
Commun. math. Phys. 43, 279—309 (1975)
© by Springer-Verlag 1975

Analyticity Properties and Many-Particle Structure
in General Quantum Field Theory

II. One-Particle Irreducible n-Point Functions

J. Bros
Service de Physique Theorique, Centre d'Etudes Nucleaires de Saclay, Gif-sur-Yvette, France

M. Lassalle
Centre de Physique Theorique, Ecole Polytechnique, Paris, France

Received January 7, 1975

Abstract. The extraction of one-particle singularities from the ft-point functions is performed in
the framework of L.S.Z. field theory in the case of a single massive scalar field. It is proved that the
"one-particle irreducible" functions thus obtained enjoy the analytic and algebraic primitive structure
of general rc-point functions (up to a finite number of generalized C.D.D. singularities). Finally under
an additional technical assumption, it is shown that the Glaser-Lehmann-Zimmermann relations
stating the completeness of asymptotic states yield similar relations satisfied in any given channel by
the corresponding one-particle irreducible functions.

I. Introduction

In the first paper of this series [1] and in a previous work [2], we described a
general method for investigating the analyticity properties of the n-point Green's
functions implied by the non-linear structure of general quantum field theory.

This non-linear program makes use conjointly of the rigorous results of the
linear program expressed in complex momentum space, and of the many-particle
structure analysis (M.P.S.A.) due to Symanzik [3] where an essential role is played
by the notion of p-particle irreducible (p.i.) part of a Green's function.

The advantage for a synthesis of these two approaches is twofold. On one
hand the M.P.S.A. program can be carried out there on a rather rigorous level
since it can be developed in the framework of the analyticity properties of Green's
functions which is well-established in the L.S.Z. field theory [5-7]. Then it is
expected that (apart from certain technical postulates which have to be added to the
axioms of the theory) the introduction of irreducible π-point functions can be
made rigorous in complex momentum space and that their analytic structure can
be clearly exhibited (except for the possible occurence of generalized C.D.D. poles
as explained in the following).

On the other hand the use of the non-linear information of field theory,
expressed through the completeness relations of Glaser, Lehmann and Zimmer-
mann [8], should lead in the M.P.S.A. context to important improvements in the
knowledge of the global analytic structure of the n-point functions. Actually the
rigorous introduction of the irreducible functions in axiomatic field theory seems
to enrich the latter by a powerful algorithm which is borrowed from the perturbative
approach [3].



280 J. Bros and M. Lassalle

This paper is devoted to the study of the first and simplest case p = 1, namely
to the extraction of one-particle singularities from the π-point functions of a
local field.

This had been already performed by Zimmermann in his work on time-ordered
Green's functions [4]. Our construction of the one-p.i. functions (with respect
to one channel and to all channels) can be considered as the incorporation of the
ideas of [3,4] in the Steinmann-Ruelle-Araki framework of the analyticity
properties of the n-point functions (which was not at that time completely analysed).
Such a point of view had been already adopted by Vδlkel and results obtained in
the case n = 4 [9].

For the sake of simplicity, we consider the case of a single Bose self-inter-
acting field describing massive scalar particles. On the basis of the Wightman
axioms [10, 11] supplemented by the convenient postulate that "sharp" retarded
operators should exist [7], a set of one p.i. rc-point functions can be constructed.
They are proved to enjoy the same analytic and linear algebraic structure as the
complete n-point functions, with additional analyticity properties on appropriate
polar manifolds of the latter. The proof makes use of the conservation of the
primitive structure of π-point functions by G-convolution in the simplest case
of tree-products [1].

It is clear that this procedure cannot be unique since there is an infinite number
of analytic functions which have the same polar singularities. However this
ambiguity can be removed if one is concerned with the exact analogues of the
perturbative formal sums of one-p.i. ("proper") Feynmann graphs. Then it can be
proved that these "physical" one-p.i. π-point functions satisfy a system of non-
linear relations similar to those of G.L.Z. [8] linking the complete rc-point functions
(these relations being always considered here in the formulation given to them by
Steinmann [7], which involves generalized retarded functions).

The derivation of this system is given on the basis of asymptotic completeness
but it can only be achieved if an additional technical postulate is assumed. This
postulate requires that appropriate matrix elements of the spectral measure
dE(p) of the translation group in the Hubert space of the theory should have a
certain smoothness property as a function of the four-momentum p.

We must now point out the occurrence of a well-known disease in the con-
struction of the physical one-p.i. n-point functions. It is the possibility of producing
new singularities induced by the zeros of the two-point function. By using Syman-
zik's analysis [3] it is recognized that these singularities can be divided into two
classes:

i) a finite number of poles which cross the primitive domain of the rc-point
functions and whose possible occurrence is connected with the existence of
ultraviolet divergences for the propagator.

ii) singularities lying in the real space inside the continuous part of the
spectral region: these are singularities of the C.D.D. type [12].

Whether both types of singularities are spurious or not is not known at present,
and we shall not discuss this point here.

In Section II we begin by a recall of the axioms of the theory; in particular the
additional technical postulate which we need is described there, under the name
of "smooth spectral condition". Section III is devoted to aVeview of the linear
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and non-linear properties of the n-point functions, in particular to the completeness
relations for generalized retarded distributions [7].

In Section IV we extract the one-particle singularities from the n-point func-
tions in one arbitrary channel: the general property of "factorization of residues"
is proved and the one-p.i. functions are constructed and shown to satisfy the
primitive structure of the n-point functions. In Section V, the "smooth spectral
condition' is used conjointly with asymptotic completeness to investigate their
non-linear structure. Finally, Section VI is devoted to the construction of the one-
p.i. n-point functions with respect to all channels.

The proof of completeness relations for the one-p.i. functions raises questions
of mathematical rigor concerning the restriction of distributions to the mass-shell
and the integration of these restrictions over the mass-shell. These questions are
ruled out by using the local analytic structure of general n-point functions in the
way of [26] the desired results are established in Appendix B. Some mathematical
facts concerning the local analytic structure of distributions are listed in Ap-
pendix A.

II. The Basic Postulates

We first recall the postulates of the rigorous L.S.Z. field theory. They are in
brief

A. Wίghtman Axioms [10,11]

i) Relativistic Quantum Mechanics: There exists a Hubert space of states Jti?
in which a unitary representation U(A, a) of the Poincare group operates.

ii) Spectral Assumption: In the spectral decomposition of the translation
group 17(1,0)= \eip'adE(p) the support of the spectral measure dE(p) is the
following

with

In Sections IV and VI, the case of several masses mμ is also considered, namely
Sp = {0}u (U ίCμ) u F2

+

m, with m = inf {mμ}, sup {mμ}<2m.

To this structure of Sp corresponds the following decomposition of ffl :

where ^f0 is one-dimensional and generated by a unique vector |Ω> called the
vacuum, ̂  is a (non-degenerate) subspace of one-particle_ states with mass(es) m,
(resp. {raμ}) and 3f" corresponds to the continuous part F2

+

m of the spectrum.
in) Field: there exists an operator- valued distribution A(x) which satisfies

[A(x)9A(yy] = Q for (x-y)2<Q (locality)

U(A9 a) A(x) U(A9 a)~ 1 = A(Ax + α) (relativistic in variance) .
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The vectors An(φ)\Ωy = [$A(x1)...A(xn)φ(xl9...,xJdx1...dxn]\Ωy span
a dense subspace D of ffl, and A(x) is assumed to have non- vanishing matrix
elements between |Ω> and the subspace ̂  . More precisely for any test-function /
in 5 (̂1R4) with its support inside a neighbourhood of H* which does not intersect
the rest of the spectrum, and with restriction fμ to H+μ, we write

)|2 (1)

with the wave-function normalization constant Zμ Φ 0 and ωμ =}
Under these axioms, the Haag-Ruelle-Hepp asymptotic theory can be per-

formed [6,13,14] and the sets of asymptotic states there constructed span two
subspaces Jfin and J^out of Jf. Then the two following postulates are necessary to
carry out further steps.

B. Asymptotic Completeness: Jfjn — J^ut = 34?

C. Existence of Sharp Retarded Operators

There exists an infinite set of operator-valued retarded distributions
R(xί'9x29 •••jXj which satisfy all the algebraic relations and support properties
suggested by the corresponding formal definitions (in terms of products of multiple
commutators by step functions). The reader is referred to [7] for the complete list
of these properties.

From this postulate it can be shown [7] that all generalized retarded products
(g.r.p.) Ry(xί9 ..., xn) can be defined (here £f is a certain index described in Sec-
tion III.l). The operators

V ^ Π Y fl V• ι Λn/ W Λ i . . . tiΛM

act on the dense domain D and take their values in D. Moreover they satisfy the
relativistic invariance condition

Postulate C is needed to make simpler the exploitation of the primitive
structure although it is irrelevant as far as one is not concerned with slow increase
behaviour in the tubes at infinity.

However it is known that the axioms A-C are not sufficient to avoid local
pathologies in momentum space. In particular the development of the M.P.S.A.
non-linear program seems to necessitate 1 an additional "smoothness postulate"
which can be conveniently formulated as follows:

D. Smooth Spectral Condition

Let us call Π the projection operator on Jf". We shall assume the following
property of the spectral measure dE(p):

1 This was recognized and investigated by Martin [15] in the similar context of the mass-shell
non-linear program (use of unitarity). In this connection, see also the notion of "permanence of
smoothness" introduced by Williams [29].
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For any couple vectors Φί9 Φ2 in D, the measure <Φ1? ΠdE(p)ΠΦ2y is a Holder-
continuous [25] function of p.

Remark. It is known [11] that all matrix elements of the form

with χe^(IR) and Φ / / = ί , 2 ) i n D

are C00 functions of p as a consequence of relativistic invariance. Postulate D is
therefore a statement about the behaviour of (Φl9ΠdE(p)ΠΦ2y with respect
to the variable p0 (or p2 = pi - p2) when Φ1 2 belongs to D.

III. Properties of the n-Point Functions

IILi. Cells and Generalized Retarded Operators

In the following N will always denote the set { 1, 2, . . . , n} of indices numbering
the different four- vectors {kl9 /c2, ..., kn}. 0>*(N) will denote the set of proper
subsets / of N and (/, JV\/) any partition of N in two (disjoint) subsets. We shall
consider the space C^(

)"~1) of the n complex four- vectors {ki = pί-\-iqi9 i^i^n}
n

linked by the relation £ fef = 0. Moreover fe/ will always denote Σ &r
ι = l ie/

We consider the space IRj^1 of the n scalar variables {sl9 s29 ».,sn} linked by
Σ Si = 0 and the "triangulation" of this space by the family of planes

ieJV

{s/ = 0, 1 e^*(N)}. The various open convex cones thus obtained [21] are called
geometrical cells and denoted {y^, &* G S(N)}. Here the index ^ stands for the
set of all proper subsets of N with Sj positive in y#>. ̂  is called a cell of N and
satisfy compatibility conditions which we shall not recall here [16, 17]. Two cells
<9^+ and ^_ are called adjacent and separated by a partition (/, N\I) if y^+ and
γ#>_ have a common (n — 2)-dimensional face in the hyperplane s/ = SN\J = 0.

With any cell ̂  it is possible to associate an element & in an abstract graded
Lie algebra ®, the so-called Steinmann algebra [18-21]. The set of all products
of Green's operators generates a certain representation Q)A of this algebra, each
element & in 3) being represented in Q)A by a generalized retarded product
(g.r.p.) jR^(x1,x2, . . . j X j which we assume here to exist in the sense of sharp
operators (Postulate C). We denote by ?>(/?) the generalized retarded distribution
(g.r.d.) which is the Fourier transform of <Ω, R^(x)Ωy.

Moreover in 2 we have the Ruelle "discontinuity formula" [21]:

^+-^. = [^,^2], (2a)

where ^+ and ^_ are two adjacent cells separated by (/, ΛΓ\J); ̂
J C /, J Φ /} is a cell of /; ̂  = {</e^+ , J CN\I} a cell of N\I. Wheny (resp. N\7)
is reduced to one element {/}, ̂  (resp. ^2) stands for an element i of 2 whose
image in 2A is the field operator A(xt). We write in Q)A\

Ry+-Ry_ = lR^R^J. (2b)
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I II. 2. Linear Properties

From the Wightman axioms A the following primitive structure can be proved
for the rc-point function H(n\k):

i) analyticity and slow increase near the real inside a domain which is com-
posed of the union of a certain family of tubes {̂ >, ̂  e S(N)} in the linear manifold
I/ceC 4": £ ki = Q\ with appropriate complex neighbourhoods of real regions
1 ietf J

which connect the various tubes together. Here SΓ? is defined by:

and the real boundary value of H(n} inside 3Γy>

H(^(p) = lim H (n\p + iq)

coincides with the g.r.d. τ>(p) up to an overall δ factor:

\ίeN

ii) Steinmann relations hold between the various boundary values

iii) Coincidence of two adjacent boundary values H$\ (p) and H$_ (p) separated
by a partition (/, N\I) on a real region dti thus defined:

Properties ii) and iii) are consequences of relation (2b) and of the spectral
assumption. We note that in view of iii) the support of the distribution
[H(£\ — H(£]~\ (p) is the union of the two following disconnected sets

where H* = —H~μ and F2

+

w = — V^m have been defined in Section II. Taking into
account (2b) we then choose to write

H$\ ~ H$\ = A^2H
(n> - A^2^ H(n) , (2c)

where A^^2H
(n) (resp. A^^H^ is defined as the value of \H(£\ -H$\~] on

Σ/" (resp. Σj~) and zero outside .
A</,ly2H

(n} is called an absorptive part of H(n\ This absorptive part is one of
the boundary values of a function A*H(n) which is the common analytic con-
tinuation inside the manifold ql = qN\t = 0 of all the discontinuities [H(£\ — H$_~\ (k\
with the couple (&+, <f_) separated by the partition (I,N\I). Actually A1 H(n) is
analytic2 inside the union of all the "flat" tubes

with appropriate real regions connecting these flat tubes together. Its real boundary
2 More precisely, A1 H(n) is a distribution in pl which depends analytically on the 4(n — 2) re-

maining independent four- vectors kj.
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value taken in If from the tube ̂ l^2isΔseι9>2 H(n\ The absorptive parts A#ί <?2 H(n}

and the discontinuity zl///(n) in a given channel (I,N\Γ) will play a basic role
further in the formulation of the non-linear properties of the rc-point functions.

Finally, following [1], we call general rc-point function any function F enjoying
properties i)-iii) stated above but having no longer any physical connection with
products of n fields. We write Fy for its real boundary value inside the tube ̂ ,
A1 F for its discontinuity on the manifold ^/ = ̂ \/ = 0 and similarly A#,^2F for
its absorptive parts with support in Σ/.

Ill3. Non-linear Properties of the n-Point Functions

We shall now write the "completeness relations" which link together the
various rc-point generalized retarded distribution (g.r.d.), and are consequences
of the postulate of asymptotic completeness. Obtained through an extensive use
of reduction formulae, they are the field theoretic off-shell extrapolations of the
unitarity relations. First derived by Glaser, Lehmann, and Zimmermann [8],
they have been presented in a completely rigorous and general version by Stein-
mann [7]. However, for a reason which will appear in the following we shall
not fully adopt Steinmann's point of view. For the sake of simplicity, we shall only
consider the case of a single discrete mass m in the spectrum.

We shall recall the following algebraic notion:

Proposition 1 [16]. Let ^ be a cell of N and K be a non-empty finite set of
integers, with Kr\N = 0. We define

uK:0ή=JcK or

Then K^isa cell of NuK.
Similarly, the following set K [^ is a cell of N\jK:

or

Then with any rc-point g.r.p. R^(p'i9 ...,p'n)9 we can associate, for all values of
k=\K\, two (n + fc)-point g.r.p.'s, which we denote RK^(PI, . . . ,p k ;pΊ,. . . ,pj,) and
Rκ 4 y(p\ ι - , Pk I P'I 9 > Pn)-We similarly define the corresponding general retarded
distributions (g.r.d.) rκ^ and rκι5?. Note that if N reduces to a single element,
then Rκ^ (resp. RK[<?) is an ordinary retarded (resp. advanced) (fc+ l)-point
operator.

Now some care is needed for giving the correct definition of the mass-shell
restrictions fκ % #> of the amputated g.r.d. rκι#,, since the existence of these restrictions
as distributions on the mass-shell was the key-point in the rigorous proof of
reduction formulae (see Hepp [6], Steinmann [7], and also in this connection
Bros, Epstein, and Glaser [26]).

On the mass-shell manifold Jί£ =(H^)k, let us define the subset Ω of all
configurations {pj e H+, j = 1, 2,..., k} such that at least two vectors ph PJ coincide.
Ω is a closed set of measure zero, and we denote by Ω' its complement in Jt£.

k

Conventionally, every wave-packet Y[ fj(p) with support in Q' is called "non-
7=1

overlapping"; we shall thus call Ω the "overlap set".
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Then we have the following:

Lemma 1. i) It is meaningful to define the following distribution in the open set

(3)
7=1

«2with eθj = ypj + m .
ii) For every φ e Sf 0Rfp")), the distribution

defined in Ω, can be identified with a square-integrable function on the whole
manifold J(£9 and the following reduction formulae hold:

/!.../„> r<P rKiyPί...pk,φ ^^ Λ Pj ^

k

for arbitrary wave packets f] fj(pj) in L2(J?χ) (the meaning of* being "complex
7=1

conjugation").
The following similar relations hold:

k

i 9 . . . 9 p k ' 9 p ' ) = Π (P*-
7 = 1

(6)

Proof and Comments. The first part of the lemma results from Hepp's analysis
[6], which can be carried through for the g.r.p.'s [7] as well as for the chronological
products; this property can also be obtained in the local analytic structure
approach which we shall recall below and in Appendices A and B.

The second part is based on the following argument: from Haag-Ruelle
asymptotic theory, <(p1? ...,/?fc)

out, R^(φ)Ωy is defined as a square-integrable

function on Jt£ \L2 with respect to the measure J~[ Jf moreover it is proved
\ j=ι 2 ωj/

in the rigorous theory of reduction formulae [6, 7, 22], that this L2 function must
coincide in the sense of distributions in Ωf with fκι#>(pl9 ...9pk;φ), the latter
being defined in Q' in view of the first part. Now since Ω is a set of measure zero,
it is legitimate to say that rκ]f#,(pl9 . . . 9 p k ' 9 φ ) represents a unique square-integrable
function on the whole set J(£ (this defines a "canonical extension" of rκ[se as a
distribution on Jt£ x 1R "̂} since any other extension would contain polynomials
of ^-functions with support in Ω). With this extended definition oϊrκι^ reduction
formula (4) holds for arbitrary L2-wave packet in J(£. Therefore, the latter
definition is also suitable for the rigorous derivation of completeness equations
of the G.L.Z. type for the g.r.d.'s [7] in doing so, we avoid using the definition
°f rκιsf as a "refined average" in the neighbourhood of Ω, introduced in [7];
such a refinement would be difficult to reproduce in the further case of one-p.i.
functions.
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Now, in view of later use, it is important to give an interpretation of rκιse

in Ω' from the point of view of the local analytic structure oϊH(n + k) [26]. A rather
general way of studying the existence of the restriction of a distribution to a sub-
manifold is based on the following fact (see [26], Theorem 2 and [28]): assume
that a distribution T can be expressed on a certain open set U of Rn as a finite
sum of boundary values Tβ of analytic functions Fβ, respectively defined in local
tubes U + i^β (in <P), each ^β being an open convex cone; then T admits a restric-
tion to every submanifold Jt of [7, which is "transverse" to all cones ^β (i.e. such
that the tangent plane to Jt at every point peJt has non-empty intersections
with all cones ^β): in fact, it is then possible to restrict each Fβ to the complexified
manifold Jtc of Jt, and then take the real boundary value of this restriction Fβ

which is a distribution in M. In [26], such an analysis was made for the fully
amputated chronological products, and the restriction of the latter to the mass-
shell Jίn could be defined in this way in the complement of the overlap set of Jtn.
A similar analysis is done here in Appendix B for the HKlyS, and yields:

Lemmal. Let Jί' = ί f a p ' h p ε f f ; £ Pj+ £pi =
[ jeK ίeΛΓ

For every point (p, p') in the manifold Jί' , there exists a neighbourhood U of
(p,pr) in JR4*"**"1) in which any distribution Hκιse can be expressed as a finite sum
of boundary values of analytic functions hβ, each hβ being analytic in a local tube
which is transverse to the complex mass-shell manifold Jt'c (i.e. Jί' complexified).

According to the above comments, this gives an alternative proof of the first
part of Lemma 1 /since rκ^ = δ I £ PJ + £ p }• H(£+£] .

\ \jeK ieN / /

The advantage of this procedure is to belong to the linear program (use of
causality and spectrum) and therefore to also apply to general rc-point functions,
such as the one-p.i. functions (see Appendix B and Section V). We now turn to the
algebraic description of the completeness relations which link the various g.r.d.'s

[7].
Being given a channel (/, Λ/V) let us introduce the following family of sets

(8)

Σ\tNv={peR*(n-»:l2m2£pl<(l+i)2m2} 1^2 (9)

with p] the squared total energy in the considered channel.
Being given an absorptive part A^^2H

(n} of the n-point function H(n} in the

channel (I,N\I), the completeness of one-particle states yields on Σ f i N \ r :

o *

, (10 a)
ieN / ^ ^

where the notation λ means that p^= —pλ, δ ̂  = θ ( — pQ

λ}δ(p2

λ — m2) with θ(t)
= \ (t + IΦ Z is the normalization constant defined in (1) and the various rλl9> are
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defined by (3) and (6). This can be rewritten :

X- EJ(«1 + 1)EJ(»2+1)_ l7L S- r r ( « ι + l ) r V ( « 2 + l )
°λ nλe nλ ~ °λ -"λ nλ

with n! = |/| and w2 = |ΛΓ\/|. Here -pλ = p^ = pj and the various H(

A"^1) are

defined by:

Similarly on any £/,jv\/ with /^2, the completeness of incoming (resp. outgoing)

states with (2, 3, . . . , ί) particles yields

Σ

~ L
k=2

Here some explanation of the notation is needed: with any value of fc^2 we
associate a set of k indices K={λί9...9λk} and two g.r.d.'s fκ^. and f^^j (resp.

and fκ),y) defined as in Lemma 1. The notation K= {λί9 ...,lk} means that
j= ~Pλj an(i the notation * is defined as follows

k

(12)

In view of Lemma 2, the product of the distributions rκ^ί and r^^2 which
occurs in (10 a) and (12) is well defined (after testing in the external variables) in

k Ί

the sense of functions square-integrable with respect to the measure Y[ λj :
j=ι 2ωj

their product is integrable and (12) is meaningful.
Finally we can rewrite (11 a) under the equivalent form (without factors δ)

L — 9

9T \ k -j

— 1~~ ~

. k
π \ ^ rr(«ι

^

k

Here we have put: H^1/ Jk) = f] (p? - m2)H^k\ and the notation * is defined

'•'.
ττ(nι + k) ττ(n2 + k) f TT Γ S - J ^ η S/^ \

2 = J 11 L^dPλjJ^Φ/ulJ

Relations (10) and (11) are the asymptotic completeness relations: written for
any absorptive part A^^2H

(n} in any channel (I9N\I) they express the whole
non-linear information of general quantum field theory.

Ill A. Consequences of the Smooth Spectral Condition

In this section we shall now be concerned with the smoothness properties
which can be deduced from Postulate D for the absorptive parts and the boundary
values of the rc-point functions.
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Consider the set ^n(V^m) of all test-functions φ(p l9 ...,pj in ^(JR*") such
that the projection of the support of φ into the space IRp of the total four momentum

n

P= £ Pi only intersects the continuous part V2m of the spectrum. We also
i=ί ( p n }

introduce the space IRp(" 1} of "barycentric variables" p = <pi = pi -- £ jpf = 0 > .
~ I π i=ι J

Proposition 2. L^ί 5̂  fresp. 5 2̂J &£ some cell of I (resp. N\I) and A^^2H
(n)

the corresponding absorptive part. The distribution

^^flWfo ^.^μ^/fW^^

with (£jE ^(^(nj)~1}) and p(Πl) (resp. £(n2)) the barycentric variables of the set
{ph iel}(resp7{pjje N\I}), can be identified with a Holder-continuous function
of the variable p{.

Proof. Let ψj (/= 1, 2) be the following vector in D:

ψj = Ry.(φj)\Ωy= fR^ί-p!,..., -pn)φj(pι,.. ,pn)dpi ...dpnj\Ωy.

Using a classical argument ([11], p. 70) based on the translation in variance
of the operator R^., one easily shows that if φ,- e ̂ nj(V^m)9 then :

so that:

<V?ι, Π d£(p) Π ψ2> = (ψί,

But using again translation invariance, we have:

da

δ4(p - pj) dp^.. dpnί dp\ . . . dp'n2 .

Now putting

Pi= — +Ri, i e I ' , P j = -^+E
HI n2

and

iel ) [ jeN\I

we can integrate over p/? pjv\/ Taking into account that

relation (14) yields:

(ψ

[i.e. (13)] provided that one chooses:

with χ(pj) locally equal to 1 at PJ = p.
Then postulate D immediately gives the announced result.
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Proposition 3. Let ίf+ ana ^_ be two adjacent cells separated by the partition
(I, N\I). Then for every <gι, <g2

 as ^n Proposition 2, the expression

^(p/;<gι,22)=Wl(Pι^ (15)
is a Holder-continuous function of pf.

Proof. By taking a sufficiently large integer AT, we can introduce the auxiliary
functions :

. u (u— KI)

which are respectively analytic in the tubes

and such that (in the sense of distributions on their common face {lmkI = 0}):

I+ - Γ = H$>+ - H$>- .

As a result of the edge of the wedge theorem, there exists an analytic function
ι, k/ fc) in the convex envelope ?ΓC of ^+u^>-|Imkj=:0 such that in ^>±:

After testing both sides of this relation (on the real) with <gι, ψ?2> we

The Holder continuity of Hi^±(pIi(^1,φ2) is then entailed by the two following
facts:

i) Holder-continuity of /±(p/;2ui?2) : ^ *s a consequence of Proposition 2,
since Holder-continuity is preserved by convolution with the Cauchy kernel
(i.e. by Hubert transform; see [24]); formula (16) therefore yields the desired
result, after testing with <gι>ί?2

ii) G(p/;2ι»ί?2) is a C™ function of pl9 since it is obtained by testing the
boundary value of G on a submanifold which is transverse to the tube 2ΓC in which
G is analytic (see Proposition A.3).

IV. Construction of One-p.i. n-Point Functions

I V.I. Poles and Residues of the n-Point Functions

Let H(n} denote the "fully-amputated" rc-point function, namely

HM(ki9...9kn)=U Π (tf-m$Hto(kl9...9kJ9 (17)
μ d,N\I)

where the product extends to all partitions of N into two subsets (/, N\I).
H(n) is a general w-point function whose boundary values {H$\ ^GS(N)} satisfy

the following coincidence relations. For any couple (^+,^) of adjacent cells
separated by a partition (7, ΛΓ\/),

n
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To show this it is enough to concentrate on a fixed partition (/, N\I) and to
prove that

J Δyιyι [Π (P/2 - m2)#(n)l (P/,/"',/**) <2Ϊ(P(Π1)) φ2(-P("2)) ¥"'' ̂  dPl = 0

for all test-functions φ; (/=l,2) whose support does not intersect the region

fo/ e P2+m} Here î (resp ^2) is a cell of / (resp. N\I) with ̂ +-^ = [&^Se2~\
Applying the argument of Subsection III.4 (using the translation in variance of the
operators R&>)9 the left-hand side can be rewritten :

ί Π(P2-^)<Vι^£(p)φ2>
μ

with ψj = Ry.(φJ)\Ωy(j~ 1,2). This matrix element of dE(p) is a measure with
support j p e 0 //„[" I it therefore factorizes £ cμ(S^(p) 3 and yields zero for the

I μ μ j μ

integral, q.e.d.
Let us now denote Q)(n} the primitive domain of H(n} associated with this set

of coincidence relations and let $(&(n}) be the holomorphy envelope of ^(π) in
C4(n~ 1}: it is crossed by JtltVL = {feeC4("~ υ : fcj = m2

μ}. Thus taking (17) into account,
we have

Proposition 4. The n-poίnt function H(n} is meromorphic in the holomorphy
envelope $(β(n^ ana it is given there by"

-
~ Π Π <*?-X)

μ ( I , N \ I )

with H(n) holomorphic in <ί(@(n}).

Remark. This result contains as a special case the treatment of poles in the
s-plane dispersion relations [4], since all processes of analytic continuation for
H(n} yield corresponding meromorphic continuation for H(n\

We shall now compute the residues of all the functions H(n} on their various
polar manifolds ^/>μ. We define

G^'fo K) = (k] - ml) Hθ»(k, kf)\^ (18)

where k' denotes a set of (n — 2) independent four- vectors. G1^1 is the residue
function of H(n} on Jtlί]L. In view of Proposition 4, it is meromorphic in

>(n})nJtItμ.
Now the restriction of G u to the "real" submanifold

satisfies the following relation, which is valid for pt in a neighbourhood of H* :

Gί ^'Qj, k') δΐ (pj) = — A'H^ipj K). (19)
2zπ

Here

ΔlH(n}(p-9 k'} = lim [H(M)(p + ίε; /c') - H(n)(p - iε; fc')]

ε->0
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is the analytic absorptive part (with various boundary values A^l^2H
(n)) introduced

in Section III.2.
The above relation (19) is the exact analogue in several variables of the formula

for functions having a simple pole at the origin; it holds as an identity between
distributions in the real variable p/5 analytically valued in the variables k'.

Let Zμ be the "wave-function renormalization constants" of the field defined
i n ( l ) b y :

Then for π = 2, relation (19) yields (in a neighbourhood of

:'=-zμ

 (20)

For a general value of n, it follows from the completeness relation (lOb) that

2iπ

which is valid for p7 in a neighbourhood of H* .
Here n± = |/|, n2 = \N\I\ and λ (resp. 1) stands for the internal four-vector in

the argument of H("ί + 1} (resp. J7("2 + 1)), that ispλ = pN\j.
Let us now consider the analytic function

which in view of [1] is a general n-point function associated with the tree

Γ = I {-— C } — O" ί -̂ V Hμ ^s analytic in tne same domain as H(n) and

amputation arguments similar to those used in the proof of Proposition 4 allow
to conclude that it is analytic in $(3)(n)) minus the following set of polar manifolds

We shall then show that the two meromorphic functions —ZμGμ'
NV and Hμ

coincide in the complex submanifold $(2(n))r\J(Ittl.
First we notice that the left-hand (resp. right-hand) side of (21) is the boundary

value inside the given tube ^>lt^2 of the analytic function AIH(n)(pI; k').M+ μ

(resp. H^pj k)}^ ). As a consequence of the edge of the wedge theorem, (21)
then implies the coincidence of the corresponding analytic functions throughout
their common domain ^(2(n))Γ(Jf^μ9 namely:

^ k'} = δ+

μ (Pl) Hfa,', k)
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which yields, in view of (19):

inside S(2(n))r^Jί^μ. Through analytic continuation in kl9 this holds in the whole
domain4 $(β(^}c\JίltVL and we have the following set of relations linking the
various residue functions [due to the expression of Hμ and to (18)] :

\i
. (22)

Remark. If either / or N\I contains a single element, (22) is reduced to (20).

We can then state :

Theorem 1. (Factorization of residues). The various residue functions Gμ'
N\*

of the n-point functions H(n} on the polar manifolds -Jtl^μ satisfy the following set
of relations:

J

μ ẑμ

IV. 2. The One-p.i. Functions

In this section our purpose is to extract the one-particle singularities from the
tt-ρoint function H(n} in one given channel (/, N\I). In other words we want to
define a function FIfN^ enjoying the following properties:

i) FI>N^ is a general rc-point function.
ii) Its coincidence region in the channel (/, N\I) has the form

2m being the mass threshold of the continuum. Actually such a function is analytic
inside the manifolds ̂ 1>μ for all values of μ. We shall say that it is one-particle
irreducible with respect to the channel (/, N\I).

As shown in Proposition 4, the amputation procedure yields such one-p.i.
functions. However in the cases when |/| and |JV\/| are larger than one, the factoriza-
tion of residues allows a more interesting construction of one-p.i. functions.

In fact let us consider any general two-point function Π(k) having simple

zeros at all values p2 = m2

μ and such that Π(p)~ — - (p2 — m2) at each of these
μ

points. We can prove :

Theorem 2. For any channel (/, N\I) with n arbitrary and |/| > 1, |ΛΓ\/| > 1 the
function

= //^ι,...Λ)-tf("1 + ̂  (24)

is a general n-point function, one-particle irreducible with respect to this channel.
f

lιμ contains several connected components, (22) will still hold in all these com-
ponents, as a result of Theorem 2, since the one-p.i. function FI>NV can be analytically continued in
^(βn) [note that the proof of Theorem 2 only makes use of (22) in the neighborhood of the real].
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Proof. The function HΓ subtracted from H(n} in (24) has the same properties
as the 77 '̂s introduced in the proof of Theorem 1: as a result of the study of tree-
products performed in [1], it is a general ft-point function. Moreover from our
assumption on the zeros of 77, it admits all the sets Jίltμ in the channel (7, N\I)
as simple polar manifolds with the corresponding residue functions

Therefore, in view of Theorem 1, these residues cancel those of 77("} in (24) and the
theorem is proved.5

A natural choice of a function 77 satisfying the above conditions is 77 = [77(2)] " 1.
Actually a formal definition of one-p.i. functions can be found in perturbation
theory as the sum of all "proper" diagrams (i.e. with no internal line carrying the
four-momentum kt) occurring in the expansion of any ft-point Green's function.
It turns out that the various objects thus introduced are linked with the original
Green's functions by the same linear relations as (24), satisfied as formal series
of Feynmann graphs, with the special choice 77 = [77(2)]"1. Following the per-
turbative theory as an heuristic guide we shall choose these relations as definitions
and call "physical" one-p.i. π-point functions the special set of functions FI>NV

thus exhibited.
However this has the disadvantage of producing new singularities induced

by the zeros of the two-point function. From Lorentz invariance, it is known that
such polar manifolds have the form p2 = αv, with αv lying in the cut-plane
{zφ4m2 + ρ, ρ^O}. They were called non-C.D.D. singularities by Symanzik:
their number is finite and equal to the number of substractions in the Kallen-
Lehmann representation of 77(2). Moreover αv can always be chosen real between
0 and m2: see [3] and below in Section IV.3.

As for the occurrence of proper C.D.D. singularities which correspond to
zeros of 77(2) on the cut {p2 = 4m2 + ρ, ρ ̂  0}, it does not prevent F^NV to have
boundary values in the sense of distributions and to satisfy the algebraic structure
(Steinmann relations) of a general rc-point function.

Finally let us list the relations extracted from the perturbative framework
which we shall choose as definitions of the complete set of functions F/ ) j v y /:

(in connection with the perturbative definition of the self-energy).
ϋ) |/| = ι , μ v \ / | φ i

F« "M^ , . . . , kn) = [H(2)(fci)] - l H(n\k, , . . . , kn) . (25b)

iii) | / | Φ 1 , | Λ Γ \ / | Φ 1

' ™ = <">
(

5 We are indebted to Prof. G. F. Chew for pointing out to us the idea of such a simultaneous
extraction of singularities in the case with several masses.
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Note that (25 c) is a variant of (24) in the special case Π = [//(2)] ~ 1 and can also
be written:

λ)H^+V(kλ; {kj9jeN\I}) .

Finally in view of Proposition 4 and Theorem 2, we can state:

Proposition 5. The functions FItN^ thus introduced satisfy all the properties of
general n-poίnt functions except for a finite set of poles {k2 = αv} due to the zeros
of H(2} they are one-particle irreducible in the channel (/, N\I).

Note that the definitions (25 c) can be illustrated as follows:

and also

IV.3. Complements on the Zeros of H(2}

Proposition 6. The set of retarded operators R(x1 ;x2, ...,xn) introduced in
Postulate C can always be chosen so that the two-point function //(2) has a finite
number of real zeros {k2 = αvj in its analyticity domain with 0 < αv < inf m2 . Then

[H(2}~\~1 is a general two-point function which is analytic in {/ceC4 : k2 φα v, Vv;
k2 Φ 4m2 + ρ, ρ ̂  0} and has temperate boundary values on the real.

Proof. Postulates A determine the Kallen-Lehmann measure A H(2} = ρ with
ρ(p2) = C<Ω, A(p)A( — p)Ω>. From ρ we can construct a function H(2}(k2) in
the following way:

= g(k2)P(k2) with g ( Z ) = J . (26)

Here P(i) is a polynomial which is positive for t ̂  4m2 and whose degree is sufficient
for the convergence of (26). If it is chosen with a finite number of real zeros inside

0, inf m2 , it is clear that H(2) satisfies the same property.
J μ μ[

Let H(2} denote the two-point function associated with the retarded and
advanced operators R(x,y) and A(x,y) of Postulate C. Then [H(2} — H(2}~\ is a
polynomial whose Fourier transform in x-space is a finite sum of derivatives of
δ(χ — y) which we denote Q(x — y). Now if we make the substitutions

R(x, y)->R'(x, y} = R(x, y) + Q(x - y)

all the R(x1 x2, . . . , xn) with n > 2 being unchanged, we obtain a new set of retarded
operators satisfying postulate C (indeed the non-linear relations between them
only involve the discontinuity of the two-point function). Now it is clear that
with such a choice of the two-point function, the factor [#(2)] ~ 1 does not spoil
the primitive analytic structure of the one-p.i. functions F1'^1, apart from the
possible occurrence of the finite number of real poles k2 = αv,
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We shall now go back to the case of a single mass m and use the additional
technical postulate D (smooth spectral condition) to derive regularity properties
of the boundary values of FI>N\r in the region ΣIίN\j = {pelR4("~ 1}:p2 ^ 4m2}.

In view of Proposition 3, the real boundary values of JF/(2) are Holder con-
tinuous functions of p and therefore of p2, for p2 ^ 4m2. Then the set of points p2

at which H(2} vanishes (the so-called C.D.D. zeros) is a closed set without interior
points (if it had any it would contain at least one interval but the vanishing of H(2)

there would imply H(2) =0 by analytic continuation). We denote A the dense
open subset of {pelR4 :p2^4m2} in which jff ( 2 )(p)Φθ. The boundary values of

ι are Holder-continuous in A and we have:

Proposition 7. Let &*+ and £f_ two adjacent cells separated by the partition
(/, N\I). The distribution

W(P/ 2ι , 22) = f W'ίp/,/'1',/12

with ^-e^OR4/"/)"1^ and p(nι) (resp. p(n2)) the barycentric variables of the set

{pi9 iel} (resp. {ppjeN\I}), can be identified with a Holder-continuous function of
P! in the region £/jv\/= {pelR4("~1):Jp/eyl}.

Proof, i) If /= {λ}, in view of (25 b) we write

- ' H$?± (Pλ <z>2) .

From Proposition 3, H$\(pλ',φ2) is Holder-continuous on {pλ'.pλ^4m2}. Since
|-/f(2)-|-ι acjmjts Holder continuous boundary values on A, the property is
proved.

ii) In the general case |/| > 1, |JV\/| > 1, it is the consequence of the definition
(25 c) and of the previous argument.

V. Non-Linear Properties of the One-p.i. Functions

In this section we investigate the non-linear properties of the set of "physical"
one-p.i. functions {FIιN^} which have been constructed above as the exact
analogues of the perturbative formal sums of "proper" Feynmann graphs.

As a consequence of the completeness of asymptotic states, we shall prove
that they satisfy a set of non-linear relations similar to the completeness relations
described in Section III.3.

More precisely let us recall the definition of the /-particle region Σl

ItN\j as-
sociated with a channel (/, N\I):

Σl

IίNV = {pe1R4(n-1):l2m2^p2<(l+i)2m2} with 1^2
and define:

that is, we discard those exceptional values corresponding to C.D.D. zeros.
Σl

ItN\j is a dense open subset of Σl

ItN^ and we have:

ΣI,N\I= U ΣI,N\I
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In this section an equivalence will be proved (Theorem 3) between the com-
pleteness relations

?77Γ \k \ l ( 9/7T \k 1LlΊl _L.("i+k) τ(n2 + k)_ ^ \ 1 r r (m+fc)
~I

k = 2.\ I

satisfied on the relevant regions Σl

ItN\j [here n1 = |/| and π2 = |ΛΓ\/|; 5^ (resp.
is any cell o f / (resp. Λ/V)] and the following set of relations

I / ") \k 4 I i'liτr\k -i
Λ FI,N\I_ Y ^ιπ x pi,κ fiκ,N\ι _ y z?π x P/.A: * f κ,N\ιΔy,y2r - L \~7~i ~τγpκ^ί*^κ^2- L \~^7~\ TT κ^! ^^2

k = 2 \ ^ / K ' k = 2 \ ^ I K '

satisfied on the same regions Σl

I>N\j.
The non-linear information of general quantum field theory originally known

through the completeness relations (11) in terms of the various boundary values
and absorptive parts of the rc-point functions will then be expressed (up to the
manifolds corresponding to C.D.D. zeros) in terms of the one-p.i. objects, a result
which will be needed extensively in the following of the program [23].

This equivalence is actually the consequence of an algebraic algorithm which
will be described below. However at present it is not known how to give it a
rigorous meaning in the sense of product of distributions without making the
technical "smoothness postulate" D. Used under the form of Propositions 3 and 7
the latter allows one to derive the following simple results which will be needed
for a rigorous proof of (27).

Consider the tree-product HΓ(k1 , . . . ,&„) which is occuring in the definition (25 c)

of F1'^1. HΓ(k) can be represented as / {--( ) — (ί>-| N\I that is:

//Γ(fc1 ?...A) = #("1 + 1)({M^

In the following we shall need to express its absorptive parts A^^2H
Γ in the

channel (/, N\I). We shall prove :

Proposition 8. The absorptive part A^^2H
Γ is given (in the sense of distributions)

by the following rule:

A Iff A ττ(«ι + D τ?{A},N\I , rr(nι + l) Λ π(λ},N\I / 9 0 Q \
Δyίy2n =Δyί>(λ]n 'Γλi&>2 +/1Aί^ι ' Δ { λ } , y 2 f (/oa;

or equivalently

Proof. From Propositions 3 and 7 we know that (after testing in the external
variables (ph i e /}, { p j j e N\I}), H(^ί} is a Holder-continuous function of pλ and
F^l'jr a Holder continuous function of pλ except at those exceptional values
corresponding to C.D.D. zeros. We are then led to compute Δ(fg) = f+g+—f_g-
in the sense of two continuous functions on the open set ΣItN\r, namely

which gives sense to (28 a) and (28 b).
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We now need to investigate the properties of the restrictions to the mass-shell
of the amputated one-p.i. functions, as it was done in Section III.3 for the original
π-point functions H(n\

Indeed, once these restrictions are well-defined as square-integrable functions
in the mass-shell variables, the operation * becomes meaningful at the right-hand
side of (27) [as an integral of the product of two square integrable functions,
after testing in the external variables, i.e. in the same sense as in (1 1)].

Let us consider for any given cell K I 6?2 eS(Kv(N\I)) (with \K\ = k^29

\N\I\ = n2) the real boundary value Ff'^ίPi? - >Pk'>£Ί °f the analytic function
pκ,N\ι.^ faQΐQ (as jn Section III. 5) it is more convenient to adopt the notation of
independent variables (p l5 ...,p fc;j/) in which p' denotes the set of barycentric
four- vector variables associated with (N\I), namely:

ieN\I }
with

/ k
P'i = Pi--~ > PN\I=- Σ Pj

In view of (25), we have :

( Σ P;)l ' (29a)V/= i /J
or in a brief algebraic notation: F/ f' = H(

κ\
+

λ

ί} [ffjft] ~l

— if n2 > 1:

MW (29b)

or in brief: F* ™ = H$$? - H(^λ »fj?^'.
In these formulae, the product of distributions which occurs at the right-hand

side is defined as the boundary value of the corresponding product of analytic
functions in the tube ^~κ^2-

We now want to define correctly the mass-shell restrictions (p? = ω, ; / e K) of
k

the Eqs. (29 a), (29 b), after multiplication of both sides by Y[ (pj — m2). In particu-

lar, some work will have to be done to prove that the restriction of the products
can be computed as products of functions (see Proposition 9 below): here the
difficulty arises from the fact that the complex mass-shell is not transverse to the

KL& J'
We first have:

Lemma 3. It is meaningful to define the following distributions in the open set

k

,£') = Π (PJ - ™2) &'(PI , , Λ ;/) (30)
\j

where Ω' denotes, as in Section III.3 the set of non-overlapping configurations in
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k

Proof. Let us put: (F^1)™* = γ[ (kj -m2)FK'N^. In view of Theorem 2
j=ι

^pκ,N\iγmP js a generaι (/c + π2)-ρoint function; it moreover satisfies the same
coincidence relations as (#(Π2 + fc))amp in all channels ({/}, [Ku(ΛΓ\/)]\{/}) (V/e £).
Therefore Proposition B.5 applies to (j7«.^\Jr)amp ancj yjgjjs ̂  announced result.

The latter is independent of postulate D.
Let us now define a dense open subset Aκ oϊ(H^)k by:

Λκ is the set of all "non C.D.D." mass-shell configurations. Then on the basis of
postulate D, we have.

Proposition 9. i) On any open subset of (H*)k with compact closure in Λκ, the
distributions F^l ̂  (p i , . . , Pk) and

can be identified with square-integr able functions iwith respect to the measure

ii) On Aκ the following relations hold in the sense of products of square integrable
functions by bounded continuous functions:

-ifN\I={λ}(n2 = \):

Fltf}(Pι, ,PJ = %\\1}(Pι,...,Pύ \H(2}tpκ, Σ ωT1 (31 a)
or in brief: L ^ j=ί ^

τ(2) -i-l

φfiK,N\I _φfτ(n2 + k)
ΓK|^2~" nK^2 ~

where

"&£$?(PI, -,pJ=$ί%£?(pι, ...,pk;£')φ(-P')d2'.

Proof. By definition of the one-p.i. function, we have:

(jFκ,μ})amp (p + ίε) = (H(k + υ)amp (p + iε) [_H(2\pκ + iε*)] " 1 , (32)

both sides being analytic in the advanced tube 3~κιλ = {p + zε;ε 7 e K + , V eX},
and yielding the boundary value:

(Fκl(λ])amp(p) = lim(F*'μ>)amp (p + iε) . (33)

Let now p be an arbitrary point in Λκr\Ω\ and

=Σ/^ (34)
β

be a local decomposition of (H(k+1))amp in a neighbourhood of p; according to
Proposition B.6, the hβ's can be chosen to be analytic in local tubes 7 '̂s such that:

— fβ = TβnJίc Φ 0 [Jίc being the complexified (fl^)*],
— P| Tβ contains a local restriction at p of ̂ u,

/?
— each T» is contained in the domain of [H(2)(pj$\~v.
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Let us then call hβ = hp]Me, [H^]'1 = [H(2)(pJC)]"1,^c; in view of (32)-(34),
and of the above properties of the /i^'s, we can write, by definition of F£j{/}:

^l^Σb v^C^Γ1), (35)
β

where the boundary values (b.v.) at the right-hand side are taken from the local
tubes fβ (in Ji^.

But according to Appendix A, the right-hand side of (35) defines precisely the
product of distributions H(£+χ}[H($^\~l in a mass-shell neighbourhood U of p
(with UcΛκnΩ').

Now we know from Lemma 1 and Proposition 3 that H(^+

λ

1} and [Hfu]"1 can
be identified respectively with a square integrable function and a bounded con-
tinuous function which is the uniform limit of an analytic function (U must be
chosen compact in Λκ, for the latter to hold). Then Proposition A.5 ensures that
the product of distributions H^+^ [^lu]"1 can be identified on U with the
corresponding ordinary product of functions. So this proves (3la) on Λκr\Ω\
and therefore on Λκ since [Hj^-J"1 is continuous in the whole set Λκ, and AκnΩ
is of measure zero in Λκ. Moreover the latter product is itself a square integrable
function on every compact subset of Λκ, which is the result stated in part i).

A similar argument holds in the case of a general set N\I, since in view of
Proposition 7, the function xFffi^1 has the same continuity properties as the
two-point function [//(2)] ~ 1 this ends the proof of Proposition 9.

Finally let us consider the following convolution product

associated with the distribution [H$£® * H^υ] FJf<£u (which has now a
precise meaning). We shall make below an extensive use of the following asso-
ciativity and distributivity properties which are straightforward:

,N\I-[
2 J ,

f,K,N\I

(λ},N\I _
-

Actually, in view of Propositions 3, 7, and 9, these are readily obtained in the
sense of products of functions square integrable by bounded continuous ones (after
testing in the external variables). Now we are in a position to prove the :

Theorem 3. The various boundary values and absorptive parts of all the one-p.i.
n-point functions {FI>N^} constructed in Section IV.2 satisfy (in the sense of
distributions) the following set of non-linear relations:

I I OT ' \/C 4 ^ / O i i r X ^ - i

Λ FI,N\I Y / Z17Γ \ [ pI.K £Z,N\I y / Zlπ \ A f,I,K f K,N\IΔ^^2F = L \-γ-\ τ r * = - -
k=2 \ ^ I κι

on the relevant l-particle region :
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Here ^ (resp. ίf2) is any cell of I (resp. N\I) the various distributions occurring
on the right-hand side are defined as in Lemma 3, and their product is meaningful
in the sense of square-integr able functions (Proposition 9).

Moreover the complete set of these relations (27) on the relevant sets Σl

IίN\ι is
equivalent with all the original completeness relations (11) expressed in the same
regions.

Proof. We shall stick to the case of "negative" arrows. (The proof would go
similarly in the other case.) First we define for all channels (I9N\I)\

with Ck = \—^-\ TT and similarly
\ Z / kι

i
fa1 -A F*'NV V Γ(y<Sί,y2 — Δ^Ί^2^ — L ^

k = 2

i) Then we start from the definition of the one-p.i. two-point function :

which yields (in view of Proposition 3)

A /?{!}, {2}_ ΓΓJ(2) Ί - l A tr(2)Γrr(2) Ί - 1
Δ{l},{2}r ~ L^IUJ Δ{l},{2}n Lnl[2l

This can be rewritten :

A F{1},{2} ΓτjMΊ-l\Λ Tj(2} V Γ U(k+ ^ ^ U(k+ ̂
Δ{l}Λ2}* =LH2ίl] \Δ{1},{2}M - L LkUκil *Hκi2

k = 2ι

-i-ΓF/^i" 1 f V r u^k+1) * ό(/

+ 1^211] \L ckHκu *^
Lfc = 2

Then in view of Proposition 9 and (36), the last bracket can be rewritten:

k — 2
which yields

1 (38a)

ii) When (for instance) / is reduced to one element {f}, we start from the
definition of F® N\{i} to derive:

Taking into account Proposition 8, this yields

A F{i},N\W — Vfl(2}Ί - 1 A ΐJ(n) __ A 17(0, {£} rj(π)Z1{i}^2r — L^iiiJ ^(0,^2" ^(O.dr ^u^2

This can be rewritten

k = 1
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But the last two terms of the right-hand side can be rewritten using relations (31)
and (36):

V Γ F{i]'κ * Fκ>N\(ί}

L ^k^Kii *
k = 2

and finally we get

iii) We then turn to the general case when |/| (resp. |N\/|) is different from one.
From the definition (25 c) and from Proposition 8, we get:

A j?I,N\I _ A rj(n) A ττ(«ι +
Δy^2r —Δ#ΊP2n — Δ^ί,{λ}n

This can be rewritten :

k = 2

Now using relations (36) and (37), the last summation can be rewritten:

V Γ F*>κ * FK ) N W

L ^k^Kl^Ί * ΓK^2

k = 2

which allows to write :

^k^^.^-^.u) ΦT'-^ί' 0(W (38c)
Putting together relations (38 a — 38 c) it is then straightforward to check that

they form a homogeneous linear system which can be solved by recursion either
in the Θ5e^2 or in the Θ^lf^2. The vanishing of the whole set of the Θ^^2 (ex-
pressing asymptotic completeness) is therefore equivalent with the vanishing of
all the Θ^lt^2, which achieves the proof of the theorem.

VI. One-Particle Irreducibility in All Channels

Finally we turn to the definition of a general rc-point function which should be
one-particle irreducible in all channels (/, N\I\ that is to the possibility of a
simultaneous extraction of one-particle singularities on the various manifolds

This will be done in two steps.
A. First we shall define a general n-point function F(n} which is one-particle

irreducible in all channels (/, N\I) with 2 ̂  |/| ̂  n — 2. This will be done by recursion
over the number n of external variables. First we notice that for π ̂  3 we can
trivially define: F(n) — H(n\ In a second step, we assume that for any n ̂  n0 — 1, it is
possible to define a general rc-point function F(n) which is one-particle irreducible
in all channels 2^\I\^n — 2. Then we define F("o) by the following recursion
formula

F(nG) = H(n0)_ £ HT . (39)
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Here some explanation of the notation is needed : 2Γ(nώ denotes the set of trees
with «0 external lines and any vertex at least three-lined. With any such tree T
we associate a convolution-product Hτ thus defined [1]:

Hτ(k)= n^"w)({*We«^}) Π [^(fc/XΓ1 - (40)
v j

Here the first product is taken over the vertices of T: with any vertex v incident with
nυ lines {j e ^v] we associate the function F(tlv). Indeed it can be checked that for
any v, nv < n0 so that (39) provides a good recursive definition of ,F(no). The second
product is taken over internal lines. Then we can state:

Proposition 10. F("o) is a general n0-point function.

Proof. Straightforward in view of the recursion hypothesis, once taken into
account the conservation of the primitive structure by tree-convolution ([1],
Section 4).

Proposition 11. F(no) is analytic on any manifold Jίltμ with 2 ̂  |/| ̂  n0 — 2.

Proof. Let us make choice of any such channel (/, N0\I). From the study of
tree-products made in [1], it is clear that for any tree Te^(no) three situations
may occur :

i) (I,N0\I) is not a vertex partition for T: then it is known ([1], p. 200) that
Hτ is analytic on kj = m2

μ. We call F^k) the contribution of all such trees to (39).
ii) (I,N0\I) is a vertex partition for T, but not a line partition: that is, there

exists one vertex vQ of T where it can be realized as a partition (,/, ̂ 0V/) of the
lines incident to vθ9 with 2^|</| ^nVQ — 2. Then Hτ is analytic on any manifold
k2 = m2

μ since the function F("VO) associated with v0 in (40) is one-particle irreducible
in the channel («/, 5^0V/). We call F2(k) the contribution of all such trees to (39).

iii) (/, ΛΓ0\/) is associated with an internal line i of T. Then it is easy to check
that the summation over this third family of trees yields the tree-product HΓ

introduced in (24). Indeed we must sum on both sides of i and apply the recursion
formula (39) with the order |/| + 1 (resp. |ΛΓ0\/| + 1) at its two endpoints.

Finally we have :

Applying (25 c) then yields

Now in view of Proposition 5, any function in the right-hand side is known to
be regular on Jtϊtμ\ which ends the proof of the recursion property.

B. In a second step we obtain a general rc-point function F/"} one-particle
irreducible in all channels by amputation in all external variables :

Indeed, as seen in Section I V.I, the amputation in kt ensures regularity on kf = m2

μ.
Then F^} is analytic on any manifold Jtl^ which is the desired result.
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VII. Final Remarks

In this first step of the analytic M.P.S.A. program, we have been led to add a
technical postulate (namely postulate D) to the usual axioms of the L.S.Z. field
theory. Although this postulate was not necessary to construct one-particle
irreducible functions, it played a crucial role in the rigorous derivation of non-
linear properties of the latter; we shall therefore have to keep this postulate
(or an equivalent one) in the following of the program.

Concerning the existence of sharp retarded operators, such a postulate was
not crucial for the present study, since the mass-shell restrictions which occur in
writing completeness relations have only to do with local analyticity properties
in momentum space. Actually the sharp character of retarded operators is only
linked with increase properties at infinity and is therefore irrelevant in the frame-
work of the local analytic structure of Green's functions. So it is only for con-
venience that this postulate was assumed here: it allowed us to write completeness
relations in their usual form, namely without regularizing factors for the fields.

Acknowledgements. It is a pleasure to thank Prof. R. Stora for an invaluable introduction
to the subject some years ago. We also acknowledge fruitful discussions with Profs. V. Glaser and
R. Haag (in particular concerning the introduction of the "smooth spectral condition"), and with
Dr. D. lagolnitzer.

Appendix A. Essential Supports and Local Analytic Structure of Distributions

We recall very briefly some mathematical facts which are exposed in detail in
[26, 28].

The essential support of a distribution T(p) in R"p) at a point p is a certain
closed cone Σp(T) with apex at the origin in R"x) (the dual space of R"p)) which can
be defined in terms of the exponential decrease properties of a certain "generalized
Fourier transform" of T; the interest of this notion is to allow a simple and
intrinsic description of the local analytic structure of T in the neighbourhood
of p.

Here it is sufficient to know that if Σp(T) is contained in the union of a finite
family of open convex cones ^β, then there exists a neighbourhood <%(p) of p

(41)
β

with
Tβ(p)=limFβ(p + ίε).

εeVβ

Here /^denotes an analytic function in a local tube ̂  = <%($) + i^βr\BQ ^β is the
interior of the dual cone of ̂ , and BQ is a ball with radius ρ centered at the origin.
The decomposition (41) is highly non-unique, when £ is not reduced to a single

term. p

In order to determine Σp(T) — or at least a "majorization" of it [i.e. a cone
which contains Σp(T)~\ - one can make use of the following facts:

Proposition Al. For any distribution T' which coincides with T in a neigh-
bourhood of p, one has
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Proposition A2. // the Fourier transform T of T has its support contained in
a closed cone Γ (with apex at the origin, or more generally in a + Γ, a being a fixed
vector), then Σp(T)cΓ.

The possibility of defining the local restriction of T to an arbitrary submani-
fold M containing the point p is ruled by the following

Proposition A3. Let ,/K^ be the normal submanifold to M at p (.^ is a certain
vector subspace of Rn

x). The following properties are equivalent:
1. r,n.^={0}.
2. The above decomposition (41) of T(p) can always be performed in such a

way that, at p, Jt be transverse to all cones ^β; this entails that T(p) admits a
restriction to Jί in a neighbourhood of p (this restriction having a C™ -dependence
with respect to the variables which are transverse to -M) .

A general sufficient condition for the product of two distributions Tv , T2 to
make sense is given by:

Proposition A4. 7i T2 is well defined in a neighbourhood of p if

This amounts to say that under this condition there always exist decomposi-
tions of the type (41):

Tι = Στβί9 τ2=ΣTβ2 (42)
βl β2

such that all couples of corresponding cones (&βl,
(£β2 have non-empty intersections

^βιβ2 = ̂ βi n^/?2 + & Then, one has:
τι'T2=Σ e Al jmo Fβl Fβ2(p + iεβίβ2)

β εβl β2 e<&βl β2

and the sum is independent of the decomposition (42).
We also need (in Section V) the following result:

Proposition A5. // T1? T2 are as in Proposition A 4, and if moreover:
i) Ji is represented by a square-integrable function on %(p).

ii) T2 is represented by a bounded function on %(p\
then the product of distributions T± T2 is represented by the usual product of the
corresponding functions, which is itself square-integrable on %(p).

This study of products of distributions is treated in the second paper under
reference [28].

Appendix B. Local Analytic Structure of the G.R.D.'s F|™^ in the Neighbourhood
of the Mass-Shell Manifold Jίκ

Since this appendix is used both in the case of the physical (n + fe)-point
function H(n+k)(k= \K\,n = \N\) and in the case of the one-p.i. function FK'N we
shall work with a general (rc + fc)-point function F(p\ where p= \pm

Σ P« = 0], and put: Fa^(p) = f] (p] - m2) F(p).
m J jeK
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The boundary values of Famp in which we are interested are the F|™£, ̂  being
an arbitrary cell in S(N).

B.I. Support in x-Space of F

The Fourier transform of Fκ^(p) (pe!R^(

)"
 + /c"1)) is actually a distribution

) of the variables χ = {χm = χ m _χ m o ; mεKvN\{m0}} (x e lϊ^"+k-1)

= IR*(n+fe)/IR) and - as it was proved in [20] - Fκι^(x) has the same support6

Γκιse as the physical (n + /c)-point function HXί^(x); but Hκ:^(x) = rκι^(x)
= <Ω, Rκ^(x)Ωy, and it is more convenient to describe ΓKί#, through its canonical
inverse image in x-spacelR^"4"^.

Now let us recall that the support Γ^ of every g.r.p. jRy>(5^ e S(N)) is a finite
union of closed convex cones Γt which are all defined by n independent conditions
of the type xz - κj e V+ (i,j e N) [19]. It turns out that any such set of n conditions
is conveniently represented by a tree-graph t whose n vertices are the points
Xi(i e N) and whose branches [xt — xj a£e time-like vectors with end-points xi9 Xj
associated with the conditions xt - κj E V+ mentioned above. Here it is irrelevant
to describe in detail the set {t}^ of trees t which are associated with a given cell ̂
but we need to know the following fact.

Proposition Bl. For every ^ in S(N), one has:

ieN

ieN

Let us now recall that K | ̂  = (M T (...({lk} ΐ &)...) (/ ι , . Λ being the
elements of K); thus by recursion over the number of elements of K, it is a corollary
of Proposition B.I that Γκ^ is a union of convex cones Γb associated with tree-
graphs b (with n + k vertices) of the type described above.

Now every tree b is a "bush" over a certain tree t associated with £f we say
that a tree b is a "bush over ί" if it enjoys the following properties with respect to t:

i) For every j e K, there exists an element m(j) in KuIV\{/}, and a branch
[/, ro(/)] with end points xj9 xm(j}.

ii) All branches of this type are either time-like vectors, or zero vectors (case
of coinciding points, or "clusters").

In a bush b, a vertex xj is called "maximaF (resp. "minimal") if no branch
of b links κj with any other vertex xm in the strict future (resp. past) of x, . The
closed cone Γb which is associated with such a bush b over t is defined by:

b(j) is ajsign function associated with the bush b, and which can take the values +,

6 More precisely: ΓKί^ is a set which contains the actual (unknown) support of FK:^; this is
a loose but convenient way of speaking.
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We then have :

Proposition B2. ΓK^C (J Γb, where B+ is the set of all bushes b over all
beB +

trees t in {t}^ such that: b(j) = + , Vj e K.

Similarly one obtains the supports of the g.r.d.'s

Proposition B3. V / e K : Γ(l]l(K\{l}}^ C (J Γb, where Bt is the set of all bushes b
beBi

over all trees t in {t}^ such that: b(l)= — , and b(j)= +,

B.2. A Majorization of Σp(Fj^%>) in the Neighbourhood
of the Mass-shell Manifold of K

Let us put J?κ = ίp'. £ Pm = ̂ l PJE^,^/JE K\ and choose peJίκ. For

every cell £f in S(N), we have, in view of the spectral conditions (see Sections II.2
and IV. 1):

V / <= K Fv l e Λ r

in a neighbourhood of p.
Therefore, Proposition A.2 and A. 1 yield :

(Γ,
/ '

But in view of Propositions B.2 and B.3, we deduce:

(43)
leK \bιeBι ]\ \beB+

Now in any convex component Γbl n nΓb ί vnΓb of the cone at the right-hand
side of (43), we can see that all points XJ(JE K) which are maximal (namely simultane-
ously maximal in b, bh, ..., blv) must certainly form clusters with other points (at
least one) either in K or in JV; this is because such a maximal point xt must satisfy
together with the other xm's the_conditions which express that {xm}'e Γbl, and one
of this condition is xt — xm(l) eV~, which implies xl = xm(l} [for a certain m(l) φ /].

Let us now call a "budded bush" β any bush for which /?(/) = either + or 0,
and whose all maximal points xt with / e K are clusters, and let Γβ be the corre-
sponding cone. Then from the above analysis of the right hand-side of (43) we
obtain :

Proposition B4.
U r p ,

where B0 is the set of all budded bushes over all trees t in {t}^.

B.3. Restriction of F^ to Jtκ in the Neighbourhood
of a "Non-Overlapping" Configuration p

We shall apply the result of Proposition A.3 to the study of the restriction of
to tne manifold Mκ in the neighbourhood of a point p such that
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{ p j j E K} e Ω'. The normal manifold7 ,λr$ to Jtκ at p is described conveniently in
x-space as follows:

Σ*.
ι(n ~r K,)

Then it is easy to check that all the intersections of ,Λ^ with the cones Γβ of
Proposition B.4 are reduced to {0}.

In fact, since {ppjeK} eΩ'.all the trajectories Xj = λjpj are distinct; now if
x e Γβr\,Afp, it must satisfy X j £ V + ,VjeK (since /? e £+); but if such a point {x}
were Φθ, then one four- vector x7 at least would be maximal and single, which
would contradict the fact that x<=Γβ(β being a budded bush). So we have proved :

Proposition B5. At every point p such that {pjJεK} e Q' we have: Σp(F^^)
n,/ί^ = {0}; equivalently the mass shell restriction Fκ^ of F|™£ is well-defined on
the open set {p e Jiκ {PJ J E K} e Ω'}.

A similar result holds for Σp(F^).
Special Case: N = { λ } ( n = ί ) .
In this case FKίλ(x) is an ordinary retarded function, and Γκ^λ = {x: Xj e F+,

VjeK}. In p-space, Γ κ ^ λ = { p j \ p j < Ξ V + ] is contained in the open dual cone Γ^
of Γβ, for all β's. In fact an arbitrary Γβ is defined by a set of conditions
{p : A 7 l eF + , . . .p J v eF + ; |Λ| >1, ... |JV|> 1, (J, ... Jv) = partition of K} (here
J1? ..., Jv correspond to the clusters of the budded bush /?); we then note that

We thus have:

Proposition B6. /« ί/ί^ neighbourhood of every point p in Ω', the retarded
distribution Fκ^λ(pjJeK) can be decomposed as a sum of boundary values of
functions Fβ, which are analytic in local tubes Tβ with the following properties:

i) each Tβ has a non-empty intersection fβ with the complexified manifold
(H^(fβ being a local tube in (H+)kJ.

ii) [ ] Tβ contains the intersection of the retarded tube 3/~κu (with imaginary
β

basis ΓκtJ with a suitable complex neighbourhood of p.
iii) each Tβ is contained in the tube 3~κ •> with imaginary basis ̂ .
The same results are valid for the advanced distribution Fκu, and in both cases

(K] and Kl), the point p can also be chosen in the subset ( — Ω') oϊ(H~)k.
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