

ψ(t;p)eTp(0>). (2.4)
ί = 0

Such vector fields which are defined on Ω and may be not tangent to Ω will be
called "vector fields on Ω". Vector fields on Ω which are also tangent to Ω will
be called "vector fields in £Γ (cf. [6]).

Theorem 1. // Ϋ is any prolongation of Y onto a neighbourhood UofΩ in & then

J^y(ljy)|Ω = 0 (2.5)

for every vector field X in U.

Proof in Section 6.
We would like in the sequel to represent vectors tangent to 2tf at the point

Ω by vector fields generated by families of diffeomorphisms {ιp(t; )} by the for-
mula (2.4). We see however that this correspondence can not be univalent. The
same curve t-^Ωt can be obtained by different diffeomorphisms i.e. the same
vector tangent to a given curve can be represented by different vector fields on

Ω. Let ψ1 and ψ2 giγe the same curve in ffl i.e. for every |ί|< 1 the corresponding
images are equal:

It means that:

^:=V>2(ί; Γ l oVι(ί; ) (2-6)

transforms Ω onto Ω and the vector field ΩBp-+dλt(p}/dt is tangent to Ω. If we
differentiate the formula (2.6) we obtain

) , (2.7)
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i.e. the difference between vector fields defined on Ω by \pi and ψ2 *s a vector
field in Ω (tangent to Ω). Such vector fields satisfy automatically the condition
(2.5) since

by virtue of (1.1).
Vector fields in Ω are generated e.g. by transformations ψ(t ) leaving Ω

invariant which correspond to constant curves in 3>ίf(Ωt = Ω;\t\<l\ i.e. vector
fields in Ω (and only they) represent the zero vector in TΩ(^f).

Condition (2.7) is not only necessary but is also sufficient for Ύγ and Y2 to be
tangent to the same curve t-*Qt\ Take Y2=Yί+X where X is tangent to Ω and
Yί = dιφί/dt(0;-). Take any family ξt:^^^ of diffeomorphisms of & trans-
forming Ω onto Ω "tangently" to X i.e. :

d/dt\t=0ξt(p) = X(p) for peΩ.

Then put ψ2(t; p):= ψ^t; ξt(p)). Both curves generated by ψί and ιp2 in ̂  are °f
course the same and:

dιp2/dt(Q;p}=Yί+X=Y2

which was to be proved.

The above considerations show that vectors tangent to Jtif can be represented
by classes of vector fields on Ω satisfying condition (2.5) modulo vector fields in
Ω. Denote the space of such classes by TΩ. In general we do not know if the tangent
space TΩ(J^f) (which can be identified with a subspace of TΩ:TΩC TΩ) is equal the
whole space TΩ.

A very important role is played in the sequel by the subspace TΩcTΩ composed
of vectors corresponding to "spatially compact" deformations of Ω. More pre-
cisely: vectors of TΩ are represented by such vector fields Y on Ω that for every
a.i.s. cCΩ there is a compact set Kcc such that Y is tangent to Ω in {c — K}.

3. Symplectic Structure and Poisson Brackets

We approach now the main point of our considerations: defining in 2ff a smooth
2-form Γ. Such a 2-form is a bilinear, antisymmetric functional on the tangent
space:

According to the general procedure in I.D.M. the smoothness of Γ means that
κ*Γ is a smooth 2-form in Pk for every local surface (κ, P^GJ/. Our 2-form Γ
will be finite-valued only on a subspace of TΩ x TΩ. For the sake of simplicity we
shall define it only for such pairs of arguments that at least one of them belongs
to TΩ°.

)= ί (Y^Y2)Jy, (3.1)
cCΩ




