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I. Introduction

Glimm and Fabrey have constructed [6; 4] a Hubert space ̂  for a simplified
version of the :Φ4: model in quantum field theory for 3 space- time dimensions
with space cutoff by using a sequence of truncated exponentials involving α*(ι;)
to define the dressing transformation, where

v(kly k29 k39 k4) =

The space cutoff is h, kt eR2, μ(kt) = (μ$ + |fcj|2)1/2. For v of a more general form,
lower parameter 7, and upper cutoff σ, they show convergence o f ( f j σ φ , fjσιp)e~x(σ}

for φ9 ψ in a dense subset 2 of Fock space, as σ-» oo. fjσ is a truncated version
of ea*(v} and X(σ) is the renormalization. The closure of the inductive limit of
fj@ over the lower parameters defines a Hubert space which carries a Weyl
representation of the CCR (canonical commutation relations).

The Bargmann-Segal complex wave representation for the free field has as
Hubert space H2(K'CX, dμ\ the completion of the tame holomorphic functionals
on K'cx, the complex distributions, which are square-in tegrable with respect to
the Gaussian cylinder set measure μ on K'. The finite-dimensional case has been
discussed by Bargmann [1] and the infinite dimensional case by Segal [15; 16].
Creation operators on H2(K',dμ] are diagonalized and annihilation operators
are differentiations.

We construct an analogue to the complex wave representation for the inter-
action case as a countable inductive limit of spaces of the following form: com-
pletion of the tame holomorphic functionals on K'cx in the space of functionals
which are square integrable with respect to a countably additive measure as-
sociated with TJ. This space carries a representation of the CCR for which creation
is a multiplication operator and annihilation is, formally, differentiation plus
multiplication by the log derivative of 7}. The representation is unitarily equiv-
alent to the Glimm-Fabrey representation.

For a fixed lower parameter j and upper cutoff σ we construct H2(K', dηjσ),
where dηjσ = \Tjσ\

2 \\Tjσ\\~2dμ. In order to show that the ηjσ converge to a count-
ably additive measure, we analyze the characteristic functions Ljσ(h) of ηjσ and,
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using estimates derived from Fabrey's analysis and the theory of measures on
the dual of a nuclear space, show that Lj(h) = lim Ljσ(h) defines a count ably

additive measure on K'. We define H2(K\dηj) as the completion of the (tame)
polynomials on K' in L2(K',dηj). The creation and annihilation operators are
"moving weak limits" of corresponding operators on H2(Kf, dηjσ). The creation
operator a*(h) is multiplication by the monomial associated with heK and the
annihilation operator a^h) is, formally,

α(Λ) + [(α(Λ)7})/7}] /o

where a(h) is "differentiation in the h direction" and /0 is the identity operator.
The Fabrey-Glimm construction takes an inductive limit of the spaces cor-

responding to different lower parameters in order to get a space on which self-
adjointness of the field operator can be demonstrated. We take the inductive
limit of the H2(K'9 dηj) to get a space ffl and a representation of the CCR unitarily
equivalent to the representation on 3Fr.

Hepp has constructed [7, Chapter 4] a representation on a space obtained
by using lower parameter 0 and the Gelfand-Naimark-Segal construction, which
is unitarily equivalent to the representation on ̂  and therefore also to the
representation on H.

II. Background

A. Finite-dimensional Case (Bargmann Representation)

The Hubert space H2 is the entire analytic functions of n complex variables,
with inner product

(f,g) = π-"$f(z)g(z)e-^2d»z.
Cn

Equivalently, this space is the completion of the polynomials on C" with respect
to the Gaussian measure π~n exp(— \z\2)dnz. We define annihilation and creation
operators as follows:

at(f)(z) = Z i f ( z ) if zJ(z)eH2

a i ( f ) ( z ) = d f / d z i i f

where d f / d z t = i/2(df/dxt — idf/dyt). The operators α*(/) and at(f) are closed,
adjoints, and [α£, af~\ f = otjf.

B. Infinite Dimensional Case (Fock Representation)
00

As usual, Fock space is J^ = (+) ̂ , where

έFn = SL2(]R2n), the symmetric, square integrable functions of 2n variables,
written as functions of /q, . . . , fcπ, fcf eR2.

« = o
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Q) will denote the subset of ̂  consisting of φ = Σφn such that only finitely many
φn are non zero and each φn has compact support.

For/eL2(R2),

where φn e 2Fn and S is the symmetrization operator

(Sφn) (/C1? . . . , U = — j-
n '

a*(f) and a(f) are adjoints and [0(/),α
K(α) will be the space of infϊnitely-differentiable complex-valued functions on

3R2, with support in {||x|| <;#}. A sequence {/„} converges to 0 in K(a) if the fn

and all their derivatives converge uniformly to 0. K, the inductive limit of the
K(α) is usually denoted elsewhere by 3) (R2).

An element of the form α*(f^ . . . α*(fs)ΩQ9 where the fis e K and need not be
distinct, is called a monomial on 2F. If φ = Σφt, where each φt is a monomial and
the sum is finite, then φ is called a polynomial on ̂  and will be denoted by pΩ0.
In particular, pΩ0 e ̂ . p will be called a polynomial operator.

C. Infinite-dimensional Case (Bargmann-Segal Representation)

The coordinate functions zt of the Bargmann representation will correspond
to elements of K' and analytic functions of z will correspond to the completion
of polynomials on K' with respect to L2 of the infinite dimensional analogue of
Gaussian measure.

A function ψ defined on K' is based on F, where F is a finite dimensional,
closed (complex) subspace of K, if there is a function y^ defined on K'/F° such
that ψ(q) = ψι(πq)9 where π is the natural projection: K'-+K'/F°. A function ψ
on K' is a monomial if there is an F, as above, /1? ...9fneF, m1? . . .,mneZ+ and
a complex constant α, such that ψ can be written as

A polynomial is a finite sum of monomials.

Notation and Comments, (a) </, g> means /e K,qeKf and the bracket denotes
evaluation.

(b) Since F' is isomorphic to K'/F°9 the second element in the bracket can
equivalently be an element of K'/F°, when /e F.

(c) If i denotes the natural injection of K into K', we have </, ί(/ι)> = (Λ,/),
where parentheses denote the inner product on K, and the inner product is com-
plex linear in the second variable.

(d) μ denotes the Gaussian measure on K' induced by the inner product on K.
(e) H2(K\dμ)=d{ completion of the polynomials in L2(K',μ).
(ί) A polynomial on K' will be denoted by p9 with or without subscripts and

superscripts.
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Example. Suppose

and /i and /2 are orthonormal. Then

J ψ(q) dμ(q) = τT2 J αJf I3 exp(- μ,|2 - |A2|
2)^t dλ2 .

K' C2

A polynomial on K' corresponds to an anti-polynomial on F, so the repre-
sentation induced on F will be an anti-holomorphic representation of the CCR.

H2(K', dμ) is isomorphic to Fock space, if we define the map / : 3?-*H2(K', dμ)
as follows: IΩ0=i, the identity function. If fl9 ...,fseK, /(α*^)... α*(/JΩ0)
= (/!> ') (fs> ')• Finite sums of expressions of this form are dense in 3F so since
the map thus far defined is an isometry, it can be extended to the closures. In
particular, I(pΩ0) = p.

Annihilation and creation operators on H2(Kf, dμ\ for feK9 can be defined
via the isomorphism. In particular, if ψ e H2(K', dμ),

if the right-hand side is in H2 and

α£ is a multiplication operator and aH(f) is "differentiation in the / direction".
Both are closed, [%(/)]* D <£(/), and [αH(/),αS(flf)] = (/,flf)J0, /0 = identity

operator on H2(K'9dμ),becausQ the corresponding statements are true in Fock
space.

Segal's description of the holomorphic representation of the CCR may be
found in [15] and [16].

From now on, a and α* will denote operators on 2F or H2(K', dμ), depending
on the context.

D. The Interaction Case (Renormalized Fock Space 3Fr)

2Fr is defined using expressions of the form lim (fkσψ9 fkσψ)e~x(σ} where fkσa—» oo

is a truncated version of ea*4(v} and X(σ) = 4l(vσ, vσ\ vσ satisfying certain growth
conditions:

We deal with symmetric, measurable functions v(kί9 k29 fc3,fc4) which are
"almost in L2", i.e. satisfy certain growth conditions. The class of "almost in L2"
functions does not contain L2, but does contain

4 },, _ T ffθ8\ . ΓT /. .2 - i f , |2\ε/2 .. _ r ΛO 8\lt; e .L2(K j . 11 (ju0 + |/Ci| j v 6 JL2ψ^ )( -

The particular i 's arising in field theory are "almost in L2" but not in L2.
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Choose α > 1, n(k) strictly increasing but polynomial bounded, and construct
fjσ as follows [we write fjσ for Fabrey's Tjσ, etc.; fc = (fe1, k2, fc3, fc4)]:

0 otherwise.

if 7^1

Let vjσ and vjk denote vΛ(j)σ9vΛ(j)Λ(k}9 respectively. Suppose ι;σGL2(R8), j^l9

We are examining situations involving "fourth-order" creation operators.
Suppose w = w(/c1? ..., /c4)eL2^R8). Define α*4(w) as a map from J^ to J^+4 by

where S is the symmetrization operator and ψn e JV Operators of this kind form
the most singular part of the field operator :φ4:

In particular,

'σ

expπ(x)= Σ X
i = 0

Then fjσ = Yl Qxpn(j) Vjσ, and is defined on
J b ^ j ^ /

Theorem (Fabrey). For φ,ψe@ the limit lim (ffcσ^, flσιp)e~x(σ) = (fkφ, ftψ)rσ-+ oo

exists. If k ̂  /, σ ̂  α(fc), ίteπ flσψ = fkσθ, where

( ,')ι provides a positive definite inner product for (J 7}̂ , wtos^ completion is

denoted ^r. Operators Wr(f) — el^r(^ can be defined on J^ and satisfy the Weyl
form of the CCR.

E. The Interaction Case (Renormalized Bargmann-Segal Space)

We would like to show that the Fabrey-Glimm expressions

(ffc&Oo, Tkp2ΩQ)r= Jim (TUp!00, Tkσp2Ω0)e-*(σ)

can be written as

$ C k 2 P ι P 2 d η k ( ' ) >
K'

where ^k is a countably additive normalized measure on K'. To do this we use
criteria for a function on K to be the characteristic function of a countably
additive measure on K'.
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III. Characteristic Functions and Measures on K'

Theorem ΠI.l (see [13] and [11]). Let E be a complex locally convex topologi-
cal vector space. Suppose L is a complex-valued function defined on E with the
properties that :

(a)L(0)=l.
(b) L is positive definite, i.e., let gr l 5 ...,gseE, ξlt ...,ξse€. Then

(c) L continuous on finite dimensional subspaces of E, i.e. suppose {gn}cF
s

= space generated by fl9 . . . ,fs e E, gn= Y a\n}fι. Then lim a\n) = 0, i = 1, . . . , s

Then L is the characteristic function of some cylinder-set measure η (possibly
not countably additive) and

E'

And the converse is true.

η is said to satisfy the continuity condition if, for each bounded continuous
function B on C", the function

is sequentially continuous.
If £ is a countably Hubert (complex) nuclear space, for example K(a)9 then

any positive, normalized cylinder set measure η in E', satisfying the continuity
condition, is countably additive ([5], extended to the complex case).

For our purposes the following equivalent version of the continuity condition
will be more useful:

For any ^4>0, and any sequence {#7 } converging to 0 in £ we have

If we are given a function L on all of K satisfying the hypotheses of the above
theorem, and whose associated η satisfies the continuity condition, we can con-
struct a countably additive measure on Kf = (\uK(a)J and extend the measure to
the Borel sets of K'.

Example ί. Suppose p is a polynomial on K'. Then pe L2(K', dμ) since poly-
nomials are square integrable with respect to Gaussian measure. Define

L(0) = (pέΓ i/2<'» >, pe i /2<*'->) ||p|Γ2 with inner product in K' ,

= $pe?l2^peil2<β '>\\p\\-2dμ( )=ίei*°<° >\p\2 \\p\\~2dμ.
K' K'

Then L satisfies the hypotheses of Theorem III.l and the continuity condition,
and hence defines a countably additive measure ηp.
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Example 2. More generally, suppose TeL2(K',dμ), | |T| |φO. Then

f \T\2dμ

{ \ \ T \ \ 2

defines a countably additive measure on the σ-algebra generated by the cyl-
inder sets.

Our goal is to show initially that I ( f k σ Ω 0 ) e L2(Kf, dμ), and then that the cor-
responding ηkσ converge to a measure ηk which is associated with the (Tkφ,fkψ)r.

Suppose Te H2(K, dμ) has the property that 7'1 T is of the form f Ω0, where
f Ω0 is a finite sum of terms of the form α*4(/1)... α*4(/, ), ft e L2(R8).

T is a bounded operator on © 2Fn for any N, and this property forms the key

to proofs of the lemmas below.

LemmaIII.2./(Γ), the corresponding operator on H2(K',dμ), is multiplication
by the function T, i.e. Mτ. For example, I(p) = Mp.

Lemma III.3. T p e H2(K', dμ} for all polynomials p. In particular, I(fΩQ) = T.

Lemma III.4. We can define isometric isomorphisms E and Eτ with

{fpΩ0Γ-τ+(H2(K',dμ)n{T p})-^H2(K',dητ)

by setting

£(T p)=| |fΩ 0 | | p

and extending the domains to their closures in L2(K',dμ) and 2F respectively. In
particular,

(fp1Ω0,fp2Ω0)\\fΩ0\Γ2=$p1p2dητ.
κf

Lemma III.5. Suppose ψ = Σψn E φ ̂ n for some N. Then fψ e {TpΩQ}~ and

so corresponds to an element Eτ(fψ) of H2(K', dητ).

We define «*(/), a τ ( f ) on H2(K',dητ) using the isomorphism E.
LetφeH2(K',dητ).
Then

and
= £α(/)T-p/| |T| |=£[T-(fl(/)p)

which might not be in the domain of £ so we do not know if a τ ( f ) can be defined
on the polynomials.

Formally, we would get

= a(f)p + p "α(/) T"/T = (a(f) + ("α(/) T"/T)/0)p

where /0 is the identity operator.
If a(f)T = 0, then a τ ( f ) p is well defined, as the usual derivative.
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We can consider the bilinear form Aτ defined by

for a bilinear form A.
If we let AT correspond to A = [α(/), α*(#)], then formally,

(Pi, [MΛ α?to)])τ" = " (Pi, ̂ i P2)ι

where we have assumed that the domain of \_a(f\ a*(g)~] includes E~^p^ x E~1p2

and used the commutation relations on H2(K',dμ). This can be called a weak
representation of the CCR.

The Fabrey-Glimm construction considers T's which are truncated expo-
nentials, i.e., T~e<f>'>4. So formally,

an expression which makes sense.

Theorem III.6. I ( f k σ Ω 0 ) = Tkσ e H2(K',dμ) satisfies the hypotheses of Lemma
1 1 1.2 and so is an instance of Example 2 and the succeeding discussion.

In particular,

(TkσplΩQ,fkσp2Ω()) | | f Λ f f Ω 0 |Γ 2 = $plp2dηkσ
K'

where ηkσ is a countably additive cylinder set measure of total mass 1.
Also

Lkσ(f)=M. jVRe</' ><%„(•)
K'

is positive definite.
This expression differs from the expressions whose limits define $*r by a factor

( f k σ Ω Q 9 fkσΩ0)e~x(σ\ We show below that as σ->oo this factor converges to a
constant ck

 2, where 0 < ck

 2 < 1 .

IV. Some Fundamental Estimates

In order to show that the Fabrey-Glimm expressions of the form (fkplΩ0,
fkp2Ω0)r can be written as j Pιp2dηk( ), where ηkis a countably additive measure

κr

on K', we examine

T ( f } — l im / (Π — l im (T p~ll2a*^Q T /3

ί/2α*(/)θ ϊ I I T O I!" 2

^k\J )— df. ly^^kσU ) — dί. ^l^)\
1kσe iίίO> 1kσβ ^o) \\1kσί"S0\\
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00

where ea*(9} is defined as £ a*(g)k/k\, and show it is a characteristic function.
/c=0

Even fkσe~l/2a*(f}Ω0 has an infinite number of particles, so the existence of Lkσ

needs to be shown.
Using the isomorphism between ^ and H2(K',dμ) we can write

K'

The operator ea*(9\ for g e K, defines a bounded map from 3Fn to ̂  for any n.
Now (Tkσφ,fkσψ)e-χ(σ} = (φ,f*σTkσψ)e-χ(σ\ f*σfkσ is a truncated power

series in V* and Jζ. and can be rewritten as a sum of Wick-ordered terms with
distribution kernels by using the commutation relations. Fabrey calls a term
reduced if it contains no X = V*^- V components, i.e. no completely contracted
terms.

Fabrey shows that (φ, Tk* fkσψ)e~x(σ)= J hσ9 where hσ is a measurable func-
E

tion on the space E, and E is a direct sum of spaces associated with reduced terms
in f £ σ f k σ .

The following lemma is Fabrey's Lemma 3.3, with several components of the
constant exhibited explicitly.

Lemma IV. 1. Suppose G is a reduced graph such that \G\ = n, φ and ψ e @i9 2^
respectively, and φ, ψ vanish off a sphere of radius ρ. Then

(\φ\,\R0 \ιp\)^K,Kn

2*-*cn"+ό \\φ\\

for constants K19 K2.

IV. 2. (existence of fke
a*(f]Ω^ fke

a"(9}Q^)r). Suppose f, g e L2 (IR2) and
Qfor | | fc | |>ρ>0. Then

lim (ίfcX^fio, fkσe«^Ω0)e-χ^ < oo
σ—* oo

and there is a uniform bound for the expressions corresponding to those fs and g's
with \\f\\<δ, \\g\\ <δ for some δ>0.

Proof. The proof consists of several parts:
A) expressing the inner product as J hσ where £ is a measure space showing

E

the hσ converge pointwise and \hσ\ ^h where h is measurable on E ([3], Lemmas
3.1, 3.2, and corollary),

B) estimating (\φ\9 \R0\ \ψ\) for a reduced term jR0,
00

C) writing J h as a sum, £ , of expressions of the form described in B),
i,j,n = 0

D) summing over i,
E) over;,
F) over n,
G) applying the dominated convergence theorem to get convergence of J hσ

E

as σ— >oo.
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B) Let^α C/γβo/i! Then ||φ(|| ^(HΓ1'2 l l / l l '
Let /?0 be a particular reduced term with graph G and |G| = n. Then

(iΨi. \RO\ M)
^ Σ «:1ί:-2α-"-1+4(μo + β2)<ί>

i,J = 0

C) We want to look at

ί^=Σ Σ
E n GB ij

\G\=n

Lemma IV. 1 estimates the inner products and Fabrey's Lemma 3.4 says there
are at most Kl(4n)\2 reduced graphs G such that |G| = w, where K3 is constant.
So we need to examine

)\2a-εc"^ύ f (μ§ +
j = 0

~1'2-
D) The sum over z* converges by the ratio test. In fact if ||/|| <δ, there will

be a uniform bound on the sum.
E) Fix n. The sum we want to estimate is

Using the results: (/+ l)2"^4"j2"; (/)"1/2 <(e/j)jl2; (4n)l2 <48nn8n, we have that

*< ^.C4' I

— V Yn ^8n^-εcn1+ό V" iJlnC2/lnj
— / Λ.C W (Λ 7 / .L-i J L-ι J

n j

The sum over 7 can be shown to be bounded by Cn

3n*n, and
F) ^ C4/7 l l n α~ ε c n l + d converges.

G) The dominated convergence theorem now gives convergence of j /zσ as
£

σ—»oo

The constants of Lemma IV.3 will be the normalizations needed to obtain
measures of total mass 1.

LemmaIV.3.[3, pp. 13-14]. lim (tfcσΩ0, fkσΩ0)e~X(σ}= limcΛ~σ

2 = ̂ 2, where
σ-» oo σ—»• oo

Corollary IV.4.

Jim (fkσe- | t f t (/

with a uniform bound for { f : \\f\\ <δ} and supp f C {| |fc| | ^ρ}.

Jim ( k σe- | t f t ( / ) / 2Q 0, kσe!*M2Ωo) l}TkσΩ0\\-2 = Jim LΛ f f(/) = L(/)< oo ,
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A similar sum analysis shows

Lemma IV.5. Suppose φ\ φ2 e 0, φl = £ φl

n, supp (φl

n) C [\\k\\ ^ ρ} for i = 1, 2;

ρ>O.Then

(Tkσφ\fkσφ
2)e-χ^^C\\φi\\\\φ2\\ for all σ,

where C depends on ρ and on max {ij : φ\ Φ 0 or φf Φ 0}, but is independent of σ.
It follows that

Because of our normalization Lkσ(0)= 1. We will want Lk(f) = df lim Lkσ(f)
σ—* oo

to be continuous at the origin so we need :

Lemma IV.6. [equicontinuity of L k σ ( f J ] . Fix k e Z+. Suppose ε > 0, ρ > 0. Then
there exists a δ such that if /(/c1) = 0 for \\ki\\ >ρ and \\f\\ <δ, then

\Lkσ(f)-i\<ε for all σ.

In particular, if {/J CK and yj-»0 in K, then there exists an N such that

i>N=> Lkσ(fy—l\<ε for all i, σ.

V. Renormalized Bargmann-Segal Spaces

Theorem V.I. VorfeK,

defines the characteristic function of a real-valued cylinder set measure ηk on K',
which is countably additive. Also,

Proof. The criteria of Theorem ΠI.l are easily verified using the results in IV,
so we have a measure ηk. To show the continuity condition, and therefore
countable additivity, we need to examine the moments of ηk.

The following is known about measures onR: Suppose {μj is a sequence of
measures with moments mjΛ )= Jx^dμ^x) and suppose the sequences wjk)->w(fc),
finite. Then the limits are the moments of a measure μ such that some subsequence
μjf converges weakly to μ and the m(fe) are the moments of μ [10, p. 185]. In the
case of our real measures on complex spaces, we know that the complex moments
are finite; i.e. §Pιp2ar]kσ<00 and as cr-»oo, these expressions converge to
ck(TkPi&Q, fkp2Ω0)r<oo. We can verify that the real moments are also finite.

Now

ί PιP2 dηkσ = J p i (i(h))p2(i(h)) dηkσ>F(h)
K' HeF

where </,%)> = (#>/)• But
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and converges as σ -> oo to c\ (fkp± Ω0, fkp2 ΩQ)r9 where we have used Lemma IV.3.
So

im ^p1p2dηkσ = c2

k(fkp^0, Tkp2Ω0\ .

So if we let μ7 = ηk(JjF, then μ must be ηkF and

where pί and p2 are based on F, a finite dimensional subspace of K. The above,
Chebychev's inequality, and Lemma IV. 5 are used to verify the continuity
condition.

We now have an isometry Ek: {fkpΩ0}-*H2(K',dηk) with Ek(fkpΩ0) = p/ck

and want to extend it to fkψ for more general ψ. Although Proposition III.5, an
extension result for ηkσ, was valid for functions of arbitrary support, the extension
theorem for ηk considers only functions of compact support.

Proposition V.2. Fix keZ+. Suppose φ = Σφn, a finite sum, where φne@n.
Then there is an isometry Ek from {Tk@}~ into ^(KΊdη^ such that if p^Q-x/)
in ̂  and {supp^Ωo)} is a bounded set, then

pjck = Ek(fkpΩ0) -> Ek(fkφ)

inH2(Kf,dηk)and

The space H2(K\dηk) is defined as the completion in L2(K\dηk) of the
polynomials on K. We now want to define annihilation and creation operators
on H2(Kf, dη^ to get (as close as possible to) a representation of the CCR.

Let α*(/) be multiplication by </, •>, defined on

H2(K', dη,) : </, •> ψ e H2(K'9

The domain contains all polynomials. α*(/) is closed and for

Let ak(f) be (#*(/))*. This operator is densely defined and closed. Unfortu-
nately we do not know if ak and af have a common dense domain.

We now examine the relationship between «*(/) and α*σ(/), and between
ak(f) and akσ(f).

An operator B, defined on a dense subset of H2(K\ dη^ is called the moving
weak limit of a sequence Bσ of operators, each defined on a dense subset of the
corresponding H2(Kf, dηkσ\ if the domains of all Bσ and B include all polynomials
and if for all p^p2

ί Pi (BσP2) dη^-^ J P! (Bp2) dηk .

Suppose /e K. Then α*(/) is the moving weak limit of α^(/). This result follows
from V.I.
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Formal Calculations

Formally we have the following:

where 70 is the identity operator (compare with the discussion after III. 5).
Suppose akσ, ak are defined on the polynomials. Then

ιΓ P2dηkσ

Since a(f)p is a well-defined polynomial, we have that, formally,

(a(f) Tk)/Tk = moving weak limit (α(/) Tkσ)/Tkσ .

CCR (formally)

(P'> IMA

VI. The Inductive Limit

Our goal is to produce a representation of the CCR which is unitarily equiv-
alent to the Fabrey-Glimm representation. The latter is constructed by taking an
inductive limit of the spaces f^ for z'^0. Analogously, we take the inductive
limit of the spaces H2(Kf, dηt) for i ̂  0, to form the space jjf.

A collection of continuous linear maps β^: H2(K',dηi)^>H2(K'.>dηj)ι i^j;
iJeZ+ is called an inductive system if

(1) Pa is the identity map on H2(K', dηt)9

(2) βik = βjkoβij9iZj£k.

Proposition VI. 1. {H2(K',dη^βi}} is an inductive system if we define βu as
follows: Let β0 (p) = ciEj(T](fίjpΩ0)), which is well-defined by V.2, and in fact equals
(cJc^Tij p, where T^ = 7(7^0). Extend this isometry to H2(Kf,dηi).

We can check that βik = βjk° βtj by using Tί<7 Ω0 = lip ΣP("}®<» w^ere

n

p("}Ω0 E 2F with appropriate supports as in V.2.
Now construct the inductive limit 2tf by taking the locally convex direct sum

2(K', dηt) modulo the subspace M generated by

Let βj be the map taking H2(K', dη) into 2tf and let &r = (J

For peH2(K',dηi), let yiV = Cif^^. Hc^pΩJ2 = c2 pΩ0||?= J \tfdηt,
by V.I. Therefore y{ is an isometry and can be extended to all of H2(K',dη^.
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Theorem
y :

.

em VI.2. There exists a unique, continuous, 1-1, onto, linear map

r that makes the diagram below commutative :

H2(K', dηi) -&± H2(K, dηj} ^^ J4?

Proof. The result follows because ̂  is locally convex and the γt are 1-1 con-
tinuous linear maps [8].

Operators on #f

Definition. For heK define α*(/z) on a dense subset of 3tf as follows:

a* (h) (β,p) = βt(aΐ(h)p) p e H2(K', dηt) .

Finite sums of expressions of the form βtp are dense in φH2(K', dηi), hence dense
in Jtf.

Proposition VI.3. ά*(h) is well defined, i.e. for i ̂ j we have

Fabrey gives the following definition: "We say that an operator B, which maps
a subspace of 2FY into 2Fr is the weak limit of an operator A in F, written B = limA

σ

if the domain of B is (J Tk3> and

2)e~*WM [3, p. 22] .

He proves [3, p. 25] that the field operator φ has a weak limit lim<£ C φr. So we have
G

a*(h) = 2'112 lφr(h) - iφr(ih)'] D lira α*(A) ,
<τ->oo

ar(h) = 2~1/2 \_φr(h) + iφr(iKΪ] 3 lim a(h) .
~

Also, (J Tk@ is a dense set of entire vectors for φr(h), hence for the closed opera-
fc^O

tors ar(h) and α*(/z). The Weyl relations for ar, a* imply that \_ar(f), a*(g)]r = (/, g)r.
We can verify that γ[a*(h)(βjp}] = a*(h)(γjp). Since a*(h) is closed, we can

form the closure of α*(/ι).
ά(h) is defined on ffl as α*(ft)*, or equivalently, as the operator induced on

2tf by the operator ar(h) on 3Fγ.
We have verified everything that is needed for the following:

Theorem VIA The operators ά(h) and ά*(h) on Jf, for h e K (1R2), define a
representation of the CCR which is unitarily equivalent to the Fabrey-Glimm repre-
sentation on $<Y when the operators ar(h), a? (h) on 2Fr are considered only for he X(1R2).
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Formal Calculations

We would like to compare ά(h) with the formal annihilation operators

α.(Λ) = a(h) + [(α(Λ) jQ/TJ] /0 (70 the identity operator)

on H2(Kf, dηt)9 so we do the following:
Suppose the polynomials belong to the domains of all a^h). Is it true, then,

aj(h) o βijP = aj(h) CiE/TJTypfio) = θj(h) ctc^ TijP .

As at the end of Section III, a,j(h) would be defined on H2(K\ dη^ as the usual
derivative, if α(/ι)7} = 0. Then we would have

And

Now, if we write Tt = Ttj 7} so

α(Λ)73 =

= (a(h)Tij) T j ,
then

= cί[7JJ. α(ft)p

α(/ι) 7} = 0 is roughly equivalent to the support of h being contained in

So suppose h has compact support. Choose any i so large that α(ft)7] = 0.
Then fl(Λ)(/?fp) can be defined as β^a^
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