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Abstract. The extension of the Schwinger functions to various positive linear functionals on the
Borchers algebra is discussed. In one case, we construct a measure on &" and give criteria for
uniqueness as well as for the homogeneous chaos to lead to an j^2~

sPace-

1. Introduction

In recent years there has been much development in constructive quantum
field theory involving the formal framework of generalized random processes
see for example [5,9,19,20]. Still unanswered is the question as to those Wightman
quantum field theories admitting such a representation. In this paper we wish to
begin an examination of this question and its consequences. More generally one
may ask whether Nelson's sharp time euclidean framework [9] may be modified
to encompass all Wightman theories or failing this, can restrictions on the latter
be given for a reasonably broad equivalence theorem between relativistic and
euclidean fields? The success of euclidean methods in constructive field theory
amply warrants such an investigation in spite of the lack of a four dimensional
example.

The first task of placing the relativistic theory within a euclidean framework
has been completely solved by Osterwalder and Schrader [1,5] in terms of
Schwinger functions. The ideas presented here develop the point of view that the
probabilistic euclidean field theory arises when these Schwinger functions admit
certain extensions to the Borchers algebra over the underlying test function space.
As a model, we study the Schwartz space on R4 though it is clear any other
complete nuclear *-algebra will serve equally well. Within this paper, we assume
and examine two classes of extensions, the positive and strongly positive ones
[10]. For the first case, a euclidean field theory results without necessarily re-
quiring the existence of an infinite volume probability measure. Such a measure
arises upon formulating a moment problem using the second notion of positivity.
In the study of the P(Φ)2 model, extended Schwinger functions are defined through
the infinite volume limit and positivity is an immediate consequence of the form
for the finite volume measure. General mathematical conditions allowing exist-
ence of these extensions may be written down, but whether these require further
restrictions beyond the Wightman axioms is not yet known.

Conditions on the relativistic theory which lead to most of Nelson's sharp
time framework have been given by Simon [19]. More recently, starting with
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positive extensions of the Schwinger functions satisfying a growth condition which
implies strong positivity, Frolich [20] has studied the related euclidean theory
within the context of the P(Φ)2 model. For the considerable development on these
questions which has taken place in recent years as well as for earlier literature
see [21]. In relation to these investigations, we consider a general moment
problem appropriate when sharp time euclidean fields do not exist. Various
aspects of the infinite dimensional moment problem which are needed in devel-
oping further the resulting generalized random process are presented fully and in
a form that we hope will be useful to the reader. Some of these are probably known
to some workers in the field. These techniques have been used to describe the
embedding of the relativistic Hubert space as a subspace of a euclidean Hubert
space [7]. It seems to us that the most subtle part of this enlarged framework will
be an appropriate generalization of Nelson's Markov property to the non-sharp
time theory. Already one knows it is more general than needed [19, 20].

The first part of this paper, Section 2, deals with the existence of positive
extensions and reduces the task to that of simultaneously satisfying positivity and
symmetry. The relation between reality properties and time reversal invariance
has also been noted by Simon [19]. Section 3 describes the extended Schwinger
functional moment problems together with uniqueness and invariance of the
measure. In Section 4, natural conditions on the moment problem are given which
allow polynomials (homogeneous chaos) in the euclidean field to be dense in the
j?2'sPace with respect to the measure derived in Section 3. When such is the case,
the euclidean Hubert space of Section 2 is the entire Jz?2-space. Throughout, our
discussion is confined to the case of a neutral, scalar quantum field.

2. Extension Problems

In this section we formulate the extension problem for constructing a
euclidean field theory from the euclidean framework for quantum field theory
given by Osterwalder and Schrader [1]. The reader is referred to this work for
detailed definitions and properties of the spaces of test functions we shall use, as
well as for notation.

Let ^(R4n) denote the Schwartz space of test functions on R4n with rapid
decrease. Then £f=@n£f(R4n) will be the locally convex direct sum of these
spaces in which a typical element is a finite sequence

with /o e C and (/)„ = /„ e ̂ (R4n), n = 1, 2, . . . . When equipped with the product

n

(/X0)Λ(*1> •••»*„)= Σ fk(Xl,'-,Xk)gn-k(Xk + l, -,Xn)
k = 0

and the involution ( means complex conjugate)

(/*)π(xι, ...,*„) =/„(*„, ...,*ι),

£f becomes a topological *-algebra (the Borchers algebra) with unit 1 = {1,0,0,...}
[2]. Important structure properties for the algebraic dual, 5 *̂, and topological
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dual, Sf\ of ίf are obtained in terms of the positive cone

ί N }
^ + = Φ Σ /* XΛ I {/*} C ̂  N a positive integer .

=ι J

The notation sp indicates the closed linear span. A linear functional T = {TQ9Tί9

T2, ...} is an infinite sequence of linear functional Tk on ^(R4k) and is said to
be positive if

Such elements of ̂ * are also continuous; namely, in £f' [3,4].
The euclidean theory is obtained in terms of the subspace 5̂ 0 = ©„

where the 0-component is again C and for n— 1,2, ...,°^(R4n) consists of those
functions in ^(R4n) which together with all partial derivatives vanish unless
X φ X y for all i^ί<j^n. A linear functional ^E^Q satisfying the euclidean
axioms EO-E4 of Osterwalder and Schrader [1, p. 88] with EO modified as in
[5, p. 80] will be called a Schwinger state. Its components Sn are the Schwinger
functions. As is well known, the relativistic theory is completely characterized by
a positive linear functional "̂e 5^* [2, 3, 6] satisfying the cluster property along
with other linear conditions. Such a ^Γwill be termed a Wightman state. The
main result of the euclidean theory is the relation between these two functionals.

Theorem (Osterwalder, Schrader [1, 5]). To each Wightman state on if there
corresponds a unique Schwinger state on if'§ ana conversely.

The connection between the two states is quite explicit and is given [5] by
the relations

(2.1)
and

(2.2)

The test function space if< = ®n Sf< (R4n) with 0-component C and y< (R4n)
those test functions in ^(R4n) which with all derivatives vanish unless — oo <x°
< x° < '" <Xn<oo; where x = (x°, x) e #4 and x° plays the role of the "time"
component. SR and WR are the reduced functionals arising from translation in-
variance without alteration of the 0-component. (7) is given by Fourier trans-
formation in each component and ( γ ) likewise denotes a linear mapping from
y(R\) onto a dense subset of &(R\) [1, Lemma 4.1, p. 95].

As both 5̂ 0 and 5̂ < are closed subspaces of Sf but not subalgebras, a Schwin-
ger state does not allow us to form a euclidean field theory by reconstruction. This
will however be the case if we can extend this state to a positive linear functional
on Sf. As we are dealing with an extension, the underlying relativistic theory will
be unchanged. For a characterization of the extensions of interest to us we must
recall several homeomorphisms of ^ [1]. The time inversion operator is
defined by

,...,θXn) with 0(x°,jc) = (-x°,x),
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while the euclidean group, iSO(4), on R4 acts according to

for a E R4, A e S0(4). For translations alone we put α(α, /) = α(α). For the infinite
00

symmetric group P = Y\ Pn with Pn being the symmetric group on n objects we
ιt = 0

define for π e P

(πf)n(xί9 . . . , xj = /n(xπn(i), - , *„„(„)) with (π)n = πn e Pn .

Throughout this paper, ext 5 will denote an appropriate linear extension to £f
of a Schwinger state 5. Among the many which exist by the Hahn-Banach theorem
the following subclass appears most profitable.

Definition 2.1. An extension, ext 5, will be called an extended Schwinger state
if the euclidean axioms EO— E4 are widened to include

Ext 0: ext S e £f* and is positive;
Ext 1 : ext S(f) = ext S(α(α, R)f) for all (a, R) e iSO(4) and ext S(θf) = ext £(/);
Ext 3 : ext S(f) = ext S(πf) for all π e P;

valid for any/6,99.

When such an extension exists, the reconstruction theorem [2, 6] will produce
a euclidean field theory over ^(R4) corresponding to the underlying relativistic
field theory by means of the Osterwalder-Schrader theorem. To fix the notation
for Section 4, the euclidean Hubert space will be $CE = £f/NE

E where the euclidean
null space is the set

and the euclidean topology is derived from the following sesquilinear form on
the cosets ψ(f) e

In the usual manner [2] with ΩE = ψ(ΐ), the euclidean field B is a continuous
linear map from £f into closed linear operators in 2tfE defined by B(f) ψ(g)
= ψ ( f x g ) . These are commutative on £f/NE as a consequence of Ext 3. The
relation between E2, Ext 1 and an embedding of the relativistic Hubert space
reconstructed over the Wightman state as a closed subspace of J^E is taken up
elsewhere [7].

It is to be expected that there are Wightman states for which no extended
Schwinger states exist. In this direction the following necessary conditions must
apply.

Proposition 2.2. For related Schwinger and Wightman states, £f and ^respec-
tively, the following equivalent conditions are necessary for the existence of a
ppsitive extension to £f of S:

(a)
(b)
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Proof. The necessity of (a) is immediate since when Ext 0 is true, ext S(f)
= extS(/*) and due to the symmetry of 5 for/e^o this becomes (a).

Suppose S is real then so is the restriction to £?<. For/6*9^, the relation
(2.1) implies

RJR) = WR(fR) = WR(ΘJR) = θs WR(fR),

in which θs is the space inversion. The functional WR and ΘSWR are equal on
a dense subset of £f(R4+) [1, Lemma 4.1, p. 95]. Since θs is a symmetry and con-
tinuous, this equality extends to all of £f(R4+) whereupon we conclude from (2.2)
the relation

for all g e £f. Reversing these steps establishes the equivalence of (a) with (c).
The equivalence of (b) with (c) follows in the same way using the symmetry

of 5 to write (b) as

= S(θπf), πf=f

Then \ife£f< so is θπf and the Osterwalder-Schrader relations become

- v ~ v

or by continuity

Next let us turn to the question of extensions for 5 which are positive.
Extensions which are required to be only symmetric abound upon averaging any
Hahn-Banach extension over the compact group P with an invariant mean for
this group. However, it should be remarked that P does not preserve the positive
cone &*+, hence Ext 3 does not follow automatically once Ext 0 has been achieved.
It is a remarkable fact that with a technical assumption, SK^ always has at least
one positive extension to Sf.

Proposition 2.3. Let S be a real Schwίnger state with S1 =0. Then SN^ has a
positive extension to £f.

Proof. For the restriction Sn e <f< (R4n), hence there exists a positive integer
m(n) and a positive constant φ, m) such that \Sn(fn)\ ^ φ) |/Jm(n) for all/ney< (R4n)

m(n)

with I - \m(n) one of the Schwartz norms on ^(R4n\ Set (j = {fne^(R4n)\\fn\m(n)< 1}
and define sequences {m(n)}9 {c(n}} for n = Q, 1,2, ..., with c(0) = \, m(0) = 0. Then

m(ή)

U = Q)(\/2n + 1c(n)) [J is a convex, balanced neighborhood of zero in ίf.

Suppose / + p e U with/e^< and pe ̂  +. Then for n^2

(1 + WΓ^ \(fn + Prf* frl* - - , ̂ )l < l/2" + 1 Φ) -

|α| ^
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For convenience denote Ω< = [xER4n\x^ <x° < '" <xn} so tnat suPP/«Cί2<.
This means

sup

or subsequently

s u p l + x " / *!,.. . , *„= s u p
xeΩ< xeΩ<

Combining the two estimates produces |pjm(n)< l/2n+1φ) and accordingly

!/»!»(„) ̂  l/» + P»l«(») + IPπL(») < V2"Φ) when n ̂  2. For the 0-component, | /0 +Po\ < 1
with PO ̂  0 requires /0 < 1 .
Finally for such /, the value of the Schwinger functional is bounded by

The Bauer-Namioka extension theorem [8, V, 5.4] will then guarantee the exist-
ence of the desired extension. Whether or not every Schwinger state has an ex-
tension which is positive remains open.

The matter of an extension with both symmetry and positivity appears more
delicate. It should be remarked that a symmetric, positive extension of SW is
not necessarily an extension of S unless it is euclidean invariant when restricted
to £f0 . For 5 itself, jointly positive and symmetric extensions are governed by the
Bauer-Namioka theorem. As a base for the subspace invariant under P define

and extend S to &Ό + JV by

This extension is well defined and leads immediately to the result,

Proposition 2.4. A real Schwinger state S has a positive, symmetric extension to
£f if and only if there is a convex, balanced neighborhood U of zero in £f such that
exti 5 is bounded above on (^ + JΫ)r\(U -&?+\

Alternative criteria involving the kernel of 5 may be readily found [4]. One
may pursue the necessary and sufficient condition of Proposition 2.4 through the
relations (2.1), (2.2). In geometrical terms the result is that the underlying Wight-
man state should be positive on a second closed cone in addition to ̂ +. It would
be of interest to establish usable sufficient conditions on the Wightman func-
tionals which lead to Proposition 2.4.

Before turning to another type of positivity for ext 5 in the next section let
us note that once an extension of 5 has been found for which Ext 0 and Ext 3
hold, then Ext 1 follows generally. Suppose ext: S is the assumed extension then

ext2 S(f) = i [ex^ S(f) + ex
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is a ^-invariant extension of the same type. For the remainder, let M denote an
invariant mean on cSf00(/5fO(4)) and consider the continuous bounded function
on iSO(4) defined by

Ff : (a, _R)~*ext2S(α(α, R)f) V/e ST.

Clearly, extS(/) = M[F/( )] is the desired extension since the Schwinger func-
tional satisfies the euclidean invariance axiom, El.

3. Construction of a Measure

For the most part, our terminology governing measures on nuclear spaces is
that of Gelfand and Vilenkin [11]; however, for convenience we recall certain
of these notions. The real-valued Schwartz functions will be denoted as ^R(R\
or more briefly ^κ, whereupon Sf(R*) = yR + iίfR. Similarly with a slight abuse
of notation SfR indicates continuous real linear functional on ̂ R so that Te&"
if and only if T(/) - Re Γ(/) - i Re Γ(ί/) for all /e SfR with Re Te ίfR. Suppose
ΨC&*R is a finite dimensional (real) subspace with (absolute) polar Ψ°c£fR.
Then the canonical coset mapping ψ factors the transpose of the injection i:Ψ-+^R

so that the following diagram is commutative. Dotted lines show dualities.

R". *
fr .

A coordinate representation for Ψ consists in selecting a basis {/1?/2, ...,/N}
Q

where dim Ψ = N and with respect to this basis Ψ = RN. A cylinder set in £fR is
then a collection of equivalence classes modulo Ψ° which may be equivalently
represented as

Z = ψ-l(A) = ZΨo(A) = Z{fίtf2_tfN}(B),

where B is a Borel set in RN and A the "BoreΓ set in &R\ψQ defined by τi(Z)
= τρ(B)=j(A). If μ is a measure defined on the σ-algebra jtf generated by the
algebra j/0 of cylinder sets, the induced or conditional measure on cylinder sets
is written

3.1. M. Riesz and M. G. Kreίn Extensions

Consider the polynomial algebra 0*(yR) over the complex numbers generated
by £fR. It is not hard to see that this is dense in £f. Suppose P(ί1? t2, ..., tN) is
a non-negative polynomial defined on RN. A positive (non-negative) polynomial
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in 0*(^R) then corresponds to the formal substitution

/i,/2, -,/»)= Σ c&. . Mx

where the algebra product in £S replaces the ordinary product of real numbers.
The fact that P(/l5 ...,/#) is no longer independent of the order in which the
products of its factors are taken is of no consequence due to the symmetry of the
extended Schwinger functionals. Further, there is no loss of generality in re-
quiring that the vectors {/ι,/2, •••?/#} C 5̂  be linearly independent. Certainly for
different choices of vectors in £fR the same polynomial on RN produces different
elements of ̂ (̂ ), say ^+ which defines an order relation.

There is an alternative way to view ^(^R)=^. A function F:^R^C will be
said to have finitely many variables if there is a finite collection of linearly
independent functions in £fR, say {/1?/2? ...,/#}> such that

where F( ) is a complex- valued function on RN. In this way, &> is just the subset
of polynomials in finitely many variables and P e ̂ + if and only if P« ,/i>, ...
•••X 5/ιv)) = 0 on ίfR. The subclass of real polynomially bounded functions will
be written as $(£fR) = $, which one readily verifies is a real linear space.

It is now appropriate to introduce the second type of positive extension from
the Osterwalder-Schrader theory that we will examine. Criteria for the existence
of such extensions are to be had upon modifying Proposition 2.4.

Definition 3.1. Let ext S be an extension to 0*(^R) of a Schwinger state for which
(a) ext S is continuous;
(b) ext 5 is symmetric
(c) extS(^>+)^0.

After Powers [10], such a state will be called strongly positive. From a strongly
positive state, we may define a real linear functional / on ̂ (5^)0^(5^) by

/(P)ΞextS(P(/1?/2,. ..,

The functional / then satisfies the conditions of the Riesz-Krein extension theorem
[17, Theorem 2.6.2, p. 69] whereby it may be extended to a positive real linear
functional ext/ on g. When Fe<f has the form F« ,/1>, ..., < ,/N» we shall
also write for this extension

Upon extending further by linearity, ext/ is then defined on the complex func-
tions in g 4- ig and agrees with ext £f on ̂ . The virtue of such an extension lies
in the fact that it corresponds to a measure on the cylinder sets j/0 in £fR and
solves an infinite dimensional moment problem for ext 5.

Definition 3.2. Suppose Z is a cylinder set in £fR with characteristic function

Xz τhen

defines a positive finitely additive set function on j/0.
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We claim that μ is actually a cylinder set measure, μ is certainly well defined,
for suppose Z{/1)/2> >/n}(J3) is a cylinder set for some Borel set B in RN. Then

defines a normalized, regular, Borel measure Vfi,f2i...,fN on RN.
It remains to verify certain compatibility conditions that ensure μ depends

only upon the cylinder set and not the manner in which it is represented. Suppose
Z = Zψo(A) and {/l5/2, ...,fN}=f,{gl9 #2> •••> 0^=0 are two bases for <F related
by a real non-singular NxN matrix C, g = Cf. μ(Z) is independent of which
basis is used as

The second compatibility requirement concerns two subspaces Ψl9 CΨ2,
with bases {fl9...JN} and { f l 9 ...JN9fN+l9 ... JN+M} respectively. For Fe<f of
the form F« ,/ι), ...X ?/]v)) we maY multiply by the function which is identi-
cally 1 on #M so that

A short calculation ascertains the compatibility of the measures μψ° and μ^o.
It then follows that μ is a cylinder set measure [11, Eq. (4), p. 309].

The relation between μ and ext 5 is a classical proposition from the theory of
the moment problem. One may actually do a little better without any further
work.

Proposition 3.3. Suppose F e $(^R) and is measurable with respect to the Borel
sets in ̂ \Ψ° for some finite dimensional subspace Ψ C^R. Then

ext I(F) = J Fdμψo
^/ψo

and in particular

extS(P(Λ,/2,. ..,/„))= J P(tι9t29...9tN)dvfί,.mmtfN(tl9t29...9tN).
RN

Remarks. This representation for ext/ does not require the countable ad-
ditivity of μ on jtf0.

Proof. For F continuous, the validity of the above integral representation is
a standard result in the moment problem [12, Theorem 1.1, p. 3].

Next suppose F ̂  0 and 0 ̂  sn ̂  F is a sequence of simple functions increasing
pointwise to F. By positivίty 0 ̂  ext I(sn) rg ext I(F) and by monotone convergence

j Fdμψ0 = lim J sndμψo ^ ext I(F) .

For the converse inequality recall that since F is polynomially bounded there
exists a fixed polynomial P such that for any ε > 0, there exists a compact set
KcRN depending only on ε for which
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Since P is chosen to dominate F we may assume /(P)>0 otherwise there is
nothing to prove. The function Fχκ has bounded range, so O^Fχκ^b< oo. In
fact, if J is a positive polynomial which dominates F then b^ sup£χκ< oo.
Following Rudin's proof of the F. Riesz representation theorem [13, Step X, p. 46]
one may deduce the estimate

Hence ext I(Fχκ) ^ J Fdμψo + 3ε + ε2 .

e x t I ( F ) = e x t I ( F χ κ ) + ext l(F(i - χκ)) ^ j Fdμψ0 + 4ε + ε2 .

When F is a general measurable function in S, the representation results upon
decomposing F into positive and negative parts. The representation also extends
to complex functions.

Remark. Under suitable growth conditions on extS(/p) as a function of p,
positivity of ext S alone will imply strong positivity [18].

3.2. Uniqueness of μ

As we shall see in Section 4, the circumstance in which the measure μ is unique
provides good technical control over the resulting euclidean field on (<9 ,̂ j/, μ).
This question is clearly that of uniqueness for the Riesz-Krein extension to £
which requires

sup I(z)= inf I(y) V x e < ? .
zeέPnβ .z^x ye^r\S:x^y

In this form, this condition is not particularly useful and is best exploited in terms
of the one dimensional measures v / ?/e &*R.

First we shall need to extend a result due to Riesz for the power moment
problem on the real line. A solution, say v, to this problem is called TV-extremal
if either of the following conditions are valid [17, Definition 2.3.3, p. 45]:

(a) v is unique,
(b) v is the limit circle case.

The required generalization is the next lemma.

Lemma 3.4. Let v be a normalized N-extremal solution to the one dimensional
moment problem. Then the polynomials are dense in <&P(R, dv) for 1 ̂ p < oo.

Proof. That the polynomials are dense in j^ and JS?2 respectively under these
hypotheses is due to Naimark and Riesz [17, pp. 43-49]. Suppose ωk(t\
k = 0, 1,2,... denote the orthonormalized polynomials of degree fe on JSf2CR, dv);
namely,

ldv(t)ωί(t)ωj(t) = δίj

with ω^e JS?P for 1 ̂ p< oo. Suppose χA is the characteristic function of a Borel
set ^4c^ and {αfc} are its Fourier coefficients with respect to the {ωj. Then
Holder's inequality for 1 ̂  p < 2 and Riesz's theorem give the relation

lim
N

XA- Σ < lim
' N-

XA-

The polynomials are therefore dense in these 'p



Euclidean Field Theory. I. The Moment Problem 51

Suppose the polynomials are not dense in £g p , 1 < p < 2. There then exists

P-1

a non-trivial fe^ for which

< / , ω k > = f d v / ω k = 0 fc = 0,l ,2, . . . .

Now as sp{ωj is dense in &p, there exist coefficients {ck} such that

lim

or rather that

N

f - Σ

/ £ \lim ( / — > ckωk, ω{) = 0 z = 0, 1,2,... .
JV->oo\ fcto k k y

This requires ck = (f,ωky = Q, which is a contradiction. The following criterion
for the uniqueness of μ now holds.

Theorem 3.5. The measure μ is unique if and only if each of the one dimensional
cylinder set measures vf,fE<9^R, is unique.

Proof. The condition is certainly necessary so let us suppose each vf is unique.
Suppose for some finite linearly independent set {/1?/2, ...,/#} = f WQ have two
solutions of the corresponding moment problem; say for each Borel set BcRN,
there are measures

/ f f f

for two Riesz-Krein extensions.
Consider a set A = A1 x A2 - - - x AN in which each Ak C R is a Borel set. For

a given integer m = 1, 2, 3,... choose a polynomial Pmk(tk) by Lemma 3.4 such that

Then ||Pmk||22v^2. Define a polynomial in JV-variables by

After repeated use of Holder's inequality we derive the following estimate valid
for either i = 1 or 2,

^ Σ K-p
e = l

Consequently for each m = 1, 2, . . . ,

| g i/m .

Standard arguments imply that v^ and vψ agree on the Borel sets in RN.
A most useful criterion for the uniqueness of μ is due to Carleman [12, Theo-

rem 1.10].
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oo -1

Corollary. The measure μ is unique if £ [extS(f2p)~] 2p = oo for each f e ̂ R.
p=l

The literature on the moment problem provides a number of necessary and
sufficient conditions for the uniqueness of vf in terms of the moments extS(/p).
It is worth pointing out that Theorem 3.5 actually proves that even if the vf are
not unique but only limit circle solutions to the moment problem, nevertheless
the measure μ is uniquely determined by a specific choice among these.

3.3. Continuity of μ

Following Gelfand and Vilenkin [11] consider a > 0 and the function F(t) = 1
for \t\ ̂  a and t2/a2 for |ί| < a. Suppose {/)} is a sequence of functions tending to
zero in ^R and μ is a measure constructed from a strongly positive state. Then

and

J-+00

This implies that the measure μ is continuous [11, Chapter 4, § 1.4] and hence
by a theorem of Minlos [11, Chapter 4, Theorem 3] countably additive on ̂ 0.
General arguments allow a unique countably additive extension to si which we
shall again denote by μ. A little more may be obtained from these remarks.

Proposition 3.6. Each strongly positive state on ^(^R) has a unique, continuous,
positive extension to £f.

Proof. As part of Definition 3.1 we have required a strongly positive state to
be continuous on ^(^R) with respect to the topology of £f. As @> is dense in Sf,
such a state extends by continuity to a unique element of £f'. Let us denote both
the state and its extension by extS.

For the case when fl9 ...,/# are functions in £f, decomposing each fk into its
real and imaginary parts leads to a decomposition of a polynomial P(/1? ...,/N)
= Pl + iP2 where P1? P2 are real polynomials in functions from ^R. The symmetry
of extS implies the relation

extS(P* x P) = ext5(Pi2 + Pf) ̂  0

by strong positivity. Finally consider fεff* and a sequence of polynomials
{Pj} C ̂ (^R) such that P,--*/ in 9>. Then

|extS(/* x/-P? x P,)| ̂  |extS(/* x tf-P,))|+|extS((r -P/)x Pj)\

->0 as 7-^00
M N

since multiplication in ̂  is jointly continuous on 0 ^(R4n) x 0 <f(R4n\
n=0 «=0

[3, Theorem 1.3.5].

3.4. Invariant Measures

As we have seen in § 2, we may assume without loss of generality that there
exist strongly positive satisfying all the extension axioms of Definition 2.1. A con-
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sequence of this is that the class of measures constructed in §3.1 contains ones
which are invariant with respect to the flow on ̂  induced by the euclidean
group. To see how this comes about let us notice first of all the following structure.

Proposition 3.7. For any (a,R)eiSO(4) define a mapping \^K)'-^R^^R by
<TMa,R)f> = <1toR)T9f>forallfeSeR9Teyi. Then

(a) η ^ is a group homomorphism
(b) η(a>R) is a homeomorphism of ̂  with respect to

(e) η(a^R) is measure preserving if and only if μ [̂ (α,1 )̂ Z] = μ [Z] for each
cylinder set Z.

None of these facts are hard to verify. For (e), for each (α, R) e iSO(4) define
a measure μ(fl>jR) on stf by μ(atK)\_A] ^μL^α,1^)^] with a measurable set A. That
M(α,Λ) = μ is a consequence of invariance on cylinder sets and the uniqueness of
extensions from j/0 to j/. The measure preserving nature of the euclidean flow
on j/o returns us to the Riesz-Krein extension and the relation

for all (α, R)eiSO(4) and Borel sets BcRN. An extension of / which achieves
this is to be obtained upon averaging on the euclidean group.

Theorem 3.8. Let M be an invariant mean on ^^(iSO(4)) and for each (α, R)
eiSO(4) define

AB(a, R) =

Then inv. ext/^ /N(χβ) = M[ylβ( )] is a euclidean invariant Riesz-Krein exten-
sion whose related measure, μinv, is invariant with respect to the euclidean flow.

Proof. The existence of an invariant mean on ^^(150(4)) follows on general
grounds [14, Theorem 2.2.1], and as AB(-) is bounded we need only show that
it is measurable. For this suppose ρ^O is a C°° -function on RN with compact
support and J dtρ(t) = 1. Define ρε(ί) = s~Nρ(t/s) with ε > 0 and put χB ε = χB*QE(ϊ)>
Some properties of these mollifiers follow :

(i) χB ε e C
00^) for all ε > 0 and Borel sets 5;

(iii) lim χBε = χB pointwise.
ε|0

Now consider on iSO(4) the functions

AB,ε(a,R)= J ,̂β
RN

for ε = 1/n; n= 1, 2, 3, .... From the continuity of μ, we conclude that {ABfl/n} is
a sequence of continuous functions for which by dominated convergence satisfies

lim ΛBtiln(a, R) = ΛB(a, R) .

AB( ) is then measurable with respect to Haar measure on the euclidean group.
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It is readily verified that inv. ext/ is a Riesz-Krein extension of / due to the
euclidean in variance of ext S.

As a final comment; an amusing property of invariant measures when re-
stricted to cylinder sets is their ergodicity.

Proposition 3.9. There exist no non-trivial cylinder sets invariant with respect
to the translation homeomorphism.

Proof. The first step is to show that for {/l5/2, .-.,/#} linearly independent
functions from ,̂ there exists α 0 >0 such that the functions {/ι,/2, ...,/#,
(x.~1(a)fl9...,α~1(α)/]V} are also linearly independent for \\a\\ >a0. For suppose
we apply the Gram test for linear independence to this second collection of
functions. Typically, the Gram matrix has the following form in N x N blocks

G' =

where the entries are gtj = J dtf^f) ffo), /ι0 (α) = J dtf^t) fj(t + a). Expanding det G
by a Laplace expansion on the first N rows produced the relation

G is the Gram matrix for the first collection of functions and has det G φ 0, while
H(a) is in ^(R4) as a function of a.

Secondly, let Z{/1 /n}(5) be a non-trivial invariant cylinder set with a suf-
ficiently large that {/1? ...,/#, a'1(a)f1, ...,a~ί(a)fN} form a basis for a subspace
ΨC&R of dimension 2N. Suppose xeB and yeRN\B and define Te Ψ by the
relations <TJk) = xk,{T,oί~ίfky = yk for k= 1,2, ...,7V. The Hahn-Banach theo-
rem provides for an extension of T to £fR, also written T, for which

So, Z cannot be invariant under all translation homeomorphisms

4. The Euclidean Field

The primary objective for our investigation was to learn which extensions of
Schwinger functionals would lead to a euclidean field theory of random variables.
This is now accomplished by one of the standard constructions in probability
theory applied to the measure space (yR9£/9μ) corresponding to a strongly
positive state. Throughout this section, μ will denote a measure for which the
euclidean flow is measure preserving; i.e., μ is invariant.

Definition. 4.1. Define a mapping φ:&R-+δ(&£ by φ(f)(T)= <T,/> V/e^,
Te ̂ ' subject to [ι/(βiJOφ(/)] (T) = φ(f) (η^R) T) for each (α, R) e iSO(4).

The generalized random process φ will be the euclidean field appropriate to
the underlying Osterwalder-Schrader theory. A number of properties for φ are
immediate:

(a) φ is linear;
(b) φ(f) is measurable for each /e έ?R;



Euclidean Field Theory. I. The Moment Problem 55

(c) /7 ->0 in SfR implies φ(/))-»0 pointwise on Sf^\
(d) if /i, ...,fN are linearly independent then ^fίj2,...,fN is the joint probability

distribution for φ(fί)9 ..., φ(fN)l
(e) for a polynomial P ( f l 9 f 2 , • ••,/#),

extS(P(/1?/2,...,/N)HJP(φ^^

(f) φ ( f ) e < £ p ( £ f R , s £ , μ ) for each 0<p<oo and for such p when /}->0 in
^ Hφt/lOllp-^O In particular, <p(/})->0 in measure.

(g) φ is euclidean co variant; namely, η(a R}φ(f) = φ(^(a R ) f ) for each (a,R)
eiSO(4).

4.Λ Maximal Measures

Let us re-examine the euclidean field theory of § 2 for a strongly positive state.
The relations

WΩE=l, WB(ff x f j 2 x ' ' ' x f&) ΩE

for {/u/2, . . . 9 f N } c^tf anc* elsewhere on ^(^R) by linearity define an isometry
between 3?E and the J2?2(^'? X μ) closure of polynomials in φ(f). A convenient
representation for this closure, first due to Wiener for Brownian motion, has
been given as follows [15]. If &>n denotes the complex linear span of all polynom-
ials in φ(f) with degree rgn, form the mutually orthogonal subspaces (homo-
geneous chaos)

Then &>(&&)= U ̂  and ^E= 0^"(^2-dosure). One of the interesting ques-
«=0 n = 0

tions for generalized random processes concerns the nature of 3?E as a closed
subspace of <£2(#>

R, stf, μ). For a generalized free field, the extension process leads
to a Gaussian measure μ for which the homogeneous chaos is dense in <£2 [16].
We next give conditions on the measure μ for this to be true in the generality
discussed here.

Definition 4.2. Let μ be a measure corresponding to a strongly positive state
on if. μ is called maximal if each of the one dimensional measures v/? /e <^R,
is AΓ-extremal.

Theorem 4.3. Suppose μ is maximal Then polynomials in φ(f\fε £fR, are dense
in J2^(^, X μ) for 1 ^ p < oo. In particular, 3fE = ̂ 2(^ ̂  /4

Proof. The proof is similar to the one for Theorem 3.5 after two remarks. It
is easily verified that j/ is the σ-algebra generated by {φ(f)\fE^R}. Moreover
.s/o is dense in j/ in the sense that to each A e X ε > 0, there exists a cylinder
set Z such that for the symmetric difference AAZ, one has μ(AAZ)<ε2. If
z = Z{/ι,/2,..., /*}(£)> then there is a finite family {Bα(1)x ••• xBa(N)}, α= 1, ...,P;
of disjoint Borel sets in RN with each .βα(k) a Borel set in # for which

U 5α (i)X - xBβ (jv) <e
α = l

2
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The method used in Theorem 3.5 may now be modified to approximate each
characteristic function χB(X(k) by a polynomial PΛ(k)(φ(fk)) in ^fp-norm for 2 < p < oo.

Corollary. When the measure μ is unique, J^E = JS?2(^> ̂  μ)

A partial converse to Theorem 4.3 is apparently more subtle, Theorem 4.4.

4.2. Ergodicity

Our discussion of the measure μ has not so far involved any euclidean cluster
property. For physical applications, it should be expected that this property will
be extremely important. Let us suppose that the polynomials in the euclidean
field are dense in J^2; for example, μ is maximal. Then given two measurable
sets A, B e j t f with characteristic functions χA,χBi we may determine for given
ε>0 polynomials P(φ(fί), ...,φ(/N)), Q(φ(g±\ ...,φ(#M)) such that

As a consequence, for any translation homeomorphism

\μ(Anη-lB) - μ(A) μ(B)\ g 4ε(l + ε) + |extS(P x α(α) β)

-extS(P)extS(β)|.

The conclusion is that the translation flow, or loosely speaking μ; is ergodic,
weakly mixing, mixing if and only if the following conditions hold on the strongly
positive Schwinger state

1 τ

ergodic - lim — JdίextS(Pxα(ί)β) = extS(P)extS(β);
Γ->oo T o

1 τ

weakly mixing - lim — fdί|extS(Pxα(ί)β)-extS(P)extS(β)| = 0;
Γ-oo T o

mixing - lim extS(P x α(Γ)β) - extS(P) extS(β)
T— * oo

for any two polynomials P and β. Here α(ί) = α((ί, 0)) which is sufficient for the
whole transition group due to euclidean and θ-invariance. The latter is an impli-
cation of Propositions 2.2 and 3.6.

As an illustration of properties for a mixing translation flow, we examine
a converse to Theorem 4.3.

Theorem 4.4. Let μ be a measure constructed from a strongly positive state
which has the mixing cluster property. Then polynomials in the euclidean field are

dense in £?2(&?R> ̂  μ) tf an^ only tf M *5 maximal.

Proof. It is sufficient to look at real functions, so consider α~1(α)/eί^ and
denote the sub σ algebra of jtf generated by φ(a~1(a)f) by ^a. For each a e R4,
^a is the Borel sets on R. If P is a positive or integrable random variable on
(<5 ,̂ <stf,μ) indicate the conditional expectation of F with respect to <^a by ^a\_F~\.

Suppose BcR is a Borel set with characteristic function χB and {/,/l5 •••,/#}
are linearly independent functions from £?R. Then using the invariance of μ and
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the mixing property for the flows ηa : ^R^ ^R, a e R4,

||e||-oo

The constant c is the expectation of φ ( f ί )
l ί ... φ(fN)JN

This implies that ^0[.φ(f)jφ(fί)
jί ... φ(fN)JN] = c φ ( f ) j or rather since ^0 is

the orthogonal projection from &2(ίfχ9jtf,μ) onto £f2(R9dvf) that J% maps
polynomials in the euclidean field onto polynomials in φ(f). Thus, the latter
polynomials are dense in &2(R, dvf) and by Riesz's result v/ is JV-extremal.

Remark. The mixing assumption in Theorem 4.4 could equally well be replaced
by ergodicity.
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