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Abstract. We describe and investigate representations for the Ursell function un of a family of n
random variables {σj. The representations involve independent but identically distributed copies
of the family. We apply one of these representations in the case that the random variables are spins of a
finite ferromagnetic Ising model with quadratic Hamiltonian to show that (— ί)^ + ίun(σι, ...,σM)^0

for n = 2, 4, and 6 by proving the stronger statement (— \ψ +1 Z^
dJiίjί

 m"dJimjm

and 6, the Ji} being coupling constants in the Hamiltonian and Z the partition function. For general
n we combine this result with various reductions to show that sufficiently simple derivatives of
(— iψ+ιZ^un, evaluated at zero coupling, are nonnegative. In particular, we conclude that
(— iγ+1un^0 if all couplings are nonzero and the inverse temperature β is sufficiently small or suffi-
ciently large, though this result is not uniform in the order n or the system size. In an appendix we give
a simple proof of recent inequalities which bound rc-spin expectations by sums of products of simpler
expectations.

1. Introduction

The Ursell function un(σ1,..., σn) of a family {σj of n arbitrary random variables
may be defined by means of a generating function as

dn

exp
. ί = l

(1.1)
λ = 0

Here $ is the expectation integral; we assume all the necessary expectations are
finite. The Ursell function may be defined recursively by

<${σισ2- σn)=Yj Π um(σPa, σpb,...). (1.2)

Here & is a partition of {1,..., n}, a set P e ^ has elements pa,pb, etc., and \P\
denotes the cardinality of P. Finally, un(σι,..., σn) may be defined explicitly by

\peP

where again & is a partition of {1,..., ή).
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In Section 2 of this paper we describe and investigate certain representations
for the Ursell function of a family {σj which involve independent but identically
distributed copies of the family. The use of such copies recently has been empha-
sized by Ginibre [1], Lebowitz [4], and Percus [6]. Let {σ?}, αe {0,1,..., n— 1},
be a collection of n independent but identically distributed copies of the family
{σj, let ω be a primitive nth root of unity, and define

Si="Σ va°"i- (1.4)
α = 0

We shall find that 1
un(σ1,...9σn)=-£{s1s2 — sn)9 (1.5)

a result previously obtained in another way by Cartier (unpublished).
In the event that the family {σt} has even symmetry (i.e. the expectation of the

product of an odd number of σ's is 0) and n is even we can cut the number of
copies in half. Defining

^ σ nil -1

t,= Σ ω X> (1.6)

we find the simplified representation

> ) (1.7)

[Of course, if the family {σj has even symmetry and n is odd, un(σ1,..., σn) = 0.]
Finally, we indicate a manner in which additional representations may be produced
at will.

The random variables in which we are primarily interested are the spin
variables of a finite ferromagnetic Ising model with two-body forces. We describe
such a model. The set underlying the probability space of an iV-site model is

N

Ω = X {— 1, + 1}. The spin variable σt is the projection of Ω onto its fth factor,
ΐ = l

the index i commonly being called a site. The measure on Ω assigns to each point
Γ N I

ω e Ω the weight Z 1 exp β £ Jijσi(ώ)ζFj(ω) . Here the partition function Z
L i , j = l , e Φ j J

is just the normalization factor Z = £ .expίβj] Jijσi(ω)σj(ω)], β is a nonnegative
ωeβ ί ίΦ; J

parameter representing inverse temperature, and the coupling constants Jtj

(also called bonds) are nonnegative real numbers. Notice that the spin variables
σi have the even symmetry mentioned in the previous paragraph.

It has been conjectured that the Ursell functions un(σkί9 ...,σfcn) of the spin
variables of a finite ferromagnetic Ising model with two-body forces obey the
inequality

( - l ) 5 + 1 « n K ffJ^O. (1.8)

This has been known for a long time in the case n = 2; it is a special case of the
second Griffiths inequality [2]. For n = 4, (1.8) follows from the GHS inequality
[3]. A family of inequalities related to the n = 4 case has been proved by Lebowitz
[4]. Cartier has announced a proof of the case n = 6. In Section 3 we use the
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representation (1.7) to give a unified proof that (1.8) holds for n = 2,4, and 6.
A recent independent proof was given by Percus [6].
In doing so we actually establish the stronger statement

g™ (1.9)

It is our conjecture that (1.9) holds for all n. However, it does not seem that the
proof given for the low-order cases generalizes immediately. In Section 4 we
present partial results showing that any derivative

dm

.7 = 0

which is sufficiently simple in a certain sense is nonnegative. (Of course, by evalu-
ating at J = 0 we mean evaluating at Jij = 0VίJ.) In particular, we conclude that
if every Jtj is strictly positive, (1.8) holds for β sufficiently small or sufficiently
large.

In an appendix we give a simple proof of a family of inequalities recently
obtained by Newman [5] related to those of Lebowitz [4]. These inequalities,
which include the w4 inequality, bound rc-spin expectations by sums of products
of simpler expectations.

2. Representing an Ursell Function as an Expectation

We describe and analyze representations for the Ursell function of a family
of random variables {σj i e { 1 >M}. These representations employ independent
but identically distributed copies of the original family. Let {σ?}, α e {0, 1,..., c},
be (c+ 1) such independent copies of the family {σj, each copy having the same
joint distributions as {σf}. Given a set of coefficients Sioc e C we may define a new

c

family of random variables {sj / e { 1 n] by st = Σ Siaσ". We shall see that up to a
α=0

simple factor the family {sj has the same Ursell function as the original family
{σj. By judicious choice of the transformation coefficients 5 ί α we may cause all
but the leading term in the Ursell function of the family {sj to vanish, thereby
transforming an Ursell function into an expectation. In the event that the family
{σj has an even symmetry the representation simplifies, the number of copies
employed being halved.

To exhibit the proportionality between the Ursell functions of {σj and {sj we
recall that if a family of random variables may be split into two mutually indepen-
dent subfamilies, its Ursell function vanishes. [This is immediate from definition
(1.1) because the expectation factors.] Thus,

ί C }
= \ Σ Sia~ Sn*\ un(σl9...,σn)

lα = 0 J

since only those terms for which ccx = a2 = ••• = ocn survive.
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Next we give a specific choice for the transformation coefficients Sia such that
un(sί9 ...,sn) = £>(s1s2 ..sn). Take n copies of the original family {σt }, and for Sia

choose ωα, ω being a primitive nth root of unity. Thus we have

We claim that S(s1 ...5k) = 0 unless k = 0(n). In establishing this it is convenient
to regard the superscripts α as running through the elements of Έn. Notice that
S(σl1... σlk) is unaltered if we subtract (in Έn) the same constant β e Έn from
each αf. Thus,

£>(s1...sk) = ^ ωΛί + '~+

1 ^ α1 + .. + α k + ,

^ αi,. ..,<xk,βeΈn

n - 1

= 0 unless k = 0(n) since £ ωkβ = 0 unless fc = 0(n).
β = 0

I am indebted to Joel Feldman for this simple argument. With this choice of
variables, we have

un(σl9...9σn)=—*(slS2...sJ. (2.3)

It may happen that the family {σj has even symmetry; that is, the expectation of
any product of an odd number of σ's is 0. In this case a simpler representation

involving only — copies of the family {σj is possible. [We take n even since for

odd n by symmetry un(σί9 ...,σJ = 0.] Let

t = Y ωασ?, (2.4)
α = 0

where again ω is a primitive nth root of unity. To apply the preceding argument
to show S(t1 ...tn) vanishes unless k = 0(n) we note that the superscriptsα essentially
may be regarded as elements of 2£n/2 because the ambiguity in the definition of

ωαi + +αk j s o b v i a t e d by the even symmetry of the family {σj. Thus with even
symmetry we find 2

un(σl9...9σj=—£{t1t2...tn). (2.5)

Finally, we remark that if one chooses Sίa = ωfι0C,fίeΈn, only those terms
ΓΊ $( Π sι) m t ' i e definition (1.3) of wn(s l5..., sn) survive which satisfy the condition[ ι)

Pe0> \ ieP I

V P e # , ^ / ; = 0 ( 4 By varying the fi9 different representations for un(σ1, ...,σπ)
ieP

may be obtained. For example, the representations above have /. = 1 V i, and only
the leading term survives. On the other hand, the representation used by Lebowitz
[4] exploits the even symmetry as in (2.5) with /i = / 2 = 0, / 3 = / 4 = 2, and two
terms survive.
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3. Signs of the Ursell Functions w2, ι#4, u6 for Ferromagnetic Ising Models

We employ the representation (2.5) in the case where the random variables
{σj are spin variables of a finite ferromagnetic Ising model with two-body forces.
(See Section 1 for a definition and notation.) Using ,it, we show that
(— \)% + ίun(σkι, . . .,σ kJ^0 for n = 2,4, and 6 by proving the stronger statement
that, in the ferromagnetic region, all derivatives with respect to coupling constants
Jtj of (— iψ + 1Z^un are nonnegative. The proof does not generalize immediately
to the case of higher order Ursell functions, and in fact appears somewhat fortuit-
ous. Nevertheless, we believe that in general the derivatives with respect to coupling
constant of (— 1)̂  + 1 Z^un are nonnegative and this belief is supported by asympto-
tic results for both low and high temperature.

To use the representation (2.5) we enlarge the set underlying the probability
N 3 - 1 / N \

space from Ω= X {- 1, + 1} (for an iV-site model) to Ω'= X X {- 1, + 1} ,
i=ί β = O\i = O I

with the random variables σf being the projections onto the (/?, ifh factors. The

(unnormalized) weight of each state is given by exp Σ Σ J^σ^σ^Y Extend the
\β = O i * j I

definition (2.4) of the variables tt by setting

ί?= *Σ ωα/?σf, αG{l,3,5,...,n-l}. (3.1)
β = 0

Thus what we called tx in (2.4) is ή here. Note that (ή)* = η~\

For αe{l,3,5,...,n-l} and jSejo, 1,..., — - 1 | the matrix \/—ωaβ is

unitary. Thus, 2

ΣVM=τΣ¥Γ> (3-2)
i,j,β n i,j,<*

and in the ί-variables the representation (2.5) may be written

^ (3 3)

/Given a finite set Ω' and a function /:Ώ'-*(C, by Tr/ we mean ]Γ f{ω')
\ ω'eΩ'

The derivative of (3.3) with respect to coupling constants J I U l,..., Jimjm is

dm

djhh...djtJ ^ " - K ^ O
m + 1

f1 fαlf"~αl 'exp
2

J f
„ JίJt

n

In order to show that all these derivatives have a certain sign when evaluated at
arbitrary Jtj ̂  0 is suffices to show they all have this sign when the couplings J{j

are set to zero, and this is what we do for n = 2,4, and 6.

Theorem 3.1. Let un be the Ursell function of a finite ferromagnetic Ising
model with Hamίltonian — Σ Jίjσίσj an^ partition function Z. For n = 2,4, and 6
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all derivatives with respect to coupling constant of (— ί)*Z%un(σkί,..., σkj are
nonnegative. Moreover, if every site in the model may be connected with every other
site by a chain of nonzero couplings the inequality is strict.

Remark. These inequalities, which as they stand explicitly involve factors of Z,
may be converted to inequalities involving the spins alone by dividing by Z^.

Proof. We give the proof only for the case n = 6. The case n = 4 may be done
in a similar way, and the case n = 2 is trivial.

We want to show that the sum £ Tr(i^ ... ί^ί?1 fj~ai... t^t)"*™) arising
α i , . . . ,<xm

from the evaluation of (3.4) at J = 0 is nonnegative. It is actually true that an
individual term Tr(ί^ ...ί"Jα m) is nonnegative. Since this trace factors over sites,
we break it up into a product of traces of the form Tr (ί y i . . . tya), with the common
site subscript suppressed. By an argument given in Section 2 in connection with
representations (2.2) and (2.5), this trace vanishes unless yλ H \-ya=0(n).
Assume this condition is satisfied at all sites. We claim that the function tγi... tΊa

obeys the inequality

( - l ) | { i | y ί = 3 V 1 . . . ί ^ 0 . (3.5)

To see this is true, we note that since (ί1)* = ί5 and (ί3)* = ί3, pairing ί l5s with
ί5's and ί3's with one another reduces the problem to showing that (ί 1) 6 ̂ 0 and
( ί 1 ) 3 ί 3 ^ 0 . This may be done by explicit verification of cases. It now follows
immediately that the product over the sites of the terms tyι... tΊa is nonnegative
and so has nonnegative trace, because the total number of y's appearing with
value 3 is even.

The strict positivity may be seen in several ways. One simple one is to resurrect
the inverse temperature β. Note that if a finite ferromagnetic Ising model is
connected by nonzero couplings as in the hypothesis of the theorem, then for any
function of the spins F(σί9..., σN)

lim £{F) = ±[F{- 1,..., - 1) + F(1, . . . , 1)] . (3.6)
?->oo

Thus in such a model, lim Z 3 - ^ — Z 3 u6 = 3m 16. But since all the

coefficients in the Maclaurin expansion of Z3u6 in the couplings are nonnegative,
if the above derivative were 0 for β = 1 it would remain so V β and, when normalized
by Z 3 , could not converge to 3m 16 as β-^oo. Q.E.D.

We remark that by using the "ghost spin" method of Griffiths [2,3], in which
the values of a (nonuniform) external field are regarded as bonds coupling the
model to an additional "ghost" spin, we may extend Theorem 3.1 to the case of
positive external field, provided the Ursell functions are modified by dropping
all terms involving the expectation of an odd number of spins.

Next we state a corollary of this theorem, and finally comment on some
aspects of this proof. The corollary extends the theorem to Ursell functions of
arbitrary order, provided that at most seven distinct spin sites appear among the
arguments, by means of a reduction formula. The reduction formula provides the
necessary combinatorics for expressing Ursell functions with repeated spin
arguments in terms of simpler Ursell functions. To state it we need some notation.
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Let {<Ti}ie{i,...,n} b e a family of n random variables, and let 0>, Ά be partitions of
{1,..., n}. Define

uΆ{σu...,σn) = Π MlQlK«'σβb' )» (3 7 )

where qa, qb, etc. are the elements of Q. Define the family {σP}Pe^ of random
variables by

σp=ϊl°i. (3-8)
ieP

Let 0>V 1 denote the finest partition coarser than both & and J , and let i be the
one-element partition {{1,..., n}}. A simple combinatoric calculation with
Mobius functions gives the following lemma.

Lemma 3.2. Let {σj be a family of n random variables. Then, with the above
notation, um({σP})= ]Γ uA(σu ...,σΛ).

\

As a special case of this we have

Un-l(σl ' σ 2 ?

σ 3 > '->σn)

,..., σ j + X Mk(σpi,..., σPk)' W/(σqi,..., σβI),
l e P

where P= {pί9 ...,pfc} and P = { l̂9 ...,^} //σ x σ2 is independent of the remaining
random variables, as in the case when σ1 and σ2 are spins from the same site, the left-
hand side of (3.9) is 0 [as in the derivation of (2.1)] and we obtain the reduction

un(σ1,...,σn)= - Σ uk(σPί, •-•><* Pk)uι(<rqί, ~'><rqι) (3 1 0 )
l e P

PC{l,...,n} |2#P

We use this to prove

Corollary 3.3. Let un(σkί, ...,σΛn) be an Ursell function of the Ising model of
Theorem 3.1.// the n spins used as arguments are selected from at most seven different
sites, then all derivatives with respect to coupling constants J(j of
(—ί)^+1Z^un(σkί,...,σkr) are nonnegative. Moreover, if every site in the model
may be connected with every other site by a chain of nonzero couplings, the inequality
is strict.

Proof. We prove this by induction on n. By the theorem, it is obviously true
if nrgό. If n>6, two spins must be selected from the same site, say k1=k2. By
reduction (3.10)

un(σkι,...,σj=- Σuk(σPί,...,σPk)uι(σqι,...,σqι),

a n d s ° ( D * + 1 z »

with notation as above. From (3.11) the corollary is immediate. Q.E.D.
Again, note that the Griffiths "ghost spin" method allows immediate extension

of this result to the case of positive external field if the Ursell functions are properly
modified.

We now return our attention to the proof of Theorem 3.1 It proceeds by
showing that the derivatives with respect to Jtj of (— iψ+iZ^un, evaluated at zero
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coupling, are nonnegative for n ̂  6. One can say explicitly which derivatives are
zero and which are not. A derivative with respect to certain couplings is nonzero <=>

(1) any two sites appearing as arguments of the Ursell function may be con-
nected by a chain of these couplings; and,

(2) for any site, the number of these couplings touching it plus the number of
times it appears as an argument is even. These conditions may be interpreted
conveniently in terms of the graphical notation discussed in the following section.

Finally, we comment on the restriction of the proof to the case n ̂  6. In this case
we established that the sum £ Tr(t{... tι

n r?
1 η~ai... ί?™ί"~αm) had sign ( - 1)*+1

Oil, )0<w

by showing that each term in the sum had this sign. For n > 6 this is no longer possi-
ble. For example, in the case n = 8 it may be shown that Tr([(ί{)7(ί2)] [(ί?ί|)3]) > 0.
However, it is known by other reasoning that the full sum

is negative. We conjecture that the derivatives (essentially, the full sums) have
sign (— 1)^+ 1 for arbitrary n. This is known for general n for a fairly large class of
derivatives, as discussed in the following section, and investigation is continuing.

4. Simple Derivatives and Graphical Notation

In this section we combine Theorem 3.1 and reduction (3.10) inductively to
show that sufficiently simple derivatives with respect to coupling constants Jtj of
(— l)^+ 1Z^«π(σΛ l, ...,σkn\ evaluated at J = 0, are nonnegative. Naturally, one
hopes that eventually all derivatives will be shown nonnegative.

As a preliminary, we establish a graphical notation for derivatives
dm

— Z%un(σkί, ...,σkn) of Ursell functions. Regard the sites of our
oJhh. .oJimjm j=o
Ising model as vertices of a linear graph. For each - - appearing in the derivative

put an edge between sites i and j . This specifies the derivative. To specify the
arguments σka of un, introduce n dummy vertices—one for each ka—and put an
edge between each site ka and its associated dummy vertex. Finally, suppress all
vertices not touched by an edge. The resulting graph G is called the graph of the
derivative, and the derivative the value [G] of the graph. When calculating the
value of a graph it is convenient to normalize the trace so that T r ( i ) = 1, thereby
eliminating factors of 2N. As an example, the graph of

d2

(dJ12)
-Z2u4(σuσuσ2,σ2)

is

Dummy vertices

and has value — 4.

Fig. l
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Some of the results of prior sections have pleasant interpretations in this
notation. For example, evaluating (3.4) at J = 0, we may identify each term in
the sum on the right with a system of odd 2^-valued currents on the graph of the
left-hand side. The current carried by an edge into a vertex is the superscript of the
associated ί-variable, and the dummy vertices are regarded as unit sources. Thus,
the term Ίτ(t\t\t\t\t\t\t\tl) would be represented by the network

Fig. 2

As we saw in the proof of Theorem 3.1, for such a term to be nonzero the asso-
ciated network must obey the Kirchoff current law in Έn. From this we conclude

dm

-Z"un(σkί,...9σkn) vanishes unless all the argument edges of

the associated graph lie in the same connected component and the number of
edges incident on each vertex (except the dummies) is even. Such graphs will be
called nontrivial.

The reduction (3.10) also may be graphically interpreted. Differentiating the
identity, we find that if two argument edges eί9e2 in a graph G share a common
vertex then ^,

[ G ] = - X [#i ] [# 2 ] (4.1)

By this notation we mean that H1 and H2 are the elements of a partition G into
two subgraphs, with edge et in subgraph Ht the sum extends over all such partitions.

With this graphical notation we may prove

Proposition 4.1. // the graph of the derivative

dm

I T ...or Z*ttn(σkl, . . . ,σj

is nontrivial and has at most four independent loops in the component of the argument
dm

edges, then ( - \f + 1 ——— Z^un(σkl,..., σkj ^ 0 .
ΐljl imjm J — 0

Proof. We use induction on the total number of edges. Since the trace factors
over sites, connected components without argument edges merely contribute
positive factors to the value, so we may assume that the component of the argument
edges is the only component. By Theorem 3.1 we may assume at least 8 argument
edges. If any two argument edges share a common vertex, we use the reduction
(4.1). Also, if any argument edge is incident on a vertex with only one other incident
edge, we may simply erase the argument edge and call the other edge an argument
edge without changing the value of the graph. There remains only the case in
which each argument edge shares a vertex with at least three other edges, all of
which must be derivative edges.



218 Garrett S. Sylvester

We claim that in this situation with at most four independent loops there can
be at most six argument edges. We restrict our attention to the subgraph G' of G
which contains only the derivative edges; let it have E' edges and V vertices. The
number of independent loops X is

χ = E - V +1.

Of course, this number is the same for G and G'. With the restrictions in the case
at hand, we see easily that

F ^ ( 3 n + 2 [ F - n ] ) = y + K';

consequently

which verifies the claim. Q.E.D.
Combining this proposition with Corollary 3.3, we may say that derivatives

of Z^un have the conjectured sign provided either they are simple in not having
argument edges at too many vertices in the associated graph, or in not having
graphs which are too connected.

With a little more work, one may show that the inequality in Proposition 4.1 is
actually strict. Thus we have the asymptotic result

Corollary 4.2. Let un(σkί,..., σkn) be an Ursell function of a finite ferromagnetic
Ising model with two-body forces and all couplings Jtj nonzero. Then, if the inverse
temperature β is sufficiently small or sufficiently large, (— ί)^+1un(σkι, . . . ,σ f c J^0.

Proof. For small β, expand Z%un(σki,..., σkn) as a power series in βJtj. We may
use the reduction (3.10) to assume the sites ki9...,kn are distinct. For distinct
sites, the lowest-order nonzero graphs are trees, which by Proposition 4.1 have
the claimed sign.

dn

For large β we use (3.6) to conclude un{σkί,..., σfcn)-> ——-In cosh/I asdλn

/?-» oo. This derivative has the asserted sign. Q.E.D.
Methods for explicit calculation of graphs are available. One method evaluates

graphs with currents as in Fig. 4.2. Another sums over the derivative currents
and evaluates graphs of the type in Fig. 4.1. In either case, what results is a sum

of products of hyperbolic tangent numbers ——- tanh λ
dλ

. For example, a

— onlytree with a set V of non-dummy vertices has value [ j [ r | _ 1 tanh

one term in the sum. Here \v\ is the number of edges incident on vertex v. Generally,
the more connected the graph, the more complicated the computation.

Using these calculation methods, various graphs not reducible in the manner
of Proposition 4.1 or Corollary 3.3 have been evaluated in a computer study.
They all have the conjectured sign.

Appendix

We use a method originally devised for showing w4 negative to give a simple
proof of a family of inequalities recently obtained by Newman [5] which is
closely related to the inequalities of Lebowitz [4].
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First we define admissibility. Let K be a finite set of even cardinality. Use ~ to
denote complementation in K. A collection s/ of even subsets of K is admissible
if and only if every partition of K into pairs is a refinement of some two-element
partition {A, A) with Aesί.

Theorem A.I. Let K be an even set of sites in a finite ferromagnetic I sing
model with two-body forces and nonnegative (nonuniform) external field. If the
collection stf of subsets of K is admissible then

<σκ>S Σ <^><^~> (A.I)
Aest

Here <,) is used to denote thermal average, and given a set of sites B we define

beB

Proof. By the "ghost spin" method of Griffiths [2, 3] it suffices to consider the
case of zero external field. In this case we claim that all derivatives with respect to
coupling constants of Z 2 /<σκ> — Σ <σΛ> (σzA a r e nonpositive when evaluated

at zero coupling, and hence throughout the ferromagnetic region.

It is convenient to represent a differential operator D = — — in the
dJiih ~dJimjm

coupling constants by a graph Γ. The vertices of Γ are sites in the model and for each

derivative — — appearing in D we place an edge between vertices (sites) ί and j .
dJij

Sites with no incident edges are then suppressed. For example, the differential
e4

operator — — — — — — — — would be represented by the graph
O J12 O J ! 2 U Jγ 3 0 J2 3

To simplify the notation, given a set of sites B we write [£] for Tr(σβe βH) and
Γ [£] for the action of the derivative associated with the graph Γ on Tΐ{σBe~βH).
Finally, define the (Z2-reduced) boundary dΓ of a graph Γ to be the set of all
vertices of Γ having an odd number of incident edges.

With this notation our claim becomes

Γ.([φ] [ K ] - Σ W WH/ = o^0 (A.2)
si

for all derivative graphs Γ, and it is a consequence of the following three statements.

(1) Γ - ([φ] [K])|.7 = o and Γ ([A~] [i]) | . 7 = 0 both vanish unless dΓ = K.
(2) lϊdΓ = K then there exists a subgraph G of Γ and a set A e stf with dG = A.
(3) G ([φ] [K] - M [λ]) = 0, so Γ ([φ] [X] - [A] [λ]) = 0.
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Since the remaining terms on the left of the inequality are manifestly negative,
this cancellation verifies the claim.

Statement (1) is obvious.
Statement (2) is a straightforward induction. Since dΓ = K, given a site k e K 3

site k! E K connected with k by some path γ in Γ. After removing k and k! from K
and y from Γ, we see that by repeating the argument we may produce a partition
of K into pairs {fc, k'} connected in Γ by edge-disjoint paths y. Since si is admis-
sible 3 A e si which is a union of some of these pairs; for G we just take the paths y
connecting them.

Statement (3) is a simple calculation. Using A for symmetric difference we find

(A.3)

since δGj = (dG2)ΔA and (δG2) J K = (δG^zli. Q.E.D.

Corollary A.2. Let # £>e ί/ie seί o/ α// partitions of K into pairs. Then

< σ κ > ^ Σ Π <^ f c ->. (A.4)
&&<€ {k,k'}e&

Proof. This is immediate from successive applications of Theorem A.I. Q.E.D.
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