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Abstract. The general form of the Lagrangian equations of motion is derived for a spinning
particle having arbitrary multipole structure in arbitrary external fields. It is then shown how these
equations, together with the complete system of field equations can be recovered from a fourdimensional
action integral representing a polarized dustlike medium interacting with an arbitrary set of fields.
These general results are then specialized to the case of Einstein-Maxwell fields in order to obtain the
general-relativistic extension of Lorentz's dielectric theory.

I. Introduction

This paper attempts to answer and to trace the connections between two
principal questions:

What are the equations of motion of a spinning multipole test particle in
given external fields?

For a continuous medium with internal spin and multipole structure, what
are the phenomenological field equations relating the fields generated by the
medium to its statistical bulk properties? (The classical prototype is Lorentz's
dielectric theory.)

Both questions have long histories of research behind them. The close link
between them has been stressed in a recent note by one of us [1]: for a gaseous
medium in a self-consistent Einstein-Maxwell background field, the field equations
are delimited to a virtually unique form by the requirement that they be compatible
with conservation laws derived from the equations of motion of the constituent
particles. In the present, more complete and more general discussion, we show
how the general form of both the equations of motion and the field equations
can be derived from a unified Lagrangian viewpoint.

Equations of motion for spinning test bodies have traditionally been derived
by two principal methods*:

(i) Multipole Formalism for Extended Body or Equivalent Schwartz Distribu-
tion. This method, due originally to Mathisson [5] and developed further by
Papapetrou [6], Taub [7], Dixon [8], Madore [9], Suttorp and de Groot [2],
and others [10], proceeds essentially by integrating the conservation identities

* Work partially supported by the National Research Council of Canada.
1 For reviews and extensive bibliographies (especially of the special-relativistic literature), see

the books by Suttorp and de Groot [2], Halbwachs [3], and Corben [4].
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for the total energy tensor Taβ over space-like sections Σ of the particle's world-
tube. In any such formalism the definitions of gross particle properties necessarily
involve a number of arbitrary elements. One has to settle on conventions for (a)
allocation of the interaction energy when splitting Taβ into an "internal" matter
part T(̂ fat) - either canonical, or symmetrized to include internal spin contribu-
tions - and an "external" field part; (b) choice of tube sections Σ in the special-
relativistic integral for the particle's 4-momentum,

or its general-relativistic equivalent; (c) choice of a central world-line for defining
the particle's 4-velocity ua and spin angular momentum Sλμ. (Different choices (c)
lead to different so-called "auxiliary conditions", such as Sλμuμ = 0, Sλμpμ = 0
and others [6, 8a, 2, 11]. Because of the obvious physical difficulty of localizing
the particle to within a distance ~ (spin)/c x (mass), which exists at both the
macroscopic and elementary-particle levels, this uncertainty is unlikely to be
fully resolved except by formal convention.) The form of the equations of motion
naturally depends to some extent on the definitions of the quantities entering
them, and a fair variety of seemingly different formalisms have been obtained
in this way.

(ii) Equations of Motion from an Action Principle. Frenkel [12], with choice
of a special Lagrangian, and more generally Barut [13], without specifying the
functional form of the Lagrangian, have derived special-relativistic equations of
motion for spinning particles in electromagnetic fields; both assume Sλμuμ = 0.
In general relativity, Kunzle [14] and Souriau [15] have recently obtained
equations for spinning dipoles in Einstein-Maxwell fields from a Lorentz-in-
variant pre-symplectic 1-form; they adopt the auxiliary condition Sλμpμ = 0.

Yet other derivations of particle equations of motion proceed on a more-or-
less ad hoc basis [16].

In the case of continuous media, the dynamics of interaction with the electro-
magnetic field has been an active and controversial area since the earliest days of
special relativity2. Rival and apparently conflicting proposals put forward by
Minkowski, Abraham, and Einstein and Laub [20] for the localization of electro-
magnetic energy and momentum in a dielectric medium were a subject of debate
for many years [17,2]. Not until the 1960's was it clearly recognized [18,19,21,22]
that the question cannot be meaningfully handled without detailed consideration
of the material terms. Only the total (symmetric, conserved) energy-momentum
tensor has a fundamental significance by virtue of its coupling with the
gravitational field. Its split, for the purpose of phenomenological description,
into "matter" and "field" parts involves arbitrary, conventional elements relating
to the allocation of the interaction terms. Of course, phenomenological descrip-
tions retain their usefulness; in particular, the statistical treatment of a medium
with internal spin interacting with the gravitational field, and having a corpus-
cular structure at the macroscopic level (primeval galaxies, black holes, turbulent
eddies) is of potential interest for application to the early cosmological "soup",
but has not as yet received much attention [1].

2 For critical reviews and extensive references see the books by Suttorp and de Groot [2], Pauli
[17], Mθller [18], and Penfield and Haus [19].
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The first goal of the present work is to derive the general form of the Lagrangian
equations of motion for a spinning particle having arbitrary multipole structure
in arbitrary external fields [Eqs. (22) and (23) of Section III]. Our treatment is
independent of special interaction models in that we do not specify the functional
form of the Lagrangian, but only the variables on which the Lagrangian depends.
This generality of the Lagrangian also makes a priori commitment to a particular
auxiliary condition unnecessary. The resulting equations represent the canonical
substructure to which every detailed model of particle motion must conform.

In Section IV we extend this analysis to the field dynamics of continua. We
consider a four-dimensional action integral in which the Lagrangian density is an
unspecified function of a vector field nua (representing a particle flux), an ortho-
normal tetrad field e{"] (representing a set of spin axes) and arbitrary field variables.
Physically, this represents a dustlike medium interacting with the external fields
treated as self-consistent backgrounds. Variation with respect to the sixteen
tetrad components e^ yields six equations for the spin angular momentum and
the ten gravitational field equations. The four equations of translational motion
are then obtainable (modulo the nongravitational field equations) either from the
contracted Bianchi identities or by "variation of the world-lines" (Section IV,
Part 3). We thus recover the equations of motion previously derived in Section III
together with the complete system of equations relating the fields to their sources.

In Section V these general considerations are applied specifically to a medium
interacting with an Einstein-Maxwell field. The results give a clear formal expres-
sion to the general relativistic extension of Lorentz dielectric theory. Interestingly,
a complete analogy emerges between the appearance of the usual polarization
terms in the phenomenological Maxwell-Lorentz equations and the appearance
in the gravitational equations of the well-known Belinfante-Rosenfeld sym-
metrization terms [23] involving the spin flux. It is thus proper to interpret these
terms as a "gravitational polarization tensor" [1].

While it would have been straightforward to generalize our considerations
to fluid and elastic media3, we have resisted the temptation to do so in this paper
in order to exhibit as clearly as possible the interrelationship between the field
equations for dustlike media and the equations of motion for free particles.

Also left out of consideration here are the "torsion theories" of Weyl [26],
Sciama [27], and Kibble [28], recently reviewed and developed by Hehl [29] and
Trautman [30], which attempt to relate the spin of elementary particles to the
skew part of a metric-preserving, non-Riemannian affine connexion. Such theories
can be reformulated as Riemannian theories with an auxiliary torsion tensor,
which then appears (quadratically) as a complicated supplementary term in the
energy-momentum tensor on the right-hand side of the conventional Einstein
field equations. 'Since gravitational effects of elementary particle spins are com-
pletely insignificant4 below densities of order 1055 gm/cm3 [32], both the torsion
theories and the simpler conventional theories [23, 1] effectively imply validity
of the usual (spin-free) form of the energy-momentum tensor at the ordinary
macroscopic level, and lead to the same phenomenological polarization theory
for aggregates of "particles" of astronomical size.

3 See Refs. [24], [25], and [1] for some partial extensions along these lines.
4 But see [31] for a different point of view.
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II. Definitions and General Identities

We begin by collecting a number of general formulas for sets of relative tensor
fields ΦA(xμ\ and then develop the identities (cf. Belinfante and Rosenfeld [23])
which flow from the condition that a function L(ΦA) be a (relative) scalar.

Greek indices run from 1 to 4. Capitalized Latin indices A,B,... do double
duty as labels (ALiBL,...) and as generic representations of sets of tensor com-
ponent indices. Thus,

— V*AL)ai...a.m — V * A ^ J

where m, n depend on the label AL. Sometimes, as in (13) below, a generic index A
is printed bold face as a means of indicating that A and A have different label-
ranges. A repeated generic index implies summation over the respective tensor
indices and over the label-range concerned.

Under the co-ordinate transformation xλ = xλ(xμ\ the relative tensor ΦA

transforms linearly:

ΦA(x) = A/{X%) ΦB(χ), X\ = dxηdx* . (1)

[Of course, AA

B vanishes unless AL = BL so the summation over B in (1) does not
couple different tensors.] The infinitesimal generators of the transformations (1)
are

; e ^ δ ί . (2)

Explicit construction of these generators follows easily from the recursion formulas
( / ) / = — wδσ

e for a relative scalar φ of weight

w (i.e., φ(x) = φ(x)\dx/dx\η; (3)

C'l^Wί-^:^ ( 4 a )

where δ\= \ if AL — BL and the respective tensor indices are equal, and δA — 0
otherwise. The group property AA

B(Y\Xμ

v) = AA

c(Y)Ac

B(X) yields

(//)/ (W " (//)/ (W = (//)/ δμ - (//)/ δi . (5)

Useful formulas which will be required in the sequel are

Λ\'ΦB, (6)

where the stroke denotes covariant differentiation with respect to a symmetric
affine connexion. From (1) and (2) the change of ΦA under the infinitesimal co-
ordinate transformation xρ = xρ + ξρ(x) is

ΦA(x) - ΦA(x) = (//)/ ΦB(dσξ°). (8)

From (8) we derive at once

_3L δ"L-0
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as the condition that the function L(ΨA) of the relative tensors ΨA transforms
as a relative scalar of weight w.

A more restrictive identity can be derived from (9) in the case of a scalar
density (w = 1) L(ψA, ψA\β) depending on a set of relative tensor fields ψA and their
first5 covariant derivatives. We define the variational derivative

\ (10)
where

A A , (11)

and the tensor densities

tt' = Lδ't-xpMβL
A'; Uτ% = LΛτ(IA

B)e°ψB. (12)

Further, we note from (4 a) that

Then (9), with

ΨΛ = (ΨΛ,ΨΛ\J, (13)

yields at once the identity

^iA

BVψB = o (14)

valid for an arbitrary scalar density L(ψA, ψA\a).

III. Spinning Multipole in Given External Fields

In this section, we derive the general form of the Lagrangian equations of
motion for a spinning test particle with arbitrary multipole structure in a given
Riemannian space-time and under the influence of a given set of external fields φA.

Let xμ = xμ(t) be the equation of the particle world-line in terms of an arbitrary
scalar parameter ί, τ the proper time, and

uμ = dxμ/dτ, vμ = dxμ/dt

the normalized and unnormalized 4-velocities respectively. The spin of the
particle is described by the gyration of an orthonormal tetrad e{a)(ή defined on
the world-line:

Άa^e'T^Q^ * u = diag(l, 1,1,-1) (α,6,... = 1 to 4). (15)

The equations of motion are assumed to be derivable from a parameter-
invariant action principle δ J L dt = 0, for variations of xμ(t) and e{"](i) with fixed
endpoints xμ{ti), e^\Q (i =1,2). The Lagrangian is an unspecified scalar function

5 The case where higher-order derivatives occur is not needed immediately and its consideration
is deferred to Section VI.
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where έ^^δe^/δt (absolute derivative) and the set of tensors ΦA comprises
the external fields φA, the Riemann tensor Ra

βyδ and their symmetrized6 covariant
derivatives:

We have assumed that explicit dependence of L on gaβ has been eliminated by
the use of (15).

We define the canonical momentum Pμ, the spin angular momentum Sρσ

= S[ρσ] and the multipole moments MΛ by

Since the components ΦA are usually constrained by algebraic symmetries,
a word about the definition of the partial derivatives MA = δL/dΦA is in order.
These are in all cases defined so that dL = MA dΦA. If the ΦA possess algebraic
symmetries, we consider only variations dΦA which respect these symmetries.
The resulting arbitrariness in the coefficients MA is then resolved by requiring
that MA share the symmetries of ΦA. These conventions lead to formulas like
dF12/dFί2 = ^ = —SF12/dF21 for a skew symmetric tensor Faβ. It follows also
that the 2" + 2-pole gravitational moment tensor7

Qj>y»i-" = dL/dR'PyiHtl^) (19)

is symmetric in its last n indices, and has the algebraic symmetries of the Riemann
tensor in its first four indices.

The equations of motion for the spin Sρσ are obtained by variation of e{"\t)
with fixed end-values, holding the world-line fixed. Since in this section (only)
we treat the space-time geometry as prescribed, Eq. (15) impose 10 constraints
on the 16 variations δe{"\ The resulting equations of motion reduce, after
eliminating the Lagrange multipliers, to the 6 equations

P(«) - o r = — (20)
3e^J Q $&σ de^ δt

On the other hand, the identity (9) with vv = 0 gives

dυe δe{

σ

a) Q dέ(

σ

a) ρ 3ΦA

(21)

Differentiating the second of (18), we find with the aid of (21) (with t = τ) that
Eq. (20) is equivalent to

\ δSρσ/δτ = P[ρuσ] + MA(IA

B)[ρσ] ΦB . (22)

6 This is not a restriction, since an unsymmetrized covariant derivative can always be reduced
to a set of the form (17) with the aid of the Ricci commutation relations (7).

7 This corresponds (apart from a numerical factor) to the "reduced" moment integral Jfl•• ε»α/i'If>

defined for extended mass distributions by Dixon (Ref. [8b], Eq. (5.28)).
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The equations of motion for the linear momentum are obtained from an
infinitesimal displacement of the world-line, holding 4α) fixed by parallel propaga-
tion. We consider a 1 -parameter family of time-like curves xμ(ί, ε) with orthonormal
tetrads e{"\t,ε) defined on them, and extremize I(ε)= \\\Lάt subject to fixed
xμ(thε) = xμ(ti,0) (z=l,2), δe{"]/δε = 0. This yields, for arbitrary variations

f/dL δυμ ΘL δ ίδe{

σ

a)\ 3L dxμ

Noting

δε δt \ δε y δε\ δt ) e σλ" dε '

and integrating by parts gives the equations of motion

δPμ/δτ = ±RβσλμS°°uλ + MAΦA]μ, (23)

where we have set t = τ on the extremizing curve.

To facilitate comparison with the results of the next section, we note in con-
clusion that the relation

δe^/δt = (δeίa)/δτ)(-ηabe^efh«vβ)-

can be used to re-express L as a new function

L = L^iΛ e{

a

a\ e{:\τ\ ΦΛ) e^\τ) = δe^/δτ (24)

which is homogeneous of first degree in its first argument υμ (because of the
parameter-invariance of the action integral). The partial derivatives (18) now
appear as

(25)
δΦ,

dυμ + dέ(

a

a\τ) a μ

IV. Field Dynamics of Continua: First-derivative Coupling

The objective of this section is a unified derivation of the equations of motion
(22), (23) together with a system of field equations for the applied fields from a
four-dimensional action integral.

The Lagrangian density (precise functional form not specified) represents a set
of free fields gaβ, φA interacting with a continuous medium having a simple
structure. The medium may be visualized as consisting, at the "atomic" level,
of coherently moving, spinning particles which interact only through the external
fields, treated as self-consistent backgrounds. Its history is thus completely
described by a "numerical flux"

N«(x) = γ^gnu\ uaιf = - 1 (26)
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and an orthonormal tetrad field e{£\x). (Our treatment is easily generalized; for
example, a medium with internal stresses produced by incoherently moving
particles can be handled by a sum Σr of action integrals containing fluxes Na(x, r)
and tetrads ef\x,r\ where r is a discrete or continuous index. This leads to
equations of motion of the form (22), (23) for each "stream" r and to the same field
equations. Compare Ref. [1].)

We accordingly postulate that the field equations and equations of motion
are obtainable from the action integral

\ W (27)

in which the scalar density L depends on the fields

*βyδ}

$β. In general L will depend also on

ΨΛ={NΛ,e<?\φΛ,R*βyδ} (28)

and on e$β. In general, L will depend also on covariant derivatives of φA and
Raβγδ We shall simplify the discussion in this section by assuming that this
dependence is restricted to first derivatives φA\a and that no derivatives of Ra

βyδ

enter. This is still sufficiently general to cover most cases of practical interest.
(For the analysis of the general case, see Section VI.)

In this formulation the sixteen-component tetrad field 4α ) plays a dual role:
the ten symmetrized products η^e^e^ = gaβ define the metric and determine the
gravitational field, while the six angular velocities ωab — e{a)ae^\βu

β determine
the internal spin of the medium.

1. Spin Equations and Gravitational Field Equations Derived
from Variation of Tetrad

Under an arbitrary variation δe{"] of the tetrad field, and the accompanying
variation

δg σ — 7.Ύ\aheΨ)δe^} (29)

of the metric, the variation δ(e)L gets contributions from three sources: (i) explicit
dependence of L on e{£\ e$β (ii) variation of the affine connexion hidden in the
covariant derivatives e$β,φA\a; and (iii) variation of Ra

βyδ.
Accordingly, we have

δ{e)L = (δL/δe{

σ

a)) δe? + Uτ% δΓ?τ + Q/yδ δR«βyδ + (div), (30)

where δL/δxpA and Uτσ

Q were defined in (10) and (12),

yδ, (31)

and (div) represents a divergence δα(...).
To re-express the last two terms of (30) in terms of δe^\ we note that

δR'βyi = 2(δΓβ[δ)}y], δΓSτ

enable us to write the identities

Q/ y a δR'βii = - 2Q/»% δΓ'τ + (div), (32)

« + S»") - U^°% δgβσ + (div), (33)



Polarized Media in GR 73

valid for arbitrary tensor densities Qa

βyδ, Uτσ

ρ. We have defined the "spin flux"

Sστρ = 2Uρ[στ] . (34)

The action principle δie)l = 0 now gives, with the aid of (30), (32), (33), and (29),

(δL/δe{

σ

a))e{a)Q = {UτiQσ) - i (Sστρ + S°τ%τ - 4 Q A ( ^ M . (35)

The symmetry of the right-hand side in ρ, σ gives at once the six equations of
motion for spin:

)e% = 0. (36)

The gravitational field equations comprise the essential content of the remaining
ten equations of (35). As a first step towards reducing these to a familiar form,
we call on the identity (14), which in the present context reads

δL *?4ikNa-41kNaδϊ+UT'<>\*+t<>'+QAWRB (37)
modulo the nongravitational field equations

δL/δφA = 0. (38)

The last term of (37) has the explicit form

QA(IA

B)e"RB = Q/yδRσ

βγδ - IW'R'tyt • (39)

Elimination of the common left-hand sides of (35) and (37) yields

{dLβN')N'δ'β - te" - QA(IA

B)ΰ°RB = (dL/dN<>)N°

2. Matter and Field Decomposition of Lagrangian

To proceed further with the reduction of Eq. (40), we decompose L into a sum

L^LΛN^^ΦJ + L^φ^g^ + Ls, (41)

e ^ e i f X , ΦΛ = (φΛ,φAW,R'βil), (42)

in which Lx represents the matter and its interaction with the applied fields, and
L2, L3 are the free-field Lagrangians for φA and the gravitational field respectively.
We now assume:

(i) That L1(Nμ, ...) = L1(Nμ,...) is homogeneous of first degree in its first
argument, so that

^ = nγ^gLγ(μμ, e£\ έ£\ ΦA). (43)

This amounts to assuming that the flux of material 4-momentum and spin is
proportional to the particle density n, and is clearly satisfied for dustlike material
(no direct inter-particle interactions).

(ii) That the gravitational Lagrangian is essentially the curvature scalar:

\6πL3= -y-gR. (44)
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According to Lovelock's theorem [33], any choice L3(gaβ, δεgaβ,..., δEι... dEtιgaβ,...)
which leads to second order field equations for minimally coupled sources is
variationally equivalent to (44).

Equations (41), (44) enable us to decompose (31) as

^ l / } (45)
where

Qfy'^dLJdR'M (46)

is the quadrupole moment per particle [cf. (19)]. The first of (12) yields, in view
of the homogeneity of Lι,

N«δ°ρ -1; = (δLJdέ^e^u* -L3δ'β- ] / ^ ί / , (47)

where

\/^gt; = L2δl-φAhdL/dφA]σ (48)

gives the canonical energy tensor for the fields φA. Since

we also have (noting that Lλ is a function of έ^ whereas L was expressed as a
function of e$ρ)

Nσ = (dLJdέ^)e^βu
σ + PρN

σ, (49)Pρ

where Pρ, defined by (25), is the canonical momentum per particle.
Substituting (45), (47), and (49) into (40), we arrive at the final form of the

gravitational field equations for a dustlike material:

^){μλ + nQA(IA

B)ρ°RB.

Here, Gσ

ρ is the Einstein tensor, and the last term is interpreted according to (39).
Equation (50) identifies TQσ as the "correct" (symmetric, covariantly constant) total
energy-momentum tensor for material and fields. By virtue of (34) and (12),
the spin flux can be decomposed into matter and field parts:

(-g)~ίSσρτ = nSσρuτ + SσQ\ (51)

i ]/^gS%τ = (dL/δφAlτ) (IA%
σ]φB , (52)

with the spin angular momentum Sσρ per particle defined by (25).

Recalling the definitions (10) and (20), we obtain from (41) and (43) the relation

φNi> + 2^^eM' (53)

between the variational derivatives of L and Lί.Ύo the assumptions (i) and (ii)
already made in this section we now add a final assumption:

(iii) The number of particles is conserved:

N\ = Q. (54)
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Then (53) shows that the spin Eq. (36) is equivalent to the single-particle Eq. (20)
and we thus recover the spin angular momentum equations of motion in the form (22).
In the present context they specialize to

i δS°°/δτ = P[*u<* + (IΛψ*(MAφB + MA*φB]a)

QQ]aβ\φ A aβyQ
where

MA = dLJdφA, MAσ = dLJdφΛ]σ (56)

and we have made use of (4 a) and (39).

3. Equations of Translational Motion Derived from "Variation of World-Lines"

The four equations of motion for the canonical momentum Pa are implicitly
contained in the preceding equations; they can be extracted by applying the
contracted Bianchi identity Gσ

ρ\σ = 0 to (50) and simplifying with the aid of the
spin Eq. (55) and the field Eq. (38). A simpler approach, which at the same time
gives a variational characterization of these equations, is to "vary world-lines"8

in the action integral (27).
The equations

dxμ(am

9t)/dt = vμ = uμ dτ/dt

define the world-lines as integral curves of the conserved particle flux Nμ. The
three am are "comoving" parameters (uμ dμa

m = 0) and ί(τ) is an arbitrary parameter
along the curves.

The number of particles in a given infinitesimal flux tube d3 a is a constant
of the motion, and is given by

N{am)d3a = (-uμnμ)ndΣ,

where dΣ is the 3-area of a tube section t = const and nμ its unit normal. Since

we have

Nμd4x = Nvμd3adt, (57)

from which

Li(Nμ,...)d4x = Nd3aL1(vμ,...)dt (58)

follows by homogeneity of Lγ.
Consider now a 1-parameter family of flux and tetrad fields Nμ(x, ε), e^\x, ε)

and let xμ(am, t, ε) be the associated congruences. We extremize the action integral
I(ε) of (27) subject to fixed end-points xμ(am, th ε) = xμ(am, th 0) (i= 1,2) and to
δe{"]/δε = 0, dN/dε = 0. The last equation constrains the number of particles in a
flux tube to remain fixed when the tube is "varied". Under these conditions

dl/dε = ί d3a,N{am) J {dLx{υ\ ...)/dε} dt (59)

8 For the application of this technique to non-spinning material, cf. Weyl [34], Taub [24], and
Hawking and Ellis [24].
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and a short calculation patterned after that of Section III gives the translational
equations of motion (23) in the particular form

M + MAλφMλ

The stress-free character of the medium is reflected in the absence of contributions
to the variation (59) arising from the spatial dilation and deformation of the
displaced world-tubes.

V. Example: Einstein-Lorentz Theory for Spinning Charges and Dielectrics

As an illustration of the results of Section IV, we here consider a charged
dipolar medium and its interaction with a Maxwell-Einstein field, described by a
vector potential φa and the metric tensor.

The phenomenological (convective) c u r r e n t 9 j α , the polarization per particle
Maβ and the "displacement tensor" Haβ (both skew-symmetric) are defined by the
equations

in which it has been assumed that φa\β enters the Lagrangian only through the
skew-symmetric combination Faβ = 2d[aφβy The electromagnetic field equations
are therefore [cf. (38)]

[ p n \β (62)

and imply conservation of free charge

/|α = 0. (63)

From (48) and (52) we obtain

ί ρ

σ - ( - ^ ) ~ i ^ 2 ^ - ( 4 π ) - 1 ( / ) α | ρ H α σ , 4πS'στ = 2φ[°H*τ (64)

so that

t/ + ϊ (S"e + Sβ

τσ + S%% = T ^ ° - φρf, (65)

where we have defined a gauge-invariant electromagnetic energy tensor by
(cf. [1,22,25])

T(«
β m ) ' = ( 4 π ) - 1 F ρ β J ί < ' β + ( - f f ) - * L 2 ^ . (66)

We now assume more specifically:
(i) that the free-field electromagnetic Lagrangian is

L 2 = - ( 1 6 π ) ~ 1 ]/^gFμvF
μv, (67)

which leads at once to the usual Lorentz polarization relations

Haβ = Faβ-4πnMaβ (68)

9 The "true" (microscopic) current is Ja = ( — g)~^δLί/δφoί=j*(nMaβ),β.
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and (ii) that the (undifferentiated) potential φa enters L only through a bilinear
interaction term eφaN

a, whence

f = enua, (69)

and de/dτ = 0 as a consequence of (54) and (63). In terms of a gauge-invariant
"kinetic momentum"

P« = P«-eφx (70)

the equations of motion (55), (60) reduce t o 1 0 (cf. [8,9,14,15])

δpμ/δτ=-^Rμaty1fS^ + Fμaeύ' + iίMΊ>Faβ]μ + Qal>ysR'Mμ, (71)

\δSλμ/δτ = plλuβ] - Fι\Mμ]a - 4R[λ

aPγQ
μi"βy. (72)

Insertion of (65) and (51) into the gravitational field Eq. (50) gives

- ( 8 π Γ ' G° = T; = Tfm->* + 7 « + \ ( S ^ t ) β - S[ m a t ) / + Sfm a t )/) | τ

in which the tensors

TΓl)σ = npau°, Sg£t) = nS*°ύ< (74)

represent the material fluxes of linear and spin angular momentum. Their di-
vergences are, according to (72), (71), given by

& &l βγnQΊ"* , (75)

( T , m a t ) + Γ ( e . m . ) ) e V = - i R ^ S ^ + nWR'^,,, (76)

where we have used the result

(̂e.m.)σ =_f f-\nM
μVF , (77)

which follows from (66), (68), and (62). These equations can be used to verify
directly that the total energy tensor Tσ

q is symmetric and conserved, as required
for consistency of the gravitational field equations.

The electromagnetic and gravitational field equations, here derived for a
dustlike medium, should retain their form in more general circumstances [with
appropriate generalization of the expressions (74) for the material terms]. This
question will not be pursued further here (but compare Refs. [1, 18, 19, 22, 25]).

We conclude this section with some brief comments on the equations of
motion (71), (72). For determinacy these have to be supplemented by three equations
for the normalized 4-velocity uμ. The form of these equations will depend on the
detailed functional form of the Lagrangian and constraints (if any) imposed on the

1 0 These equations become those of Refs. [1] and [2] if one sets Qjyδ = 0 and redefines the kinetic
momentum as p[n e w ) = pa + Faβ q

β, where qβ is the electric dipole moment. This merely amounts to a
different convention for allocating the interaction energy between matter and field, and leads to field
equations equivalent to (62) and (73). The present formulation, which, in effect, is that of Ref. [1]
with qβ set equal to zero, appears to be the simplest and most natural from a formal point of view.
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variation. (In the multipole analysis of extended bodies ([2, 8-10]) the equations
for uμ amount to a convention for fixing the centre-of-mass.) In this paragraph
we shall follow current practice ([2, 8, 9, 14, 15]) and adopt as the supplementary
conditions

Sλμpμ = 0. (78)

The proper-time derivative of (78), written out with the aid of (71) (abbreviated
for convenience to pμ = Fμ) and (72), yields three algebraic equations for uμ in
terms of pμ, Sλμ and the applied fields. These equations take the form

FμS
μλ = pμ{pλ uμ - pμ uλ) + κ(τ) pμ Fμa S\ (79)

for the special case of magnetic-dipole gravitational-monopole charges with
gyromagnetic ratio proportional to κ(τ):

Qa

βyδ = 0, Maβ = κ(τ)Saβ. (80)

From (72) and (80) we obtain at once the conservation of spin energy

(d/dτ)(SλμS
λμ) = 0. (81)

Transvection of (79) with Fλ, a second use of (79) and of the equation

following from (71), yields

Fλp
λ = \ κ(τ) (Pλp

λ/pμu
μ) (d/dτ) (S«βFaβ).

From this we can infer a conservation law

(d/dτ)(-pλp
λ + gS*βFaβ) = 0 (82)

if we assume that κ(τ) = g(pμu
μ/pλp

λ) and g = constant. Comparison with the non-
relativistic limit indicates that (82) should be interpreted as expressing conserva-
tion of proper mass.

VI. Field Dynamics of Continua: Higher^derivative Coupling

We shall now outline briefly how the considerations of Section IV can be
extended to the case where the Lagrangian includes higher derivatives of the
fields.

It will be convenient to use the following notation: a bold face index ot(n)
denotes the symmetrized set of indices (OLX . . .α π ); α(0) denotes the empty set.
Repeated bold face indices imply summation. Thus,

[XΛYB if n = 0
Λ 1B<x(n) I γA{od...an) γ :r _ \ 9
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/. Generalization of Fundamental Identity (14)

We consider an arbitrary scalar density L( ΨA) where ΨA = {ψA (α( l l ), n = 0,1,...},
and extend definitions (11), (12) as follows:

LA = dL/dψA, LA""a" = dL/dψΛHaι...ein) = LA'M, (83)

oo

L Atχι...an— V7 / \\m wAac(n)β(m) wA»(n)

M(stt{n))L
A°«*\ (85)

n=0

U"e = (IA

B)e" Σ ί-*rα<"Vβ|«(,,, (86)
« = 0

From (84) it follows at once that

L%τ«{n\τ = LA*{n)-Lf{n). (87)

Hence the divergence of (86) yields

n = 0

On the other hand, repeated application of (4 a) leads to

L VA*{n) )Q ΨB\β(n)-L VA )ρ ψjB|α(n) ,„„,

— nL ΨA\(ρa(n-l))> ^ — 1 , Z , . . . J

which enables us to write the general identity (9) in the form

*β

σ=-(iΛBVΣLΛ'ln)ψB\*w, (90)
n = 0

where use has been made of (85).
From (88) and (90), we obtain the generalized form of identity (14),

Uτσ

βlτ + Li(IA

B)β°ψB + tQ

σ = 09 (91)

applicable to a scalar density L(t/; |̂«(«)) depending on (symmetrized) covariant
derivatives of arbitrary order.

2. Generalized Action Integral; Variation of Tetrad

As a generalization of the action integral (27), we now consider

I - ί L{V>A\*in)) d
4x, ΨA = {N\ e<?\ φΛ, R«βyδ}, (92)

in which arbitrary symmetrized derivatives of the field variables φA9 Ra

βyδ are now
permitted to appear, but we still assume that Na occurs only in undifferentiated
form, and second and higher derivatives of <4fl) are absent.
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Under a variation of the tetrad field, we have

δie)L= J LA^δie)(ψΛlaιin)). (93)
Λ = 0

We now observe from (6) that

(«-l) /ρ r β | P ( n - l ) c ? ( e ) i σ α j 5

make use of (89) and carry out n "integrations by parts". Then (93) becomes

δie)L = L\ δie)ψA + Ul%δie)Γ<τ + (div), (94)

where we have defined

τjτσ _ rjτσ yτσ . γτσ _
U ^ ρ : = : U Q~ X ρ» X ρ =

jAστa{n)

According to the general identity (32), we have

K δ(e)ψΛ = (δL/δeWδe? - 2QQT\&e)ΓSτ + (div),

in which Qρ

σ£τ is derived from Qρ

σμτ by the prescription (84).
The action principle δ{e)l = 0 thus leads, with the aid of the general identity

(33), to the generalization of (35):

(δL/δe{

σ

a))e{a)Θ - {C/;(ρσ) - i (SlτQ + 5 | τ σ )} | τ - 4 Q ^ σ ) ^ , , (96)

where

SJ σ t = 2l7τJβ σ ]. (97)

We thus recover the spin equations in the form (36).

3. The Field Equations

If we now eliminate (δL/δe{^)e{f between (96) and (91), we arrive at the
gravitational field equations in the form

{dLldN«Wδ°ρ -1; - Qi(IA

B)ρ

σRB = (dL/dWW

+ i(s;% + s β - + s;ρ

t),τ + 4QiV, μ λ +r- ρ | τ

modulo the non-gravitational field equations

To throw these into a more familiar form, we follow the pattern of Section IV, 2:
we decompose L as

L = n y-gL^u", #>, έ<β\ ΦΛ\^), «Λ|.(»))

+ ί-2(^|«(π). fl'αβ) - (1 6 π Γ ' j / ^ Λ ,
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where Lx is assumed homogeneous of first degree in its first argument. Equation
(98) is then found to reduce to

(ioo)

In this equation, the canonical momentum per particle, Pμ, is given by (25); the
gravitational multipole moments per particle QAaκ-Λn a n d the associated quantities
OX are defined by

Q^«in)=: Σ (-l) m Q A α ( " ) / ί ( m ) | / j ( m ) , (101)

and
00

(where L^^iφ)^ £ (-i)n(dL/dφA]iσaimmn))){βin)) gives the canonical energy
« = o

tensor for the fields φA [35]. As in (51), the total spin flux SJρτ can be split into
a matter part nSQσu\ and a field part obtainable from (97), (95), and (86) which
is now more complicated than (52) and includes contributions from the curvature.

Acknowledgements. We are indebted to Karel Kuchar and Hans Kunzle for helpful discussions.
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