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Abstract. We prove bounds of the form ZΛ^ea{Λl and ( S Z ) ^ ^ 1 in the Y2

Euclidean field theory and from this obtain Glimm's Hamiltonian bound and
Schrader's linear lower bound.

I. Introduction

One of the most basic infinite volume bounds in constructive field theory is a
linear lower bound on the energy per unit volume. Such bounds were first proven
in P(φ)2 theories by Glimm and Jaffe [6], Y2 theories by Schrader [18] and φ%
theories by Glimm and Jaffe [7]. The Euclidean translation of these bounds fits
into the view of Euclidean field theories as statistical mechanical systems [10, 8]
for the "essentially equivalent" Euclidean bound is an upper bound on the
pressure (see [10], § VI).

Our goal in this paper is to provide a new proof of and, we feel, new insight
into Schrader's bound. Along the way we will establish Glimm's basic result [4, 5]
that the (renormalized) Yukawa2 Hamiltonian spatially cutoff is bounded from
below. (This result is a basic input in Schrader's proof.) We also prove a volume
independent bound on the Euclidean pressure — in fact this is our main input in
proving the results of Glimm and Schrader. Conversely, we should note that given
the connection between the Hamiltonian and Euclidean theories (see [15], §111
for this connection, which uses the Euclidean Fermi fields of Osterwalder-
Schrader), Schrader's result implies a bound on the pressure.

A "semi-Euclidean" proof of Schrader's result has been obtained by Brydges [1].
When our own work on this subject was completed in a preliminary draft, we
received a preprint from McBryan [15] with similar results. McBryan also works
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in the Matthews-Salam formalism but his methods of estimation are quite
different from ours.

We deal throughout in the formalism of Matthews and Salam [12, 13] (see
also Schwinger [22]) in which the fermions have been integrated out. For the
Euclidean Y2 theory with a space-time cutoff, the renormalization cancellations
have been controlled in this formalism by Seiler [19]. We follow the notation of
that paper with one change: namely, for A e %n(%n={A\ \\A\\n

nΞΞTγ{{Ά*A)n/2)< oo})
we define detn by:

d e t n ( l + ^ H d e t [ ( l - M ) e x p [ £ r l (-A)k/kJ] (1.1)

(this is called det^-^ in [13]; both conventions are used in the literature).
The Matthews-Salam formalism is critical for our method of proof. In the

first place, we do not appear to be in possession of an analytically powerful
Euclidean Fermi field theory; while the fields of Osterwalder-Schrader [17] have
provided a useful bridge between the Euclidean and Hamiltonian worlds, they
have not yet proven to be useful in proving estimates. More critically we use
certain LP properties which are formally false in a theory before the fermions are
integrated out. For let dμ0 be the free Bose field and let dv denote a formal symbol
for a putative fermion integration. If gU(A) is the basic Yukawa interaction in
region A (with g a coupling constant and the Fermi fields Wick-ordered), the
counter-terms are quadratic in g, say of the form g2C(Λ). Then, formally, we
expect that [J dμ0 j dv exp(-g\J(Λ) -g2C(Λ))'] < oo. But then for p> 1
{§ dμ0[Qxp( — gU — g2C(Λ)Y} = oo since the pth power takes gU to pgU and g2C
to pg2C rather than p2g2C. Thus methods such as ours formally fail in a theory
where the fermions have not been eliminated by a preliminary "integration".
The moral of [19] is that j dμo[j <ivexp( — gU — g2CJ]p is finite, so integrating
out the fermions helps.

The basic decoupling of distant regions we will exploit is a consequence of the
hypercontractivity and Markov property of the free Bose field, essentially in a
form discovered by Nelson [16]. We need the following "checker-board" estimate
[10] which generalizes Nelson's basic idea:

Theorem 1.1 ([10]). Let dμ0 be the free Bose field of mass m0 in 1R2. Let {Λa}aeΈ2
be the partition of IR2 into squares of side I with centers at points la. Let fa be a
function of the fields in Λa. Then for any p:

where

e-m°1)2. (1.2b)

The point of (1.2) is, of course, that the Lq norm, || H^ on the right is independent
of the number of factors on the left, a vast improvement of Holder's inequality.
For the P(φ)2 case where exp(-U((J«e;r Λ«)) = Π«/« [wi*h /α = exp(-U(Λα)],
(1.2) immediately provides the bound jexp[ — U([jaeχΛJ]dμ0^Ox^ (this is
essentially Nelson's proof of the linear lower bound).

Our goal in this paper is to prove a bound of the form

j dμ0 det r e n [l + K(\JaeX Λa)-\^C^ . (1.3)
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In (1.3), det r e n is a "renormalized" determinant defined in [19] which is formally
just det(l + K) exp(counterterms) where the counterterms involve linear Wick
ordering (Tr(K)), the local quadratic mass counterterm and the second order
vacuum energy renormalization. To describe K(Λ\ we introduce some simple
notation. We work on the Hubert space L2(1R2, dx;<£2) of square integrable
(C2-value functions. iP denotes the gradient operator. Then

11^, (1.4a)

where

2 (1.4b)

with Γ either 1 (scalar) or iy5 (pseudoscalar). In all our estimates we will ignore the
unitary W(P\ and as a result the spin degrees of freedom. It is straightforward
to make the necessary modifications to include the factors of W(P). We also take
coupling constant g = ί for simplicity. We also remark that the K of (1.4) differs
from that in [19, 14] where (P2+ rn2)~1/2W(P)χΛ(x)φ(x) is considered on
L2(IR2, ]/P2 + m2d2p, (C2). But clearly, under the natural unitary equivalence of
L2(IR2, d2x) and L2(IR2, \/Y2 + m2d2p) the two are equivalent.

Since dQt(l + K([jaeX Λa))+ Y\aeXdet(l + K{ΛJ\ we cannot directly use (1.2)
to prove (1.3). Our philosophy in this paper is to use determinant inequalities
to bound det r e n ( l+K((J α e X yl α )) by a product of the form f ] α ua and then use
checkerboard estimates. Were it not for renormalization, this would be easy.
Explicitly, if K{Λ) were trace class, we could use

li). (1.5)

Notice that (1.5) implies a bound on the pressure in a theory where SF(x — y) is
bounded even if there is no exponential falloff in the Fermi degrees of freedom!

Our basic determinant inequality appears in § 4. It will require us to control
"error" terms of a form close to expQ] a ? i g e X WK^β^). Bounds on trace ideal
norms of such integral operators appear in § 2. Those bounds allow us to bound
WKJKpWi by e-D^~β^F(φχa)

il2F(φχβ)
112 where F is "quadratic" in φ. Integrability

of Qxp(F(φχJ) is discussed in § 3. Then, by checkerboard estimates, we have

We put everything together in § 5 to prove (1.3). More general bounds on (SZ)^
and a sketch of the proof of the Glimm and Schrader bounds appear in § 6.

II. Trace Ideal Properties of Some Integral Operators

Lemma 2.1. Let2<,p^co. Let f,ge Z/(IR2, d2x\ Then f(P)g(X) is a bounded
operator on L2(1R2, d2x) in the trace ideal ^p and

^ | | p . (2.1)
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In particular, if heLp\ the dual space of Lp, and A is the operator with integral
kernel h(x — y)g(y), then A e ^p.

Remark. T. Kato (private communication) has obtained similar estimates by
similar methods.

Proof. The final statement follows from (2.1) and the remark that convolution
with h is the operator (2π)h(p) and he LP by the Hausdorff-Young inequality.
(2.1) is obvious when p = oo. When p = 2, f(p)g(x) has integral kernel
(2π)~ι f(x — y)g(y) where / is the inverse Fourier transform. Again (2.1) holds.
Now consider general p. Since f(P)g(X) = \J[\f\{P)~][\g\(X)~]\ with U, V unitary,
we can suppose /, g a.e. non-negative. In that case, let

where a(z) = pz/2. Then F(z) e ^ 2 if Rez= 1 and is bounded if Rez = 0. The theorem
now follows by interpolation (see e.g. [9]; more detailed references and history
on interpolation can be found in [20]). D

Theorem2.2. Fix I. Let χa9 aeΈ2, be the characteristic function of the square
with center at la and side I. Fix q^.1, fc^O. Suppose operators A, B are given with
(P2 + m2ykχaAΊn c€q and Bχβ(P2+ m2yke%q, Then, for all α, β with | α - β | > j / 2 ,
(i.e. non-touching squares), Bχβ(P2 + m 2)" 1/4rχaA e (^1 and

l i ^ / ^ + m 2 ) - 1 / ^

Proof. Given α, β let ηatβ be a smooth function on 1R+ with support in
( | α _ β | _ j / 2 - ε , | α - ^ [ + 1 / 2 + ε), identically one in ( | α - ^ | - | / 2 , | α - β | + ]/2) where
ε is chosen with |/z + ε<2. By translating a fixed function, we can bound
\\DkVoL,β II oo uniformly in α, β. Let (P2 + m2)~1/4 be convolution with some function G.
Then'_ χ^)G{x-y)χβ{y) = χa{x)naβ~ι\x-y\)G{x-y)χβ{y). Now {-Δ+m2)2k

bia,βQ~ ^ΊxDGixϊ]^ f*,β(χ) i s a L1 function with \\faβ\\ι ̂ C 1 e~ D | < χ " / ? l because of the
exponential falloff of G and its derivatives. Thus, letting Faβ be convolution
withL,:

= lBχβ(P2 + m2y k~]F aβ\_{P2

so the result (2.2) follows from Holder's inequality for operators and the fact that
Young's inequality implies that Faβ is a bounded operator with norm ||/α/?||i •

Lemma 2.3. Let χa be the characteristic function of the square of side I and center
la. Then:

(a) // 0 ^ v < 1/8 and λ -2v> 1/8, then

[_(P2+lΓ\χJ(P2 + iyeV4. (2.3)

(b) Under the hypothesis of (a)

[(^ 2 + l ) v

? Z α ] ( ^ 2 + l ) ~ A e ^ 4 . (2.4)

(c) IfO^v< 1/16, λ-2v> 1/16, then

e^8. (2.5)
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Proof, (a) The operator in question has a momentum space integral kernel

We first note the bound

Γ ^ l + lp^Γ 1 , (2.6)

where pγ and p2 are the components of p. Next we note that to prove A is a ̂ 4

kernel, it suffices to find a ̂ 4 kernel L with |A(p, g)|^L(p, g) pointwise/For the
operator with integral kernel A is in ̂ 4 if and only if j A(p, q)A(r, q)dq e L2. It
thus suffices to find /, fe Z,4 and g, g e Z 4 / 3 with

q); Ipl^lβl, (2 7a)

| ̂  f(p)g(p- q) |p| ύ \q\, (2.7b)

and appeal to Lemma 2.1.
Suppose first, that \p\ ^ |^|. From the bounds

we conclude that for any β e [0,1]

\{P

2 + iyλ-(q2 + l)-λ\^C(p-q)β{q2 + l)-λ-ί/2β. (2.8)

Thus (2.7a) holds with f(q) = (q2 + iyλ~1/2β + v and g(x) = C\x\β(l + \xί\y1

(l + |x 2 |Γ\ For / G L 4 we need

λ+l/2j8-v>l/4

and for g e L4 / 3

Such a jβ exists since /I — v > 1/8.
Now suppose |p|^|<?|. Then (2.8) is replaced by:

We also have

so (2.7b) holds with/(p) = (p2 + l ) - λ " 1 / 2 + v and

(i + l ^ l ) " 1 - F o r / e L4'we n e e d

A+1/2J8-V>1/4 (2.9 a)

and for g e L4/3

l/4. (2.9b)

Taking )8=l/4 —2v —e, (2.9b) holds and (2.9a) becomes λ-f- l/8-2v- l/2e> 1/4
which can be arranged by choosing a suitable ε.
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(b) Since \_A, B~]C=[AC, B]-A\C, B\ we have:

so the result follows from (a).
(c) The proof is similar to (a), (b). D

Theorem 2.4. Let αΦ/J. Then
(a) yJP2 + m2yλχβE^4 if A > 1/8.
(b) (P2 + rn2)vχa(P2 + rn2yλχβ(P2 + tn2y e%A if 0 ^ v < 1/16, λ-4v> 1/8.

Proof, (a) Since χaχβ = 0, we have:

χα(P2 + m2) - ̂  = [χα, (P2 + m 2 )" %

is in ̂ 4 by Lemma 2.3 (a).

(b) Since ABCDE = [A, £]C[D, £]+B(AC£)Z) + [A, J3]C£D + J5>1C[A £ ] ,
we have that

(P2 + m2γχGC{P2 + m2)-λχβ(P

/ ] is in ^ 4 by Lem-
ma 2.3(c). A2 is in ̂ 4 by part (a) above. A3 = [(P 2 + l)v, χ α ](P 2 + l)'λ + vχβ is in ̂ 4

by Lemma 2.3(b). A^ is similarly in ̂ 4 . D

III. Integrability of Some Functions of the Free Bose Field

In our discussion in the Introduction of the kind of cross terms that occur in our
determinant inequalities we were led to consideration of a condition

ldμ0Qxp[F{φχJ]<co

for suitable functions F "quadratic" in φ. In this section, we wish to prove such
integrability estimates. We first prove some general integrability results for
general Gaussian random processes. We follow the notation of [21] for these
general processes.

Theorem 3.1. Let dμ0 be the measure associated with the Gaussian random
process indexed by Jtf. Let u(φ) be a function in @m=oΛn(^) (tne "polynomials"
of degree less than k=l). Suppose that \\u\\2<(k/2e)k/2. Then

jίiμ0exp(|w|2//c)<oo .

Proof. We must show that Yd^0{nl)~1\\u2nlk\\1<oo. For 2n/k^2, we have
\\^2n/k\\iS | |l + w 2 | | i<oo. For p = 2n/k^2, hypercontractivity implies that

so

for any δ > 0. Thus the sum in question converges. D
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Theorem 3.2. Let Abe a strictly positive Hilbert- Schmidt operator on #f (i.e. one
with zero null space). Let ubea homogeneous polynomial of degree k in the Gaussian
process indexed by &C. Then for all a sufficiently large:

j<iμ0exp(|w|2/k)exp( — α:(φ, Aφ)\)<co .

Remark. By a homogeneous polynomial of degree k, we mean uF =
<F, φ( i)...φ( fc)> where F is in the n-fold symmetric tensor product (X)*=i sJ"f,
with F such that uF e Γ(j^f) (certain "partial traces" finite).

Proof. dv = dμ0 exp( —α:(φ, /40):)/Normalization is also a Gaussian process
but with covariance

(φ(flφ(g))v= l/2( fΛl+o^Ay'g).

[Note: Following the convention in [10], dμ0 has covariance l/2(/, #).] Let
{e

n}ΐ=i be a basis of jf consisting of eigenvectors of A; Aen = λnen. Then uF can
be written

and we obtain

with

k V | 2m Ί 2

m

where the sum runs over all n, , r. , /,-; I is a binomial coefficient and < > is the
J \2m) [ m J

number of ways of pairing 2m elements. The point is: since all Aj>0 and each
Tm(oc) is finite for α = 0, Tm(α)->0 as α->oo. Thus for α sufficiently large j \uF\

2dv<
{k/2e)k/2, so

j dμ0 exp(]u|2//c) exp( — α:(φ, ̂ 4φ):) = const j dv exp(|w|2//c)< oo

by Theorem 3.1. D

Corollary 3.3. Let μQ be the measure of the free Euclidean Bose field of mass
m0 in two dimensions; let A(φ) be a linear map from (random) distributions to
operators, so that for a.e. (μo)φ A(φ) e c$2k for an integer k and

ldμ0\\A(φ)\\%<co.

Suppose moreover that A(φ) is only dependent on χaφ. Then for all sufficiently
large M:

μμoexp(\\A(φ)\\ϊk)exp(-M$ :φ2(x):χa(x)d2x)<π .

Proof. || A(φ) \\lk

k = Tr((A(φ)*A{φ)f) is a homogeneous polynomial of degree 2k,
so the corollary follows from Theorem 3.2 if we can prove the following: Let J4f
be the Hilbert space obtained by completing χaL

2 in the norm || / 1 | 2 = 2 J \φ(f)\2dμ0
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(i.e., j f is NΛa in the notation of [10]). We must prove that the operator A on.Jf
given by :(</), Aφ)#\ = J χa(x):φ2(x):d2x is a strictly positive Hilbert-Schmidt
operator. Now A is Hilbert-Schmidt since :(φ, Aφ):e Γ(J^). To see it is positive
let us compute (/, Af) by using

Thus

(/, Af)* = 4lχa(x)f(y)f(z)GΌ{x-y)Go(x-z)dxdydz

= 4$Xa(x)\(f*G0)(x)\d2x.

As a result, (f,Af) = 0 implies that / * G 0 = 0 on Λa and this implies that
f = (-A+μ2)(f*G0) = 0 on Λα. Since /e^f, / = 0. D

Theorem 3.4. Lβί g^2. Lβί v,/l>0 witfc (v + λ)^f>l. Lei A(φ) = (P2 + m2)~v •
φχβ(P2 + rn2)~λ. Then A(φ) is a.e. in ^q and for any c, ί/iβre is arc M o 50 ίftaί /or
M>M0:

^xp(c\\A(φ)\\2

q)Qχp(~M\ χβ(x):φ2(x):d2x)dμ0<cx, .

Proof. Consider first the case q = 2k with k an integer. By Corollary 3.3, we
need only prove that \ dμo\\A(φ)\\%k

k= j dμ0 Tr({A*A)k)2< oo. Consider the case
<2 = 4. Also without loss we can suppose v, λ< 1 since we can always decrease them.
Then:

\\A(φ)\\l= J rf2x^?2ylj d2zd2wF(x-z)φ(z)χβ(z)H(z- w)φ(w)χβ(w)F(w-y)\2,

where F is (up to a constant) the Fourier transform of (P 2 + m2)~v and // is the
Fourier transform of (P2 + rn2)~2λ. Letting J = F * F, we see that

We conclude that

where

β(x l v . . , x8) = X p a i r i n g s G0(xh -xh). . G0(xi4- xj4)

and

Now 5 e Lp(Λ8

β) so we need only prove that A e LS(Λ^) for some s> 1. Now for x
small | J ( x ) | ^ C | x Γ 2 + 2 v and |H(x) |^C |x | - 2 + 2A. Let J ίresp. H) be the function
which equals J (resp. H) if |x| ^ |/2 and equals 0 if |x| ^ ]/2. Then J e U and H e U
so long as r"x > 1 — v, ί~1 > 1 — A. By Young's inequality and the bound v + λ> 1/4,
we easily find that A e U for some s > 1.

When g is not an even integer, we can interpolate between two even integers
(as in [20], Lemma 2.7) to obtain:



Bounds in the Yukawa2 Quantum Field Theory 107

where qί and q2 are even integers and Aί and Λ2 are of the form just discussed but
with suitably changed v, λ. Thus

so the result follows from the case of even integers and Holder's inequality. LJ
For later purposes we note the following which is similar to Lemma 2.5 of [20]:

Theorem 3.5. Let θ be an arbitrary function of compact support. Then, a.e.
(w.r.t. μ0)

is trace class and for any λ:

Jexp(λ| |C(φ)| | 1)dμ 0<oo.

Proof. Write C(φ) = BDA{φ)χa where A(φ) = (P 2 + m 2 Γ 1 / 2 φ χ α ( P 2

B = χa(P2 + m2Γ3/4 and D = (P2 + m2)θ(P). Then D is bounded, B is Hilbert-
Schmidt (by Lemma 2.1) and A(φ) is a.e. Hilbert-Schmidt by Theorem 3.4. It
follows that C(φ) is a.e. trace class and

\\C(φ)\\^(const)\\A{φ)\\2
Since, by the method of Theorem 3.4 (using Theorem 3.1 in place of Theorem 3.2),
Qxp(λo\\A(φ \\l)e L1(dμ0) for λ0 sufficiently small the result follows by using

k1. D

IV. Determinant Inequalities

Theorem 4.1. Let A, B, C be trace class operators. Then

|det(l + /l+jB + Cy- T r ( ^ + β + C ) |2^^αl^β |l1eblicli1βllβ*βll1J(^), (4.1)

where

)e-τ^θA~ϊ-1/2τriO--ϊe-2R^A» (4.2)

*A\ OA+ is its positive part and OA_ its negative part.] α = 2e5 / 4,

Remark ί. In our eventual application of this inequality, B will be the part of
K([j Aa) which "links" distinct squares, C will be the low momentum piece of the
"diagonal" part of K and A its high momentum piece.

2. This is an improvement of some bounds in [20].
We prove a series of preliminary lemmas:

Lemma 4.2. IfO^R^lisin <gn, then

ϊl/fe). (4.3)

Remark. lϊn=ί, YJ.= i is by convention 0.
Proof. This is Lemma 3.4 of [20] but the proof is so short we repeat it. Let

^ 2 = ••• = 0 be the eigenvalues of R. Then the left-side of (4.3) is:

where we have used (1 — x)exp(^~\ xk/k)^Ifor0<x<l. D
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Lemma 4.3. // R ̂  — 1 is trace class, then for any n

Proof. If min(m, Rank(# _ )) = k, then

)||. (4.4)

We now use Lemma 4.2 on the second factor on the right of (4.3) and the trivial
bound ||/\k(l+K+)~1 1|^ Ion the first factor. G

Lemma 4.4. For any operator B which is Hilbert-Schmidt

||det2(l +B) /\m(l + B)~ 1 1| ^eι/2V/2 | |B*β| ! l . (4.5)

Proof. Using standard limiting arguments (see the appendix of [20]) we can
suppose B is trace class. The bound det(l+^+)^eTr(κ+) and Lemma 4.3 with
n= 1 imply that for R^ - 1

||/\w(l +R)~ 1 det(l

Thus

Lemma 4.5. ||det2(l +A)/\m(l+AΓ1\\2^e3ml2J(A) with J(A) given by (4.2).

Proof. This is just Lemma 4.3 with n = 2 applied to ||det(l + A) /\m(l + A)~ 1 1|2 =

Proof of Theorem 4.1.

det2(l + /1 + J3 + C) = det2(l + A) det2(l +5) det(l +D)^"Tr(C) , (4.6)

where D = (l+B)~1(l+>i)~1[-AB + C] since

Now, by the expansion det(l +D)= ΣfLo Tr(/\k(D)), and the bound

(4.6) implies that

which using Lemmas 4.5 and 4.4 becomes

^
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V. Upper Bound

In this section, we prove the main technical result of this paper by combining the
estimates of §§ 2-4 and the renormalization cancellation mechanism of [19].

Theorem 5.1. Let Ka = {P2 + m 2 )" il4W(P)φ(x)χa{x)(P2 + m 2 ) " 1 / 4 where W(P)
is given by (1.4b) and χa is the characteristic function of the square of side I and
center la. Then for any p, there is a constant C so that for all XcΈ2:

(5.1)

Remarks. 1. In the preliminary steps below (before Lemma 5.2), we should
put in an upper momentum cutoff which we take away after making the renormali-
zation cancellations explicit. Having remarked this we proceed formally without
doing this.

2. There is an explicit formula for det r e n in [19] obtained by making the
renormalization cancellations explicit. However, we prefer to think of det r e n as

detren(l + £ a K a ) = det2(l+ ΣuKa)Qχp(δE2(X))Qχp(-δμ2ΣaQa), (5.2)

where Qa~ § χa\φ2(x):d2x, δμ2 is the (infinite) renormalization counterterm
corresponding to subtraction at zero momentum and δE2 is the 2nd order energy
renormalization. The advantage of (5.2) over the formula for det r e n which makes
sense without ultraviolet cutoff is that the counterterm factors easily into contribu-
tions for each basic box. Essentially what we do below is first bound the right
side of (5.2) into a product of functions of the fields in each box. We then do the
renormalization cancellations in each box separately.

3. While we describe the result with mass counterterm corresponding to
subtraction at zero momentum, we can make an arbitrary finite mass renormaliza-
tion (of either sign) with simple modifications in our proof.

Proof of Theorem5.ί (Beginning). Let θ be the characteristic function of
l^C} where ζ is a constant to be determined later in the proof. Let

Thus

Ka = A^Ba^Ca and K = ,

where Λ= £ a e * Aa, etc. Thus, by Theorem 4.1

2 (5.3)

with J(A) given by (4.2). Now A*A= £ α A*Aa since A^Aa=-0 for β + α. Since the
A*Aa act on orthogonal subspaces χaL

2, all parts of J(A) factor, i.e.
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Thus by (5.2) and (5.3) we have

Π ^2eδE**e-δ^-\eΔE*. (5.4)

In (5.4), ΔE2 is the difference of the "global" second order counterterms

and the local second order counterterms

l/2Σαεχ \dμ0Ίx{Kl).

Thus

ΔE2=ί/2Σ^β \dμoτr(KxKβ).
a,βeX

By computing with Feynman diagrams, or by using the methods we develope to
control cross terms below [see the proof of (5.13)], one sees that for α fixed

Σβeπi If dμ0 Tτ(KaKβ)\ < oo
jβφα

so that ΔE2^oonst\X\.
Now we have:

Lemma 5.2. For any constant s there is a ζ so that

{J{Ayι2e-^«eδE^e^e f]p<ao L"(Q, dμ0).

Proof. When s = 0 and Λa replaced by Ka this is essentially the main result
of [19]. In [20] (see also [14]) we explained how putting in a lower momentum
cutoff allows the possibility of s > 0 (actually, for this part of the argument in taking
5>0, the basic idea is already in [19]). We will thus be sketchy in describing the
modifications in proof needed to accommodate the change from Ka to Aa. By
simple manipulations one first rewrites:

(α) = u ζ , α exp[ l/2Tr( :/ l^ α : ) -δμ 2 Q α + c ] , (5.5)

) exp(- 2 Re Tv(A2

aΛt)~ 1/2 Ύr(A*aAa)
2- 1/2 Ύr:(AaA*)2:),

(5.6)

and c is the finite constant 1/2 j dμ0 Tr(K2 — A2).

We first claim that for ζ, the lower momentum cutoff, suitably chosen, we have

Utta<fQ*ef)p<00L*. (5.7)
The proof can be taken over from [19, 20] if one notes that multiplication (on the
left or right!) by χα is a contraction on the ^p spaces so that all estimates on Ka

dominate estimates on Aa. As for the second factor in (5.5) we note that since
(by this last remark)

we have

ί/2Ύr(:AtA,:)~δμ2QaίβTr(:KtKa.)~δμ2Qa + ΔW, (5.8)

where Δ W is the Wick constant

A W = J dμQ(ΎrA*Aa - TrXα*Kα) < oo . (5.9)

ΔW is finite by an explicit Feynman diagram computation and the other term
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on the right side of (5.8) has an exponential in f]p< ^ Lp as in [19]. [Alternatively,
we can control l/2Tr(:A*Aaή— δμ2Qa by following the appendix to [19] re-
placing the Feynman diagrams from there by ones with lower momentum cutoffs
and "χα"-insertions.] D

Proof of Theorem5.1 (Continuation). On account of (5.4) and Holder's
inequality the theorem is clearly proven if we show:

[ (5.10c)

ί CΓU J(AJll2e-^e^Q«Jdμ0^CW , (5.10d)

where (5.10a) and (5.10b) hold in the sense that for any r we can find some sus2

so that (5.10a) and (5.10b) hold (with s2 independent of () and (5.10d) in the sense
that given s, r we can choose ζ so that it holds.

Now (5.10d) holds by Lemma 5.2 and the checkerboard estimates (Theorem 1.1)
and (5.10c) follows from | |C|| ± ̂  £ α e Λ : \\Ca\\u the checkerboard estimate and Theo-
rem 3.5. We thus turn to (5.10a) and (5.10b).

Define

. (5.11)

We first claim that for all β, α, y with either β or yΦα and some fixed ε > 0 :

\\BM\\2_εSC0e-D^-^-^FMΫ12. (5.12)

By symmetry it clearly suffices to prove that for all βφα, and all y:

WBβayh-aC^^'-^iφ)^2. (5.13)

If β and α are not neighboring squares, by Theorem 2.2

- ' c | | 4 / 3

On the other hand, if α and β are neighboring squares we have by Theorem 2.4(b):

2 2 1 / 6 Ί 1 2 , (5.15)

where | | T | | 4 = | |(P 2 + m 2) 1 / 6 4χ ( X(P 2 + m 2 ) ' 1 % ( P 2 + m 2 ) 1 / 6 4 | | 4 < o o and δ is deter-
mined by δ " 1 + l/2 = l/2-ε. If we now choose ε so that c>>64, then
||χ»(P2 + m 2Γ 1 / 6 4II,,<oo by Theorem2.1 so that (5.13) follows from (5.14) and
(5.15). Now, since | | - | | 2 ^ || | | 2 _,

β,γ,λeΈ2

Σ«,vex
β,y,λe%2

In the last step, we do λ and y sums trivial and use Young's inequality on l"(Έ2)
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to do the β sum (explicitly, if f(y) = e~DoM, then

Σ Fa(φ)ll2FίΨ)ll2f(a-β)f(β- v)^Σ (f*f)(ot~v)Fa(φ)1'2Fv(φ)112

By (5.16), Theorem 3.4 and the checkerboard estimate, (5.10b) follows.

Now let

where ε' is chosen with (2 + ε ' ) ~ 1 + ( 2 - ε ) ~ 1 = l [ε given in (5.12)]. Then clearly

^χJ2 + ε

(5.Π)

By (5.12), (5.17), and P Γ H ^ | |S | | 2 + ε , | |Γ | | 2 _ ε , :

βei2

α e X Fa(φ)] 1/2

(5.18)

Again using Theorem 3.4 and checkerboard estimates, (5.18) leads to (5.10a). D

VI. Bounds on Schwinger Functions; Glimm and Schrader Bounds

As in [19], we define

(ZS)x{hu..., hn;fl9...Jk; g^...,gk)

= J Π?= i Φ(K)DjJifi9 gy, Φ) d e t r e n ( l + K)dμo(φ), (6.1)

where

/\\(P2 + m 2) 1 / 2SF)](P 2 + m2y 1/4

gi Λ ... Λ (P2 + m2)' 1/4gk). (6.2)

Theorem 6.1. Let each hx be localized in some square Λa with exactly na localized
in square α. Then for suitable constants C l 5 C2:

\(ZS)x{h1,...,hn;fι,...Jk;gv...,gk)\

^ C ^ C - 2

+ * Π « ( n J ) 1 / 2 Π " = i H ^ I I - i Π ^ i ll/ill-i/illΛll-i^ (6-3)

Remark. For fixed X and Πα(nα ) 1 / 2 replaced by (τt!)1/2, this result appears
in [19]. McBryan [15] has also obtained (6.3).

Proof. We use the method of Frohlich [2, 3] namely we obtain bounds on the
Schwinger generating function and use Cauchy estimates to bound Schwinger
functions. Let ai = (P2-\-m2)~lj4'fi; bj = (P2 + m2)ι/4'SFgj. By homogeneity, we can
suppose that ||αt || = \\bι\\ = 1 in L2(1R2; (C2). Let C{ be the rank one operator Ctu =
at{bb u). Then

(zs*)(Λ;/;0)=(θ B + 7fyi..^

detr(l X Σ λfμ\t r e n
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where detren(l + K(Λ) -h C) means det(l + K + C) exp (counterterms) with the same
counterterms as before. Call the function whose derivative occurs on the right
of (6.4), G(μ lv.., μn; A l v . . , Λ,k). Then it is easy to see that G is an entire function on
C"+/c. By using our determinant inequalities (including Σj= i ^j^j wl^ ^e ^
term), checkerboard estimates and the fact that

f \GXp(μφ(h))\rdμ0 £ exp(c|μ| 2 || h \\ 2- 0

we find that if \\ht\\ _ , = 1 \\at\\ = \\bt\\ = 1 :

|G(μ, λj)\ £ C[χle?vw + » exp[α £ae,2 £i6Se H)2] ,

where Sa is the set of z with supp ̂  C ΛΛ. (Thus, e.g. φ(Sα) = rcα). Thus, by Cauchy
estimates

Taking JRα-/7α"1 / 2, we get

Since H^H ||/;| |-ι/2; | | ί > ί l l = H 0 ί l l - ι / 2 > homogeneity yields (6.3). D
We want to conclude this paper with a brief sketch of how one can obtain the

Glimm and Schrader hounds from Theorem 6.1. We only provide a sketch
because we hope to return in detail to the general connection between the Ha-
miltonian picture and the Matthews-Salam picture :

(1) Given /lv..,/k, g^...,gφ /z l v . . , / ι w with supports temporally ordered in
some way (i.e. if the supports are {SJf= ? + w then for some permutation π on
k + q + n letters and some ί0 = //2<ί 1<...<ίΛ + ί + r ι, Sπ(ί}C{(x,t)\ti_ΐ<t<tί},

there is a natural vector η+(f, g, h) associated in the free field Hubert space. η+ is
defined via the theory of Osterwalder-Schrader fields [17] (or directly with the
analytic continuation of the vector-valued Wightman distributions; see Jost [11]
or Simon [21]).

(2) As k, q, n run through all of Έ+ and /, g, h run through all r-tupels (r = k,
q, n resp.) with support in {(x, ί)| — //2<x<//2; //2<ί< 31/2}, the η + (f,g,h) run
through a dense set. This assertion is a simple extension of the classic Reeh-
Schlieder argument.

(3) By the Feynman-Kac formula of Osterwalder-Schrader [17], if L = 2nl\
t = ml(n, mεΈ + ), then

(^(/^,/?),e-'^κ^+(/^,/!)) = (Z%,,c(/ιJί;/,/t;0,|t)ct,£(κ) (6.5)

where ht,ft9gt arise from /?, /, g by reflection in the line ί = 0 and then translation
by t units, where X is {(a, b)eTL2\ — n^a^niΰ^b^m}, where K represents a
suitable ultraviolet cutoff and where cttL(κ) is a term representing the difference
between the Hamiltonian and Euclidean second order "energy" counterterms.

(4) By explicit formulas for ct L(κ) (see e.g. [15], § 3) ct L(κ)^l.
(5) By (6.5) and Theorem 6.1 (η + tf,g9h)9 e-tH^η+(f,g,h))^c(f,g,h) exp(αίL)

where c(f, g, h) is a constant depending on /, g, and h, but independent of K. It
follows that independently of K :

aL. (6.6)

(6.6) contains the Glimm and Schrader bounds.
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