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Abstract. The thermodynamic limit is taken using a sequence of regions all the same
shape as a given region ω of volume |ω|, with a specified distribution of normal field com-
ponent on dω. We show that with magnetostatic interactions the limiting free energy
density is bounded above by

M " 1 inf inf \ f(ρ{x),B(x))d3x
ρ{x) B(x) ω

where /(ρ, B) is the free energy density for a system of density ρ in a uniform external
field B and the "inf is taken over all divergence-free fields B with given normal component
on dω and all densities ρ(x) compatible with particle number constraints of the form
j ρ(x)d3x — \Γi\ρi where Γt is a sub-region of ω. A physical argument suggests that this
r,
upper bound is the true thermodynamic limit, and that it takes account demagnetization
effects. Electrostatic interactions can be treated similarly.

I. Introduction

In a previous paper [1] (hereafter referred to as P—S) we proved
the existence of the thermodynamic limit of the free energy for a system
of particles with Coulomb (electrostatic or magnetostatic) interactions
in a uniform external field. The Coulomb contribution to the potential
energy was calculated by considering a '"microscopic" electric or magnetic
field which was a superposition of the external field and the fields
produced by the particles in the system. At the surface of the container
which holds the particles, the normal component of the total field was
set equal to the normal component of the uniform external field applied
to the system. This boundary condition made it possible to prove the
existence of the thermodynamic limit. The thermodynamic limit was
found to be independent of the shape of the regions containing the
particles.

In nature, systems with Coulomb interactions display shape-
dependent effects in their free energy: the demagnetization or depolariza-
tion effects. These effects are due to non-uniformity of the total (macro-
scopic) magnetic field in the vicinity of the system, which can come about
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even when the external field is uniform, if the particles in the system are
not distributed over all space in a macroscopically uniform way. In
order to be able to take these effects into account in statistical mechanics,
we would like to be able to prove that the thermodynamic limit of the
free energy exists for a non-uniform system of general shape with a non-
uniform external field imposed upon it.

We restricted our detailed attention to pure (one-component) systems
with magnetostatic interactions only, for example, a system of magnetic
dipoles. We do the same in this paper, and discuss the generalization to
other systems in the last section. We proved for a sequence of regions

N
{ωm}m=i a n d particle numbers {Nm}%=1, with lim m = ρ = the

m ~ > Q 0 \ωm\

density, that the free energy density

— kT
f(Q9H, T)= lim ——-logZ(ω m , JVm,H, T) (1.1)

m->oo \ωj

exists, where H is the uniform field on the surface of the regions ωm

and Z is the partition function for Nm particles in ωm. The modulus sign
about the symbol for a region indicates the volume of that region. In
this paper we again consider a sequence of regions {ωm}, all of the same
shape. That is, ωί is a region with a "sufficiently" smooth surface and a
Peano-Jordan content [2]. The region ωm is constructed by increasing
every linear dimension of ωt by a factor m. It is convenient to think of m
as an integer, but there is in fact no need for this. We impose on ωx the
condition that the magnetic field H(x) inside ωt obeys the boundary
condition

Hn(x) = H0§n{x) (xeθω,) (1.2a)

where Hn denotes the normal component of H and Ho n(x) is the normal
component of an external field H0(x) defined on dωl9 the boundary oϊωί.
The external field need not be uniform, but must satisfy

J H0,n(x)-d2x = 0. (1.2b)

The corresponding condition on the boundary of ωm is

( x ε δ ω j . (1.3)

Two physical situations which we may study with this system are
as follows. In the first, we have some shape with a field defined on the
outside and the particles free to move inside the shape - for example, a
fluid confined by a wall. In the other situation we have a piece of matter
between the poles of a magnet. The region ωγ could then be the region
between the poles (see Fig. 1). The particles are then confined to the
region /\ occupied by the piece of matter, the rest of ω1 being empty
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Fig. 1. Sketch of a region ωι between the poles of a magnet. The region Γί occupied by
matter is a subregion oϊωί

space. To formulate this in a more general way, we consider the region
ωί divided into a finite number of regions Γίj (/= 1,2,..., fc), with
piecewise smooth boundaries, within each of which the mean density
is fixed at a value ρ} (which is 0 if Γ1J is empty space). Correspondingly,
we divide ωm into regions ΓmJ obtained by magnifying the regions Γίj
by a factor m.
For such systems we may make the following crude argument about
the free energy. Divide ω x into very small imaginary boxes. In ωm, if
m be large enough, these will correspond to very large boxes of volume
(say) V. In ωl9 if the boxes be small enough, the field on the surface of
each box will be approximately constant: B(x) where JC denotes the
position of the centroid of the box in ωv Thus the contribution of the
corresponding box in ωm to the free energy of ωm will be approximately

Vf(Q{x),B(x)9T)9

where ρ(x) is the mean density in the box. We may add up the contribu-
tions from all the boxes in ωm and divide by | ω j . We can express this
sum as an integral over the region ω1 as the number of boxes becomes
large. We may expect that the internal density and magnetic fields will
adjust themselves to minimize this integral. Thus we expect the free
energy of a system to look like

/(ρ, Jϊo(*λ T) = inf inf J - f /(ρ(x), B(x\ T) d*x , (1.4)
ρ(x) B(x) lω-J ω j

where the minimization on ρ(x) is over a class of non-negative functions
satisfying

f ρ(x)d3x = \Γ1Jρj (7=1,2,...,*) (1.5)
Γι,j

and the minimization on B(x) is over a class of vector fields on ω1 which
satisfy

V'B(x) = 0 (xeωj (1.6)
and

Bn(x) = HOtn(x) (xedωj. (1.7)

The minimizing field B(x) may be identified with the (macroscopic)
magnetic induction.
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The Euler equations for the minimization of the functional (1.4)
subject to the constraints (1.5) and (1.6) can be written

—— = constant in Γίtj (j=t,...,k)

and

a β Γ 0 i n

where df/dB means the vector (df/dBx, df/dBr df/dBz). The first of
these equations has the physical interpretation that the pressure is
uniform and isotropic throughout each of the regions Γίtj within which
the particles can move freely. Since we are using standard partition
function methods, we cannot deal with anisotropic situations where, for
example, the magnetization of a solid body is not parallel to the applied
field; such a situation could not occur in the partition function formalism,
since the lowest free energy would be achieved by the solid recrystallizing
with its "easy" direction of magnetization along the applied field.

The second Euler equation has the interpretation that the electric
current is zero; for if we interpret the vector 4π df/dB as the macroscopic
magnetic field, then by Ampere's law its curl is proportional to the electric
current. To support the interpretation of 4π df/dB as a macroscopic
magnetic field, we refer to Eq. (2.21) of P — S, which, when applied to
the region ωm9 can be written

Wm = -±- j (B + H1+H2)
2d3x (1.8)

where Wm is the magnetostatic energy, and Hί and H2 are microscopic
magnetic fields which depend only on the configuration of the particles
inside ωm, but not on the uniform field H0 = B applied at the boundary of
ωm. Differentiation of (1.8) with respect to B at constant particle configura-
tion gives

^ l ( B + H+ H2) ̂  = _L £ H(X) d>X (1.9)

where H(x)_is the microscopic magnetic field. Using this formula to
calculate df/dB we find

(1.10)
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assuming that this limit exists. (The energy U(xl9...) is due to non-
Coulomb forces which we assume are strongly tempered in Fisher's sense
[3].) That is, An df/δB is the ensemble average of the space average of
the configuration dependent microscopic magnetic field and is therefore
reasonably interpreted as the macroscopic magnetic field. We shall
denote it by <#>.

To confirm this interpretation, and that of B as the magnetic induc-
tion, further, we may use Eq. (2.23) of P — S, which allows us to rewrite
the expression (1.8) for Wm as

8π ^m 8π ^m

where Mm is the magnetic moment of the system. This gives

</ί> = 4π lim - — - ( . ™ ) = U — lim 4 π - — — ^ (l H)
m-Qo | ω j \ dB / m-oo |ω w |

in agreement with the usual phenomenological relation between the
macroscopic magnetic field intensity and magnetic induction, if we
interpret <Ή> and B in the manner suggested.

We can now relate the method of calculation implied by the free
energy formula (1.4) to the standard methods of magnetostatics. The
standard method is to calculate fields B and H satisfying

div# = 0 and curlH = 0 within ω1

Bn = BOn (given) on dωί
or

Ht = Hot (given) on dω1

H = df(B)/dB

where Ht means the tangential component of H. Our method is equivalent
to this, with BOn rather than Ho ,, given on dωv Our theory is thus
equivalent to standard magnetostatics provided that (a) Eq. (1.4) can
be shown to give the true free energy and (b) the equating of the fields B
and df/dB at the minimum with the macroscopic values of B and H can
be rigorously justified. In particular, there is no need to worry about
demagnetizing factors in our theory, since these can be calculated by
standard magnetostatics and therefore can, in principle, be equally well
calculated from our variation principle.

In this paper we do not prove formula (1.4) but we do prove that the
right hand side of (1.4) forms an upper bound on the free energy in the
thermodynamic limit if that limit exists. We also consider the generaliza-
tion to the electrostatic case which is discussed in the last section.

Π. Description of the System

We consider systems very like those discussed in Sections II and V
of P — S except that the normal component of the field is not considered
to be a component of a uniform field.
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The Nm molecules in the region ωm have the Hamiltonian

(2.1)

where Km denotes the kinetic energy, Um the potential energy due to the
short range forces and Wm the energy due to the magnetic field. The
kinetic and short range potential energy terms are the same as in Section II
o f P - S .

For the contribution to the Hamiltonian from the magnetostatic
interactions, we again use the formula

Wm = -±- J H2(x)d'x (2.2)

where H is the magnetic field strength in e.m.u. The integration is confined
to the region ωm because we are not interested here in the energy of the
boundary material nor anything outside the boundary. The field H is to
be calculated from MaxwelΓs equations, which in the static (current free)
approximation reduce to

VxH(x) = 0 (xeωm) (2.3)

and
V [H(x) + 4π m (*)] = 0 (x e ωm) (2.4)

where

m(x)=ΣMx,qί) (2.5)

is the total magnetic moment density at JC and qt denotes the position
coordinates of the ith molecule. Further, we impose the boundary Condi-
tions (1.2a) and (1.2b) for the field in the region ωί9 which are different
from those in P — S.

The existence of a unique solution to Eqs. (2.3) and (2.4) subject to
these boundary conditions is assured. The point is discussed in Section II
of P — S. Further, in Section III of P — S it is shown that we may replace
Eq. (2.3) by the condition

± J H2(x)d3x (2.6)Wm iπS

where ^ is a given class of vector fields H(x). That is, if we replace (2.2)
and (2.3) by (2.6) we get the same energy Wm and the same solution H(x).
The fields in # are piecewise differentiable in ωm, have continuous normal
component across their surfaces of discontinuity, and satisfy Eq. (2.4)
and the boundary Condition (1.3). This result implies that the magneto-
static energy derived from Eqs. (2.2) to (2.5) can be bounded above by the
magnetostatic energy from any field H(x) in #.

In this paper we find an upper bound on the sequence

— kT
f(ωm, Nm, H0(x), T) = — — l o g Z K , JVm, H0(JC)) , (2.7)
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where Nm = (JΓmΛ, ^ , 2 , •••> ^m,k\ a n d z(ωm> Nm9 H0(x), T) is the canon-
ical partition function for a system of JίmΛ Λ \-^mtk molecules with
Hamiltonian (2.1) of which the first JίmΛ are confined to the region
Γm 1? the next jVm>2 to the region Γm>2, and so on. The numbers Jίmi are
subject to the condition

J i m Λ-mJ/\ΓmJ =ρj (j=i,...,k). (2.8)

Our result will be expressed in terms of the function

/(ρ, Ho, T) = Hm 7(ω w , Nm, Ho, T) (2.9)

defined in terms of the corresponding limit for a uniform Ho with no
subdivision Γmtl9Γm>2, . . . ,Γ m f c of the regions ωm; the existence of the
function /(ρ, JF/0, Γ) was proved in P — S.

III. A Lower Bound on the Partition Function

We consider the partition function for the region ωm in our sequence
of regions:

Z(ωm, Nm, H0(x), T) = [ Π Λ ,

• ί dίi ί dqjrmΛ I dq^m2+1... } dqNm (3.1)

where Xm, C/m5 Wm are as defined in Section II, and Nm = JίmΛ Λ ^
is the total number of molecules. Symbols such as j dq denote integra-

r
tions over the part of the one-molecule position space in which the
molecule is completely inside Γ; i.e., m(jc, q) = 0 for x φ Γ. Our procedure
will be to confine the molecules within ωm to a set of separated cubical
cells and to define a sample field H. The sample field H is divergence-free
within the corridors between the cells, and on the boundary of each cell
it has normal component equal to that of some uniform field which may
be different for each cell. Within the cells the sample field is a solution
of (2.4). We can than obtain a lower bound on Z by using in place of Wm

the energy of our sample field, which we write Wm(H), and considering
only the part of configuration space where the molecules are confined
to specified cells.

We first construct the set of cubical cells. Let l'r be any distance, and
consider a maximal filling of ωx by Mr cubes of side ΐr. The subscript r
allows us to consider a sequence of finer and finer fillings of ω l 9 by making
Γr-+0 as r->oo. It is convenient, but not necessary, to think of r as an
integer. We call the region actually filled by the cubes ω f r A number Pr

of the cubes (which we call Ωίrί,..., Ωx γ Pr) share one or more of their
faces with the surface of ωf r. The remaining number Qr = Mr — Pr of the
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cubes (which we call Ω' l j M , ...,Ω\ r Q) have no part of their faces in
common with the surface of ωf r. We choose any distance Rr < ΐr, and
inside each cube Ω'1(l>>ί we construct a cube Ωx r i of side lr = ΐr — Rr in
such a way that three of the faces of Ωίri lie in the faces of Ω\ r t while
the other three faces of Ω^ rΛ lie at a distance Rr from the corresponding
faces of ΩΊ ϊ r > I . (That is, Ω l j Γ ) ί is tucked into one corner of ΩifΓji.) The
corner of the larger cube into which the smaller cube is tucked is deter-
mined by the condition that any two of the Ωλ rΛ must be at least Rr

apart. (There are eight possibilities: any one will do.)

This construction in ωί implies a construction of Pr cubes
(Ωm,r>1, ...,Ωm5r>Pr) of side mϊr and Qr cubes (Ω'm^ ...,Ω'mtrtQf)9 also of
side mΓr9 inside ωm. The union of all these cubes is called ω* r. Inside
each Ω'mrΛ there is a cube ΩmrΛ of side mlr = mΓr — mRr. Each pair of the
cubes Ωmri are separated by a distance of at least mRr. We define the
'"cells" to be those small cubes ΩmrΛ which lie wholly within one of the
regions ΓmJ.

By considering only configurations in which the molecules are
confined to the cells, with a specified number in each cell, we can obtain
a lower bound on Z; moreover, if m is large enough to make mRr larger
than Ro, the range beyond which the non-Coulomb part of the inter-
action is :gθ, we can make this lower bound independent*of the non-
Coulomb part of the interactions between cells (cf. Ruelle [4]). For
each) we distribute the jVmJ molecules in Γmj over the cells within ΓmJ,
so that the number of particles in the cell Ωmri is NmΛ. The integers
NmJ are arbitrary apart from the constraint

Σ Nm,i = ̂ mj. (3.2a)
i : ί2 W ) Γ j iCΓ W ) j

Taking into account the number of ways that the distribution specified
by these integers can be carried out we obtain the lower bound

^ J d q N m l

ί = l

JdΛVm,l+l ί ^ΛΓm,l+l J dPNm f rf«Nm ( 3 2t>)
Ωm,r,2 Ωrn>r,Qr

.ap{-βlKm+U'm+Wm(Π) ]}

if mRr>R0.
Here U'm is the part of Um which excludes interactions between dif-

ferent cells, and H is any sample field.

As indicated already, our sample field H(x) is to be divergence-free
outside the cells and to have normal component equal to that of a
suitably chosen uniform field on the boundary of each cell. Within each
cell it will be chosen to satisfy Eqs. (2.3) and (2.4), that is, to minimize
the contribution of that cell to the field energy.

To construct a sample field H(x) we first choose an auxiliary field
U8(x) in ω^ which is continuously differentiable in each region Γip has
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continuous normal component across the boundaries of these regions,
and satisfies the conditions

( ) O (jceωj (3.3a)
and

aH(x) = H0,n(x) (xedωj. (3.3b)

(The magnetic induction is a field satisfying these conditions.)
To obtain the sample field H from έ%, we shall use different procedures

in four different parts of ωm: the region ω w \ ω * > r outside all cubes, the
surface cubes Ω with a face next to this region, the parts of the bulk
cubes Ω' from which molecules are excluded, and the smaller cubes Ω
to which the molecules are confined. For the first part, the region outside
all cubes, we take H to be the same as OS, apart from a scale factor. This
determines the normal component of H on all the "'outer" faces of the
cubes Ω: i.e., the faces that are on the boundary of ω * r The normal
component of H on all the remaining faces of these cubes and the cubes Ω'
is taken to be equal to the average value of the normal component of &
over the relevant face. This construction also determines the normal
component on half the faces of the cubes Ω; we then fix its normal
component on the remaining faces of these cubes by making it always
the same as on the opposite face. (This will make it possible to apply
the uniform field results of P — S to the cubes Ω.) It then remains to
determine H(x) in the interior of each cube. Within the cubes Ώ, which
have faces on the boundary of ω* j Γ and are empty of molecules, we
construct a divergence-free field H(x) to match the given normal com-
ponents on the faces of the cube. Within the cubes Ω\ we apply a similar
matching procedure to the corridor regions Ω \Ω', which are also empty
of molecules, and we take the field in Ω to be the one that minimizes
the contribution of this cube to the field energy [i.e. we choose it to
satisfy Eqs. (2.3) and (2.4), with normal component on dΩ' as already
specified].

The first stage of the construction refers to the part of ωm outside
all cubes. We choose

H(x) = @(x/m) ( x e ω m \ ω * i Γ ) . (3.4)

This part of H(x) obeys the divergence Condition (2.4) and the boundary
Condition (1.3), since there are no particles in ω m \ ω * > r (making the
magnetic moment density there zero) and $ is divergence-free and
satisfies the boundary condition.

For the second stage of the construction we wish to define a field
in each surface cube Ω which has the given normal component on any
faces which belong to 3ω*>r and uniform normal components on each
of its other faces. We illustrate such a cube, and the coordinate system
we shall use in discussing it, in Fig. 2 for the case m=ί. Suppose, for
example, that the face EFGH is a part of dωf r On this face, the normal
component of the field would be given by

Hz(x9y,lf

r)=<%z(x,y,l'r). (3.5)
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Fig. 2. Sketch of one of the cubes Ωλ r t with only one surface (EFGH) lying in the surface of
ω\ r. Thus the normal component of the sample field H(x) is given on EFGH. Coordinates

as shown are used

For all faces on which the normal component is given we write the normal
component as the sum of its average over the face and a varying part.
Thus on EFGH we put

where
+ hlfZ(x, y, l'r) (3.6)

o o

l'r l'r

Notice that j J AifZ(x, y, ΐr) dx dy = 0. To assist our construction of the
0 0

sample field, we now construct a divergence-free field hx in the whole
of the cube, which has the given normal component AlfZ on EFGH and
zero normal components on the other faces. For ΐrj2<z<ΐr, we put

(3.7)

and

For

A

h

UX_Q

1

r

0 < z < ΪJ2 we

2

l'r

0

•{ ί Â  (w y /') du
lo

— j A l z(w, j/, /̂ ) rfw
r̂ 0

put

K 0

2 /

r \

(3.8)

and

2 y ι'r

hUy(x,y,z)= -yr \dv\duhlz{u,vj'r)
lr 0 0

2z Vr

hUz(x,y,z)= -J2Γ ί duhUz(u,y, ΐr).
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Each surface cube has from one to five faces in <?ω* r on which the
normal component is specified. In any such cube we write the sample
field as a sum of two separate fields:

The field h is given by

(3.9)

(3.10)

where k is the number of faces of the cube belonging to 3ω* r and ht is a
field constructed in the same way as hx in Eqs. (3.7) and (3.8) to allow
for the variation of the normal component of the sample field on the zth

face of the cube. The field G is a divergence free field with uniform normal
component on each face of the cube. On a face belonging to δ ω * r , the
normal component of G is the average of the specified normal component
on the face [i.e., the constant term HAV in (3.6)]. On a face of a surface
cube which does not belong to dω* r, we set the normal component of G

to equal the average value of the normal component of J Ί — on that
\m)

surface. Inside the cube, we determine the components of G(x) by linear
interpolation from their known values on the various faces of the cube.
Since & is divergence-free, the inward normal components of G on the
six faces of the cube sum to zero, and from this fact it is easily verified
that the vector field G constructed by linear interpolation is divergence-
free.

Our third step is to construct the field in the interior of
ωm,r= U Ω'm>r,v remembering that the molcules are confined to lie

Fig. 3. The region Ω'mri has vertices ΛCUSGIaY. The region Ωmri has vertices
ABKJDENM
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within the cells Ωm rΛ. We choose the normal components of the field H
on the faces of the cubes Ω'm>ri to be uniform on each face and equal
to the average normal component of &(x/m) over that face. For those
cells for which the corresponding Ω'mrΛ has faces lying in dωmr, the normal
component ofH defined on these faces then agrees with the values defined
on these faces in Stage 2. This construction also determines the normal
component of H on those faces of cubes Ωmy t which lie in faces of
Ω'mYΛ. We then choose the normal component of H on each face of
Ωmr i which is not a face of Ω'mrί to be equal to the normal component
of H on the opposite face of ΩmrΛ. Thus each cube Ωmr t is associated
with a uniform field applied at its faces. We shall call this vector J^ .

We now specify the field in each corridor region Ω^ ί r ) ί\Ωw > r > i. We
sketch the region Ω'mr t in Fig. 3. For convenience we write

on the surface A S Y G, (the face x = 0) Hx — hx

on the surface CU(xI, (the face x — ΐr) Hx = hx + Ahx

and we define hy, hz, A hy, A hz similarly. This symbol h is not related to
the h used in Eq. (3.6). Since the normal component of if on the surface
of an Ω'mrJ is that of the constant field (hx, hy, hz\ we also have

on the surface BKNE, the face x = lr of the cell ΩmrΛ (3.12)

and similar conditions on the faces y = lr and z = lr of that cell.

Further, since V- &(x) = 0, we have the condition;

Ahx + Ahy + Ahz = 0. (3.13)

There are seven regions in which we must specify the field:
(a) Regions mlrxmlrxmRr: BCFE-NOLK; JSTK-NWVM;

EHGD-MPQN.

(b) Regions mlr x rπRr x mRr: EFIH-QNOR; KLUT- WXON;
PMVY-ZWNQ.

(c) Region mRr x mRr x mRr: NOXW-ZotRQ.

In each region we use coordinates with origin at the corner closet to A
in the diagram and parallel to the axes in the diagram. In BCFE — NOLK
we put

H(x,y,z) = \
\ mj\r ' jmj\r Dmiκr

(3.14a)

with analogous expressions in JSTK-NWVM and EHGD-MPQN.
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In EFIH-QNOR we put

(3.14b)

with analogous expressions in KL U T - WXON and PMVY-ZWNQ.
Finally, in NOXW-ZaRQ we put

l ^ L , (3.14c)

z mRr

 z mRr Rr

Note that because of (3.13), VΉ = 0 and the field H has the desired
constant normal components on the surface of Ω'mr t.

Finally, inside each Ωmri (which contains NmJ particles) the field
H(x) is the solution of (2.3) and (2.4) with the boundary condition that
Hn(x) on dΩmri is the normal component of the uniform field ^ for
that particular cube.

We have now completely specified a sample field H inside the region
ωm. Further, outside the cells, this field, and hence the energy due to the
field outside this region, is not affected by the positions of the molecules,
which are inside the cells. Thus we can write the energy Wm(H) in the
form

Qr

^ ( f l ) = £ Wmti+WmtCon9 (3.15)

where Wmi is the field energy in the region Ωmr t and WmfCOTr is the field
energy in the rest of ωm.

We can now use (3.15) and the restriction on the molecule numbers
to write (3.2) in the form

Qr ί i

(3.16)
[-/JWm,c o r r],

Π Z(ί3 m > r > ί , JVmiί, Λ,)J exp [ - β Wm,corr] ,
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where K[ is the kinetic energy of the NmΛ particles in Ωmr b U" is the
potential energy of the short range interactions between particles in
Ωmr b ^S{ is the uniform field with the same normal components as H(x)
on the surface of Ωmrb and Wmi and Wm)Corr are given by (3.15) and the
preceding equations.

IV. The Inequality for the Thermodynamic Limit

If we take logarithms of both sides of (3.16) we find

— kT
—— logZ(ωm,iVm,//0(x))

| ω J (4.1)

Qr \n I —kT
^ Σ λfhJL TFΓ-J loSZ(Ωm,rti, Nm>l> #,) + Wm>em/\ωJ

for any set of numbers {iVm,Jf=i obeying the Constraints (3.2a) and any
set of constant fields {^}f=i derived as described above from a field
obeying (3.3).

The next step is to take the thermodynamic limit by making both
m and r large in such a way that the sum becomes an integral and the
correction term involving Wmcoττ tends to 0. This is done by appropriate
choice of lr and jRr We first choose /x small enough to ensure that there
is at least one "bulk" cube in the first subdivision of ω^ Then we choose

lr = ljr9 Rr = lJ4r- ( r=l ,2, . . . ) (4.2)

This ensures that ln Rr, and RJlr go to 0 as r ^ o o ; moreover, since ω1

has a Peano-Jordan content, the cubes in ωm>r eventually fill ωm arbitrarily
closely, so that, for any m,

Qr

lim Σ |β M f Γ f i | = | ω w | . (4.3)

As r becomes large, we also want the number of molecules in each cell to
become large. We can arrange this by choosing

m = r2 (4.4)

so that m/n the length of the side of a cube Ωmrb goes to infinity as r-> oo.
Equation (4.1) may be written as

f(mm,Nm,Ho{x),T)^ Σ λ

1

h z

i = 1 K l (4.5)
+ ^m.corr/KI
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If we now let m-> oo in any way and make r = m* as indicated above, we
find, using Riemann's definition of an integral,

lim sup/(ω m ,N m , H0(x), T ) ^ - ^

+ lim Wm>CΰJ\ωJ
m—> oo

for any field J'(JC) obeying (3.3) and any density function ρ(x) obeying (1.5).
We now wish to show that the term in (4.6) involving Wmcoτr, the

field energy in ω w \ ( J Ωmr ί? is 0 in the limit m->oo, r->oo, m = r2. We

express Wm>corr as the sum of three parts, (i) the energy outside the cubes,
(ii) the energy in the surface cubes, (iii) the energy in the corridors, and
consider each part separately.

The contribution from the magnetostatic energy WmtCOTT{i) outside
all the cubes may be written

^ff1 ί ^2(x)d"x^--^--\ω1\ωtr\^Lx (4.8)

where ^ m a x is the maximum length of the vector &(x) introduced in
Eq. (3.3). This maximum exists since @(x) is piecewise differentiable on
ω1. Since ω x has a Peano-Jordan content, the second right hand side
of (4.8) tends to zero as r->oo.

A similar argument applies to Wm)COΓΓ(ii) since

and the sample field H can be shown to have an upper bound of the form

\H(x)\^O(@max) for ( x e δ 1 > Γ | l ) . (4.10)

Finally, we estimate the contribution Wm>corr(iii) from the magneto-
static energy in the corridor regions Ωf

mrj\Ωmrj. The energy is that
due to the field described in (3.14a)-(3.14c). Direct integration of that
field shows that the corridor energy WmrΛ in the cube Ω'mri obeys

ί/Rr 1 I λ Λ
Wm,r,t = 0[[-Γ^ + ̂ -iΔK)2 x(m/r)

3 (4.11)

where A ht is the magnitude of the largest of the components A hx, A hy,
and Ahz for the cube Ω'mrΛ. For the cubes Ω'mrΛ which lie entirely inside
some region ΓmJ, we use the estimate

where \V&\max is the maximum component of the tensor V& within the
regions Γltj. There are at most IcoJ/Ẑ 3 such cubes and so their contribution



212 E. R. Smith and O. Penrose

to Wς,corr(iϋ)/ΊωJ is at most

7 e > ^ ItlflY l~/ ^ m a x ' D
lr Kr

which tends to zero as r-*oo. For cubes Ω'mtrti which intersect the
boundary of one or more regions ΓmJ, we use the estimate Ahι^^max.
The number of such cubes is O(y/l?) where γ is the (finite) total area of
the boundaries of the regions Γlj9 and so their contribution to
^»,corr(iii)/|ωm| is at most

O((Rr/lr + lJRr) @LΛmlr)
3(y/lϊ)/rn3K|) = θ[^- ^pj (4.13)

which also tends to zero as r-»oo. Combining this with the previous
estimates, we obtain

W
lim κ κ " ""<»*> = o . (4.14)

Since the three parts of Wm>corr/\ωm\ all have zero limit as m-» oo, we
find, on minimizing the right hand side of (4.6) with respect to the func-
tions ρ and &g, that

— kT
lim sup — — logZ(ωw, iVw, H0(x), T)

m"°° (415)
< inf inf J d3xf(ρ(x),<%(xl T).

Here, Q is the class of vector fields which are continuously differentiable
in each region Γtj, have continuous normal component across the
boundaries of these regions, and obey (3.3); and 0> is the class of non-
negative piecewise continuous functions obeying (1.5).

Equation (4.15) is the result we wanted to prove.

V. Discussion

The upper bound (4.15) on the thermodynamic limit corresponds to
the "physically reasonable guess" at the free energy given in (1.4). The
proof of (4.15) is constructed by making the internal induction and
density adjust themselves to minimize the free energy. Proof of (1.4) as an
equality would require that the right hand side of (4.15) also form a

— kT
lower bound on lim inf——— Z(ωm, Nm, H0{x), T). We have not yet

made much progress on this problem.
The generalization of the work in this paper to the electrostatic case

is straightforward except that we may now have three densities: ρo(x%
the density of molecules carrying an electric dipole, ρ + (x) the density of
molecules carrying a positive charge and ρ_(jc), the density of molecules
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carrying a negative charge. To use the thermodynamic limit discussed
in P — iS, we require charge neutrality in each of the small cubes. This
corresponds to the condition

ρ + (x) = ρ_(*) (5.1)

The proof we have given applies to a sequence of regions ωm of the
same shape, and linear dimensions proportional to m, where m is any
sequence of numbers that tends to infinity. There is no need for m to
be a sequence of integers.
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