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Abstract. Two-dimensional lattice model is considered. The connected Lie group G acts on a
configuration space. The Gibbs potential assumed to be invariant under this action. We prove, that
under general assumption on the potential, each Gibbs random field with this potential is also G-
invariant.

Introduction

There exist numerous examples of breakdown of discrete symmetry in spin
models of statistical physics. Among them we can enumerate the Ising model
[1,2], the anisotropic Heisenberg model [3] etc. In all these examples there
is an action of a disconnected group on a configuration space, and the Gibbs
potential remains invariant. However, the Gibbs random fields with this potential
turn out to be non-invariant under this action.

The goal of the present paper is to show that if the group G is a compact
connected Lie group and the field is two-dimensional, the situation is quite
opposite. Namely, under some general assumptions, G-invariance of the potential
implies G-invariance of each Gibbs random field with this potential.

1. Main Result

Let TL2 be a two-dimensional lattice with points t = (kί,k2), where kt are
integers. Let G be a compact connected Lie group, which acts (on the left) on a
space X. In other words, there is a mapping π.G xX-^X with the property
π(g2,π(gux)) = π(g2g1,xl where gug2eG, xeX.

Let μ be a G-invariant σ-finite measure on X, defined on a G-invariant σ-algebra
&x of subsets of X. Let us fix a structure of Riemannian manifold and a two-side
invariant Riemannian metric on G. Let &G be σ-algebra of Borel subsets of G.
The action of G on X is assumed to be measurable, i.e. the mapping π: G x X-^X
is measurable. (In the space G x X the σ-algebra ^G x &x is considered.)

Let A Q Έ2 be any subset. Configuration on A is an arbitrary function xA \A-+X
it is determined by its values xA = (xt; t e A), xteX. Denote XA the set of all
configurations on A. If JcA, then Xj = (xt;teJ) means restriction xA\j. On the
set of all configurations on A a measure μA is naturally introduced as a product
of \A\ measures μ. (Here and further on \A\ denotes the cardinality of A) μA is
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defined on the σ-algebra &XA — the product of \A\ σ-algebras 3&x. On the set of all
configurations XA the group G acts in a natural way, by:

( g x A ) t = g x t ; t e A , x A e X A , geG. (1.1)

A potential U is a system of functions {UA; A CΈ2, \A\ < oo}, where every function
UA = UA(xA\ xA e XA is defined on XA. Let the following conditions on potential
be satisfied.

A. Inυarίance. For any AcΈ2, \A\ < oo

UA(gxA)=UA(xA); geG, xAeXA.

B. Differentiability. Let AcΈ2, \A\^2, tί,t2eA,t1Φt2 and xAeXA. Let us
consider a certain subset of configurations arising from xA under the following
action of the group G x G on XA:

xt tφtl9t2.

Then on the group G x G we can define the function

On the group G x G we have a two-side invariant Riemannian metric. Let wl9w2

be any pair of left-invariant unit vector fields on G x G. There should exist and be
uniformly restricted second derivatives

nib»2(VAttitt2tXΛ(gί,g2))]^L (1.2)

for any finite A, any xA e XA and any ί1? t2.
If we introduce the system of local coordinates yx,..., y2n on G x G in such a

way that the vector fields d/dyk were left invariant and of unit length, our condition
(1.2) can be rewritten in a more familiar manner

V { ) ϊ L [4,5].VA,tt,t2,XA{yi,...,y2

C. Finiteness. There exist a number d0, i ^d0<oo such that

UA(xA) = 0, (1.3)

when d(A) > d0, where d(A) is the diameter of A.
D. Convergence and Measurability. Let A C Z 2 be finite and J £ A. The function

ί/^x^) is assumed to be ^x^-measurable and the integral

J exp {- UA(xj, xAU)} μAdxj)

xJ

converge for any A.JQA and xAVJ e XAV1.
Notes. It follows from conditions A and B that the potential U is continuous

on any orbit of G action on X. Hence, if the action is transitive, the condition D
follows from the remaining ones.
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Let JcΈ2 be a finite subset, J be its complement. A configuration xjeX1

will be called a boundary condition for volume J. Define the energy of the con-
figuration Xj e XJ under the boundary condition xj by

U(XJ\XJ)= Σ UA(XA),
A:AnJ*1A

where for any A, the restrictions of xA satisfy the following equalities:

The conditional Gibbs density in the volume J with boundary conditions xj and
potential U is defined by

v n 7 / j exp{-U(xj\Xj)}μj{dxj)

xJ

The existence of the integral in the above formula is consequence of conditions
C and D on the potential.

In the configuration space XΈ\ let us introduce the σ-algebra 21, generated
by the cylindrical sets of the form Sf(Bt9 teJ)= {(xf5 teΈ2)e X%2\ xt eBt9te J}
where J C TL2 is finite, and Bt e gβχ for any t e J. By "state" of the system we mean a
probability measure gP on the space (X z \ 21). For any IQΈ2, let us denote by 2I7

the σ-algebra, generated by Q) {Bv t e J), where J QI is finite.
A Gibbs state [6-8] with potential U, is defined as a state such that for any

finite J C Έ2 and any Bt e g$x, t e J, the conditional probability of the event
Q)(BV t e J) with respect to σ-algebra 2Ij is the function of y%2 e X%2 of the form

&>{3>(Bt9teJ)\SΆj}= j P(xj\yj)μΛdxj) 9 (1.4)
ΠBt

teJ

where yj = y z2\j. It follows from this definition the existence of mutual densities
(or correlation functions in terms of statistical physics) P(xτ) which satisfy the
following condition:

&>(3>{Bt9teJ))= j P(xj) μjidxj). (1.5)
ΠBt

teJ

E.g., we can choose them according to the formula:

P(xj)= J P{χj\yj)^{dyτ2). (1.6)

The main result of this paper is the following

Theorem. // the potential U satisfies assumptions A—D, then every Gibbs
state gP with this potential is a G-invariant measure on (X z \ 2ί) with respect to the
natural action (1.1) of G on X%2.

This theorem should be interpreted as the illustration of an opinion, spread
among physicists, that no breakdown of continuous symmetry occurs in two-
dimensional systems. The assumption about the two-dimensional nature of the
lattice is of great importance, which corresponds to common physical ideas,
stating that the breakdown of continuous symmetry is possible for three-dimen-
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sional lattices. The assumption about the existence of second derivatives of the
potential, is also essential. It's natural to expect, that without this assumption,
our theorem is not true. (See discussions in paragraph 6 of this article.) On the
other hand, the supposition about the finiteness of the potential is introduced to
simplify the proofs. It seems possible to extend our method on potentials, which
decrease rapidly enough at infinity.

Our conditions include a model in which X = ΪR3 is the three dimensional
euclidean space, G = SO{3) is the group of proper rotations, μ is a G-invariant
measure on 1R3 with finite support;

fc<xf,xf,> for A = {t9f},\t-t'\ = \;

for other A.

Here, < , ) denote a usual scalar product. In particular, if the measure μ is concen-
trated on the sphere S2 C1R3, our model reduces to the classical Heisenberg model.
This allows us to generalize, to some extent, the results by Mermin [9] about the
absence of spontaneous magnetisation in two-dimensional Heisenberg model.
It is necessary to compare our results with results by Fisher, Jasnow [10], and
Garrison et al. [11], having the same physical interpretation, but expressed in
other terms and obtained by different methods, based on the Bogolubov inequality.
On the other hand, the method of our article is based on a local limit theorem of
probability theory for non-identicaly distributed random variables. As a matter
of fact, this method presents mathematical interpretation of traditional physical
intuition (see for example Fisher [12].

2. Main Lemma

To prove the main theorem, it is important to consider at first the case, when
our group G is a circle S1 with standard smooth structure.

Let Vn, w = l , 2 , . . . be a square Vn= {ί = (fc l 5fc2)eZ2; -n^kuk2^n}. For
any /, J C / and any boundary condition xj let us consider mutual densities

PJJ(XJ\XJ)= J P(x'\xf) μi\Λdxiχj), (2.1)
χi\J

xI = (xthxI\j). Let ms be the Haar measure on S1 ( m ^ S 1 ) ^ 1).
If a group H acts on the left on a space 7, denote H(y0) the orbit (under H)

of the point y0 e X and, for any function / :i/(j;0)-^lR1

?/
//( , y0) is the function

on H, defined by fH(h, y0) =f{hy0).
Let xVkeXVk and S1{xVk)CXVk be an orbit of xVk under S1 -action on XVk

(see 1.1). Let's consider PVkfVn as a function on this orbit.

Lemma 1. For any ε > 0 and k^Ojhere exist a constant ck, such that for any
n^ik, any boundary condition xjr ε XVn, any xVk and any goe Sι we have

ί \pvk,vn(
bn xvk\*\r) - Pvl,vn(9obi, xVu\χ—)\ms(dbι)

e 1

Sck(logn)-i + * j psly^xyjxyjmsidbj. {22)

s
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It is easy to derive our theorem from this lemma (when G = S1). We have from
(1.6), (2.1), and (1.4), that

bu xVk) - Psl(gobu xy^msidbj

X TL2 S1

( 2 3 )

The conditions A and B imply, that the function Ps\bl9xVk) is continuous
on S1, hence from (2.3) follows

This means, that P(gxVk) = P(xVk\ xVk e XVj% g e G. If J CΈ2 is finite, then there
exist fc, such that J C Vk. Let Q){BV t e J) be a cylindrical set. Let £* = J3t when t e J,
5J= X when ί G Kfc\J, then 9{BV t e J) =<%{B'U t e Vk) hence the theorem follows
from (2.4) and (1.5).

3. Change of Variables

Let d ^ d0 be fixed, where d0 was i n t r o d u c e d in c o n d i t i o n C o n the potent ia l .
Let s be any integer. T h e layer with n u m b e r j is, by definition, the set

Vd 7 = 1

V^\VQ.ud j = 2,...,s

K, j = s+l.

T h e cardinal i ty aΊ of Fj is

j=2,...,s. (3.1)

Let Ts = Sί x ••• x S1 be an s-dimensional torus with fixed decomposition in
a product of s circles S1. We can define an action of this torus on the space of all
configurations on Vsd by the following formula:

bxVsd = (b1 xFι, b2 xF2,..., bsxF) (3.2)
where

Let tjie contribution of the finite set A to the energy of the configuration bxVsd

under the boundary condition xjr^ be nonzero. Then we have from condition C
on the potential, that d(A)^d, hence two possibilities arise:

a) For some 7 A C F/9 then the contribution of A to energy of the configuration
(3.2) is determined by xFj because of the S1 -invariance of the potential.

b) For some) A C FjuFj+l9 and AnFj Φ 0, AnFj+ x φ 0. Then the contribution
of A to the energy of the configuration (3.2) is determined by xF;, xFj+ι and
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(bjbj+ί) E S1 (where b&+ί = 1 e Sι by definition). So, we can rewrite the energy
of bxVsd under the boundary condition χ—d in the following way

U(bxvJxv-ι)=U[_(b1,...,bs)(xFi,...,xFs)\xv-}
s

= Σ Σ uΛi(btxF)\Λ
7 = 1 AcFj ,~ ^,

+ Σ Σ uΛΦjXFjtbj+^+jiA]
j=l AnFjϊti

AnFj+ i Φ0

s s

where Uj and Rj denote internal sums in the first and second summand cor-
respondingly. Let us change the coordinites b on Ts into a new one h = (hu ..., hs)
according to the formula

ίhj = bjbJ+\ 7 = 1 , . . . , 5 - 1
<

It's easy to see, that

Rsl(h- x x )<c j (3 4)

where cί=cι(d,L). Indeed, every summand of Rf (h, , xF , xF. ) has the form

j F s XFj+1\AnFJ+ίl
 B u t dldh] U Ϊ lhp XFj\AnFj, XFj +\ \AnFj+ J &

of less than \Λ\2 ̂ d4' summands, each of them bounded by L according to the
condition B on the potential. According to (3.1) the sum Rj contains less than c2j
summands, where c2 < oo depends only on d, hence the inequality follows.

Let's consider a set 91 of variables {b,xVsd\xγj^, where b = (bu ...,bs)eTs,
xVsd = (xFl,..., xFs) e XVsd and xψ^ is fixed. We'll define a probability distribution
on 91 by the Gibbs density:

e x p { - Uτs(bl9 xFί, ...,

j Qxp{-Uτs(buxFl,...,bs,xFs\xy^)}μVsd(dxVsd))mτ(db)'
Vsd j

(We suppose here, that mτ(Ts) = ί.) Let's put in (2.2) k = d,n = sd, then Vk = F1,
Vn = VSd. Dividing both sides in the inequality (2.2) by the integral in the right-hand
side, we get the following inequality:

xFi> *—) -PiOob, \xFϊ9 x—Ms(db,) = ck(logsd)~1/2 + ε (3.5)
s1

where the conditional density p(b1\xFl, Xy—f) is computed in ϊl. It's more convenient
to study conditional density p(bι\xFl, ...,xFs,Xy—). The connection between
them is well-known:
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We have

(b\ x )
sd,xvJ

where

D(h\x x ) -
pj{hj\xFj,xFj+ί)-

The last equalities follow from (3.3) and because the fact that the Jacobian of
b-^h is equal to 1. We have from (3.7) that the elements hj are independent, and
i t i s e a s y t o s e e , t h a t h 1 . . . h s = ( b 1 b 2 1 ) ( b 2 b ϊ 1 ) . . . ( b s _ 1 b ; 1 ) ( b s ) = b 1 e S 1 . T h e
probability density of this product is a function on S1:

where ° means convolution on S1, i.e.

= ί qΛy)<i2(χy~1)ms(dy)= Σ iι*<i2(χ + r); ( 3 9 )
Sι reΈ

in the last equality we consider real-valued functions, obtained by identification
of S1 and a segment [0,1].

4. Proof of the Main Result

It remains to prove the following

Lemma 2. For any ε > 0 and d^d0 there is a constant c>0, such that for any
s ^ 1, any x F s d ami any xψ^,

"2 (4.1)
s>

Proof. Let f^-eS1 be such, that

jRf (^, xF xF +,) = min Rf (h, xF xF t , ) .

Then

We'll use the same notation Rf for the corresponding real-valued function on
[0, 1]. Using Taylor's formula in the Lagrange form and the estimation (3.4) we
have

Rf(h, xFj, xFj+ι) g Rf(vp xFj, xFj+,) \h - Vj\
2
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Then we have

j" exp {- Rf {K xFj, xFj +,)} ms{dh) ^ exp {- Rf {vj, xFj9 xF t)}

I

x J exp {- %cj\y ~ Vj\2} dy ^ c3"
1 exp {- Rf {υj9 xFj, xF] +,)} Γ 1 / 2

o

where c3 = c3(d, L). From (3.8) we have that

Pj(hj\xFj,xFj + 1)^c3j
v2; j ={,..., s. (4.2)

Let us consider the convolution

where the right-hand side real-valued functions are obtained by identification
of Sι with [0, 1]. For estimation of this convolution we make use of a local limit
theorem of Statulevicius [13] for non identically distributed random variables.

Let

Then, from (4.2) it follows the existence of a constant c4 = c4(J, L), such that the
conditional variance of hj (as of real-valued random variable) is

1

D(xFp xFj + 1) =${y- E(xFj, xFj + ι))2 Pj(y\xFj, xFj + 1) dy ^ cj~1 .
o

[It is easy to see, that among the distributions, satisfying (4.2), the distribution

c3j
112 O r g y ^ Γ 1 ' 2

has the smallest variance.]
But the sum Σ j " 1 diverges, so we can apply the local limit theorem of [13]

to the sequence hj. This theorem guarantees us, that our density p* is near to the
Gaussian density. We'll get precise estimations after substitution of the formula
(4.2) of this work into the formulas (3.1), (3.2) of [13]. Then for

s s

Es= Σ E(XFj9

 XFj + Λ Ds= Σ D(XFj> XFj + t) ,
7 = 1 J = l

and for some c5 = c5(d, L) we have

By definition of the convolution on S1 [see formula (3.9)] we have



Absence of Breakdown of Continuous Symmetry 39

Finally, there exists c6 = const, such that for any Ds > 1

reΈ

Hence, Lemma 2 follows.
Lemma 1 is equivalent to the inequality (3.5), which follows immediately from

(4.1) and (3.6).

5. Proof in the General Case

The proof in the general case is based on well known results on Lie groups
[4, 5]. Every compact connected Lie group G is a complete Riemanian manifold.
So we can join every element of G with 1 e G by geodesical curve. The minimal
algebraic subgroup of G, which contain this curve, can be closed or not. In the
first case this subgroup is isomorphic to S1, in the second — to 1R1. But the group
IR1 is commutative, so its closure in G is also a (compact) commutative Lie sub-
group of G. But every compact commutative Lie group is a torus, hence every
element of G belongs to some torus Tk C G. Next, every element of Tk is a product
of no more than k elements, each of them belonging to some compact one-dimen-
sional subgroup. Hence, every element of a compact connected Lie group of
dimension n can be represented as a product of no more than n elements of several
compact one-dimensional subgroups of G.

So, it is enough to verify our theorem for every compact one-dimensional
subgroup. But conditions A — D on the potential U and the measure μ can be
restricted to every compact one-dimensional subgroup. We must only verify
that the restriction of every function of class %>2 according to some smooth structure
on G on every compact one-dimensional subgroup of G, remains again in the
class ^ 2 according to standard smooth structure on S1. The proof of this fact is
in [4].

6. Discussion

The following example explains the importance of our assumptions about
the existence of second derivatives of the potential and two-dimensionality of
lattice. Suppose X = G = S1,d = d0 = i, and the potential U = {UA} is

I oo s, ί belong to the same layer, xs + xt;

0; s, ί belong to the same layer xs = xt;

f(\xs — x,|); \s — t\ = \,s,t belong to neighbouring layers,

where / is any function, and finally, UA = 0 for any other A. In this model all the
spins of the same layer take the same value, and the differences yj = Xj xj+ι are
independent, yj has a probability distribution with density
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where ψj~4j is the number of neighbouring points in neighbouring layers.
lϊf{y) is continuous, /(|y|)</(0) for any \y\ and/(|j/|)-/(0)~ -k\y\a for |y|-*0,
where α>0, fc>0, then we have from (6.1) the variance D(yt) is of order f2!a

when 7~>oo. Hence the sum ΣDiyj) diverges for α ^ 2 and converges for α<2.
Hence, by the above mentioned limit theorems, under any boundary condition
Xyr, the distribution of bx tends to the uniform distribution when s—• oo and α ̂  2,
and does not tend to it, when α < 2. In v-dimensional case ψj is of order/" \ and
the same arguments give that the distribution of b1 tends to the uniform one, when
a ^ 2(v — 1) and does not tend to it, if α < 2(v — 1). So, when v = 3, we'll have a
uniform distribution for bx only if in the minimum of the potential the second
and third derivatives are zeroes.

In this model we have less fluctuations, than in the case of translation-invariant
potential. So, if there is no break-down of continuous symmetry in this model,
then the same situation is in general case. Our main idea was to reduce the general
case by introducing some conditions to a situation, similar to the model of this
section. It is clear, that we cannot reverse our arguments. Indeed, it is possible to
deduce from [14] that in translation-invariant case the Gibbs state is unique and
there is no break-down of continuous symmetry for any α, if the temperature is
high enough. It seems, that there is break-down of symmetry, when α<2(v— 1)
and the temperature is low enough, but still we have no proof.
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