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Abstract. It is shown that an infinite one dimensional system of hard rods for which
the “effective” velocities of the pulses (free velocity plus a drift term due to collisions)
are bounded away from some neighborhood of 0 is Bernoulli. This generalizes a result
of Sinai who showed that some hard rod systems are K-systems.

1. Introduction

Since the number of particles contained in a typical macroscopic
system is very large (~ 102°) there is great interest from the point of
view of statistical mechanics in the ergodic properties of infinite systems
(corresponding to the thermodynamic limit in equilibrium statistical
mechanics). In this note we extend the results of Sinai [1] who showed
that a one dimensional system of hard rods is a K-system. We prove,
under slightly restrictive conditions on the velocity distribution, that
this system is Bernoulli. We also clear up some points in Sinai’s proof.

Before describing our results we would like to point out that care
must be exercised in drawing analogies between the ergodic properties
of finite and infinite systems, as the dependence of these properties
on the interactions between the particles, and thus also their physical
interpretation, may be very different in the two cases. Thus, while a
finite ideal gas (classical system of non-interacting point particles)
is not even ergodic the infinite ideal gas has the strongest possible
ergodic properties: it is a Bernoulli system [2]. This “good” ergodic
behavior of the infinite ideal gas does not, unfortunately, provide any
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guarantee of similar good ergodic behavior of infinite systems of inter-
acting particles.

The explanation of the good ergodic properties of the infinite ideal
gas in simple: local disturbances “fly off” unhindered to infinity where
they are no longer observable (with respect to measures natural from
the point of view of statistical mechanics, i.e., measures concentrated
on local observables [3]). Formally the proof for the infinite ideal gas
is obtained by showing that the flow is isomorphic to the process obtained
by observing the particles which at any moment cross a given hyperplane
(a point for one dimensional systems). The absence of interactions plays
here a double role:

1) The fact that the “information” “flows” unperturbed guarantees
that all of it eventually gets recorded by the local observations (on the
hyperplane), in a way which enables one to reconstruct the phase-space
description at the time ¢ =0.

2) The observed “information” does not return to the hyperplane,
making observations at different times independent.

It is plausible that some infinite systems of interacting particles
will no longer admit a generating “local observation”. This would not
rule out strong ergodic properties; their proof however would require
different methods which may, in fact, lead to stronger results [4]. In
those systems which do admit representation by a process constructed
on Jlocal observations, the interaction will induce a dependence among
the observations at different times, possibly preventing strong ergodic
properties (of the local observation).

It is with an eye to understanding the latter behavior that we consider
the effect of a hard core interaction in an infinite one dimensional
gas. The motion of a “velocity pulse” in this system is a combination
of a steady flow with discrete independent jumps back and forth. Pulses
with effective velocity 0 would reappear infinitely often at any place
on the line. It is shown that an infinite system of hard rods for which
the effective velocities are bounded away from some neighborhood
of 0 is Bernoulli.

2. Description of the System and the Main Result

Let X denote the phase space of an infinite system of hard rods
of diameter d >0. x € X is a countable collection of pairs x = {(x,, v,)},
where x, is the position of the left corner (or any other fixed point on it)
of a rod and v, its velocity. Let p denote the translationally invariant
measure on X under which:

1) The free distances between consecutive rods (given that the
origin is covered) are jointly independent and identically distributed,
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with an exponential distribution of parameter ¢ >0. ¢ =n/(1-nd) where
n is the average particle density.

2) The velocities are independent and identically distributed with
probability measure v, which has a finite first moment.

Let S, denote the flow on X under which each particle in x € X moves

d d . .
freely ( d);“ =10, o _ 0) except for elastic collisions. By an argument

dt

similar to Sinai’s [1] (used for systems with a Maxwellian velocity
distribution) it may be shown that {S,} is well defined on a set of full
measure.

For convenience, reference will be made to velocity pulses, whose
positions are the positions of rods but which are understood to exchange
rods in a collision. A pulse of velocity v moves at this velocity except
for moments of collision, when it jumps the distance d in the direction
of the other colliding particle. However, the “free distance” between
two pulses (obtained by subtracting the total length of rods between
them) behaves linearly in time.

Moreover, for a given position of a pulse, the “free distances” to other
pulses are distributed along the line with a Poisson distribution. There-
for, for given velocity and position of a pulse, the collisions it undergoes
at different times are independent.

Lemma (2.1). There is a measurable set XcXx, ,u()z')= 1, such that
Vxe X the following holds; let v be the velocity of a pulse in x, then:

1) During the motion induced on it by {S,x}, the pulse crosses the
origin.

2) The induced average velocity of the pulse for the time interval
[0, t], approaches

Vere(V) =0+ d(v—E(@)), as t—+w.

The lemma can be proven by showing that Properties 1) and 2)
hold, with probability 1, for each pulse separately (labeling each pulse
by I,=[x,/d]). This can be easily done with the help of the previous
remarks.

Note that for pulses of velocity v+0 1) follows from 2), while for
pulses of velocity v=0 1) holds as a result of the fluctuations in the
number of collisions. '

d
Let vy = #@d E(v). By Lemma (2.1), pulses of velocity v, propagate

with the effective velocity (for long times) 0. Since the effective velocity
contains a part (of positive variance) which is due to independent
collisions, pulses of this velocity recur infinitly often at any place on the
line.
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With the help of Lemma (2.1) one can generalize Sinai’s result [1]
to obtain

Theorem (2.2) (X, u, S)' (d>0) is a K-system for any velocity
probability distribution v.

The proof will not be given here. Let us remark however that Sinai’s
proof carries over to systems with v(v = v,) = 0. Other systems are covered
by a modified argument.

Our main result is

Theorem (2.3). The dynamical system (X, u, S,) for which the velocity
distribution v satisfies

V(v — vl <6)=0,

for some 6 >0 and v, = E(v), is a Bernoulli flow.

od
1+ 0d

3. Reduced Description

As already indicated, we are interested in a representation of the
system by a process generated by local observations. However, since
collisions occur at any interval on the line, the reappearance of a pulse
at the origin depends on the distribution of particles elsewhere, inducing
a complicated dependence among local observations taken at different
times. In the following “reduced description” (which is limited to one
dimensional systems) the discontinuities in the trajectory of a pulse
result from effects which take place at the origin.

For any xe X, let us label the particles so that their positions at
time t =07 satisfy

X, <Xx_ 1 <0=x0<Xy...

taking the limit ¢ 10 for each inequality separately.

Definition (3.1). Let (x;,v;) be the position and velocity of the i-th
particle in x € X. Its reduced position is given by ¢; = x; —id.

Clearly, an equivalent description of xe X is given by y = {(g;, v3)},
the enumerated collection of the reduced positions and velocities of the
induced particles. Note that the unenumerated collection {(q,, v,)} may
not determine x € X uniquely.

Definition (3.2). The reduced phase space, Y, is the class of enumerated
collections y= {(g;, v;)};z for which

1) ;5441 Viel.

2) 0=4,.

! We will write S in place of S;.
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3) g1 =d

4) The replacement g;—gq;+tv;,,t=0", makes each of the above
inequalities strict (except if v;=v;,; or v,=0).

The mapping ¢ : X — Y which carries x = {(x,, v,)} to the enumerated
collection of the reduced positions and velocities of its particles, ordered
as above, is 1 — 1 and onto.

By a harmless abuse of notation, let u and S, denote the measure
and the flow induced on Y by the correspondence ¢.

Lemma (3.3). With respect to the measure p, the distribution of the
reduced positions and velocities (ignoring the labeling) of those pulses
of yeY which lie in R\[0, d] is isomorphic to the Poisson distribution
of points, with density o, over ((IR\[0, d], )® (Ry) (1 being the Lebesgue
measure) and is independent of the distribution and labeling of pulses
in [0, d].

min q;> d}
Proof. Letq, = ; .
f q(f) (max) {q (<0)

The lemma follows from the observation that the distributions of
both g, —d and |g_| are exponential with parameter g, independent
of the configuration in [0, d] and of each other.

We remark that p has the following realization: Let Y=Y, ® Y_
be the product of two independent Poisson distributions of points with
density g, Y, over ([0, ), ) ®(IR, v), whose left particle is labeled “0”;
and Y_ over ((—o0,d],)®(R, v), whose right particle is labeled “—1".
(Y, p) is isomorphic to (Y’, i), where Y'={ye Y|q,=q_,} and g’ is the
induced probability measure on Y.

Let ye Y. We denote by N(t, y) the directed number of crossings
of the origin by particles in x= ¢~ *(y), during the time interval [0, t),
counting crossings from left (right) as positive (negative). K(y) will denote
the index of the first particle whose reduced position (in S,- y) is non
negative.

Consider now the motion of the pulses in y € Y induced by the flow S,.
The pulses move at their characteristic velocity, exchanging indices
at collisions, except for moments at which a particle crosses the origin
(in x), when the reduced positions of all the pulses are shifted by Fd and
their index values change by +1, depending on the direction of the
crossing. The reduced distance traveled by a pulse (q,v)€ ye Y during
the time interval [0, 1) is thus equal to tv —dN(t, y).

Lemma (3.4). For almost any ye Y

t—>o t 1+p¢

dE(v), fortel.
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Proof. Since our system is ergodic, Theorem (2.2), it follows that

N, y)/t=1/t til N(1,S;y) ——=> E(N(1,y)) almost surely (a.s.).

(t— )
i=0

To compute E(N(1,y)) we observe that the average velocity, in the
reduced description, of a pulse of velocity v is
[tv—dN(t, )]/t ==p v—dE(N(1, ),

which corresponds to velocity [v—dE(N(1,-))]-(1 +¢d) in terms of
“real” distance. Comparing the above with Lemma (2.1) we obtain

Q
+od

E(N(, )= 1 EG).

4. Process Description

Definition (4.1). We will call a pulse (g, v)e ye Y marked at time t
if one of the following holds

a) 0=Zg+tv—dN(t y)=d.

b) g+tv—dN(t,y)<O0and g+ (¢t +1)v—dN(E+1,y)=0.

¢) g+tv—dN(t,y)>dand g+ (t+ 1) v—dN({+1,y)=<d

We now define a partition of the phase space which will be used to
represent our system by a process. In order to apply approximation
techniques coarser partitions will be defined as well.

Definition (4.2).

1) Denote by # the partition of Y generated by:

a) N(1,y),

b) K(y), and

c) the reduced positions and velocities of those pulses of y which
are marked at the time t =0.

2) Denote by #*®(VkeZ) the partition whose typical element
C® () en™ is the collection of the phase space points ye Y for which:

a) N(1,y)=N(1,7),

b) K(y)=K(y), and

¢c) there is a 1 — 1 correspondence between the pulses marked at the
time t=0 in y and ¥, such that at the times t =0, { the corresponding
pulses are at the same distances from the origin, measured in intervals
of the size d/2*.

In essence, n partitions Y (and therefore X) by the characteristics
of the pulses which in the reduced description appear in the interval
[0, d] during the time [0, 1], disregarding those which do appear but
eventually cross back. The pulses have to be observed in an interval
since their trajectories have discontinuities of the size d.
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It is an advantage of the reduced description that #(x) contains
the full information about those pulses of x which are in a certain region
[which depends on #7(x)] of the one particle phase space, and is independent
of the characteristics of the pulses elsewhere. To show this we need the
following lemma.

Denote by a*(n,t) the regions in the one particle phase space,

defined by . (q,v)|q<0,g+vt—dn>0
a(-)(n,t): (Z) (<) .

Lemma 4.3. Let ye Y and let m= N(t,y). If y and Y€ Y possess the
same occupation numbers for pulses in the regions a™* (m, t) and a* (m+1, 1),
and K(y)= K(y) then N(t,y) =m.

Proof. Denote by Ny(ﬂ) the number of pulses in y e Y which occupy
a given region f§ in the one particle phase space.

Notice that for m=N(t, y), a*)(m, t) is the region of those pulses
whose reduced positions change from non-positive (non-negative) in y
to positive (negative) in S, .

Keeping in mind the fact that the index values get readjusted each
time a particle (in the unreduced description) crosses the origin one
obtains

K(S,y)=K(y)— Ny(a™ (m, 1) + N, (o~ (m, 1)) +m,
K(y)— N,(a* (m, 1)) + N(a~ (m, 1)) + m <0..

Similarly, K(y)—N,(a* (m+1,1))+ N,(a™(m+1,£))+m is the index
of the first pulse in S,_,y whose reduced position is not smaller than d,
therefore

Ky =Ny (m+1,8)+ N2 (m+1,0)+(m+1)>0.
Consider now the function (defined on Z)
f(n)=K(y)— Ny(a+ (n, )+ Ny(oc_ nt)+n.

Since a*(n,)Dat(n+1,1) and o~ (n,t)Ca~(n+1,1), f(n) is strictly
increasing. Moreover, by the above inequalities, N(t, y) is the unique
solution of

therefore

fm=£0,  f(n+1)>0.
Now, by the conditions of the lemma,
fm)=f,m=0 and fiim+1)=f(m+1)>0,
implying N(t, y)= N(t, y).
Corollary (4.4). Let the region a(n) of the one particle phase space

be given by OC(n): O(+(n, 1)\.)0(7(” + 1, 1)\.)([0, d] ®IR) .
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If N(1,y)=n, then n*(y) is independent of the characterietics of those
pulses which occupy a(n) (the complement of a(n)). Notice that n(y)
contains the full information regarding the pulses in a(n).

The above independence will be used to establish strong ergodic
properties for the process defined by 7.

5. Tools Used

In proving the Bernoulli property we will make use of the method
developed by Ornstein which utilizes the following results [5]:

Lemma (5.1). The dynamical system (X,u,{T;}) is Bernoulli if
(X, u, Ty) is a Bernoulli shift.

Lemma (5.2). If A, CA,CA;C... form an increasing sequence of
T-invariant o-algebras, if \/ A,=B, and if for each n, (X, A, u, T) is
0
a Bernoulli shift then (X, B, u, T) is a Bernoulli shift.

This lemma enables one to use results obtained for processes defined
by countable partitions. Given a generating partition P, the dynamical
system (X, u, T) is isomorphic to the process (7, P) with the induced
measure.

Definition (5.3). The partition P= {P} is e-independent of Q@ ={Q;}
if there is a class C of sets in Q such that

a) u(uC)z1—e¢

b) Y Iu(P|Q) - uP)se VQ;eC.

Definition (54). A partition P is called weakly-Bernoulli for an
automorphism T if given & > 0 there exists an N such that for all m=1:

—-N m
T'P iseé-independent of \/ T'P
0

—(N+m)

Lemma (5.5). If the partition P is weakly-Bernoulli for the automor-
phism T then (T, P) is a Bernoulli process.

6. Proof of the Main Result

Let us restate the main Theorem (2.3), using the notation of the
previous sections.

Theorem (6.1). The dynamical system (Y, u, S,) for which

v([v — vyl < 8) =0, for some 6 >0 and v, = E(v),

od
1+od
is a Bernoulli system.
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The proof will consist of several steps. The “times” ¢ mentioned
throughout this section are to be understood as integral.

Lemma (6.2). Let the “good” sets be given by
G ={ye Y|sup {(N(,y)—'vol +d)/lt]} <5}

(t'<-1

(&)

10

Proof. By Lemma (3.4) |:1|i—I»n dN(t, y)/t =1, for almost every ye Y,

Then Ve >0, 3t, (e, 8) >0 for which u(G,"), (G, )>1—

therefore lSlllp {(ldN(t', y) — t'vo| + d)/t'} —a 0 a.s implying convergence
t'|>t 0

in probability, which is Lemma (6.2).

For the system under consideration v(jv — v,| <) =0; let us assume
therefore that there are no pulses of velocity v, [v — vy| <0 (in fact, we are
confining the discussion to a subset of Y of full measure).

Let G, =G, NG, .

Remark (6.3). Vye G,, no pulse of y whose reduced position was in
[0, d] at a time t' € (— 00, —t] will reappear in [0, d] at a time t” € [¢, o0)
or at t"=02. This can be easily shown, remembering that the reduced
distance traveled by a pulse of velocity v between the times t' to t” is

(" —t)—d(N(", ) = N(t, ).
Definition (6.4). Denote by ( the partition generated by
1) K(y),
2) the number of velocity pulses in [0, d] for which v > v, + é and the
number of those for which v <v, — 4.
We now come to the key step in the argument:
Lemma (6.5). Let a be a set measurable with respect to \/ Sin(t>0),
~(@t+1)

b measurable with respect to \/ S'n, and {; € {. Then

ulalb, &, G) = u(ally, G .

Proof. Note that [by virtue of Corollary (4.4) and Lemma (4.3)]
anG,;" and bnG, depend on the distribution of pulses in two corre-
sponding regions in the one particle phase space, whose intersection
(after taking out the slice R®(vy — 9, v +9)) is [0, d] ®R. Further, the
dependence of anG;" and of bnG,” on the distribution of pulses in
[0,d]®TR is only through the variables used to define the partition
[Definition (6.4)]. Therefore, by Lemma (3.3), on a given element
{ el,anG; and bnG, are independent:

a) panG |, bnG)=panG/1¢).

2 Here the times are not to be understood as necessarily integral.
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In particular, by choosing b = Y and then a= Y, we obtain
b) wanG (G, G)=puanG, 14,
o) MGG G )= GG

The lemma follows now from a), b), and c).

We observe therefore that our system exhibits an approximate Markov
property. The proof that it is Bernoulli will follow in a way similar to a
proof that a K Markov system is Bernoulli (actually, for this end, mixing
could replace the K property). We thus first consider the space Y

and

equipped with the o-algebras \/ S'y®.

Theorem (6.6). For any integer k, the dynamical system

(Y, \07 Sin®, u, S)

for which the velocity distribution v satisfies

od

V(v —0vo|<8)=0,  for some d >0 and v°=1+gd

E(v),

is a Bernoulli-shift.

Proof. By Lemma (5.5) it is enough to show that the partition #®
is weakly-Bernoulli under S.
Let ¢>0 be given. Take t; =t,(¢, 6) as defined in Lemma (6.2) and
let {={V{G,,, G }.
Because of the K-property of our system 3t,(e) >0 such that { is
&

0 independent of

—(t1+t2+1)
i,,(k 3
Sa® . Ym=13.
i=—(t1+t2+tm)

We now claim that Ym = 1, the partition

t1+m

VS = {afm}
ty

3 This is so (see [6]) because the partitions 7™ all have finite entropy (since the velocity
distribution v has a finite first moment). We wish to point out, however, that the argument
which we give does not depend in an essential way upon the finiteness of the entropy of
7™, We could easily find an increasing sequence 7514 of finite partitions whose supremum
is n¥; our argument could be applied exactly as it stands to the #{, so that Theorem (6.6)
would be valid with 7{¥ in place of #®. Theorem (6.6) would then, itself, follow from an
application of Lemma (5.2).
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is e-independent of
—(t1+t2+1)

Sin® = {pm} .

i=—(t1+tt2+tm)
To see this, note that by virtue of Lemma (6.5) (omitting the super-
script m) _
:u(allbja G = (@] &) -
Vj,land {, C G,, an element of {.
This implies that
way|bj)= Z H(%@k)‘ﬂ(fk'bj)
LkC Gy
+ ul(ay|bj, G7) - u(Gy b)) .
Therefore wa|bj, Gy,) - p(Gy, b))
Yl by — @) £ Y, 1uClby) — u@)l
[i {kC Gy,

+ u(Gi, b)) + u(G7) .-
Now, 1) the above sum is smaller than TS()— except possibly for sets b;
whose total measure is smaller than % ,
e 2
2) w(Gy)< (W) .
3) 2) implies that u(Gj, |b;) < 18_0, except for a collection of sets

whose total measure is less than 18—0 Summing the above estimates we
obtain

X (@™ |b§™) — plal)l < e
1

for a collection of elements b;'") whose total measure exceeds 1 —e,
proving the claim.

Since t,(¢), t,(¢) are independent of m, #* is weakly-Bernoulli.

In order to apply Theorem (6.6) to the proof of (6.1) we need the
following lemma

Lemma (6.7). 7 is a generating partition.

Proof. Observe that knowing N(t, y) and the characteristics of a
pulse in S*y enables one to find the (reduced) position of the pulse in
ye Y. Since, by Lemma (2.1), each pulse is marked at some time (with
probability 1) \/ S’y separates points in Y(mod 0).
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Proof of Theorem (6.1).

By the previous lemma, the processes considered in Theorem (6.6)
have the property required for application of Lemma (5.2), by which (6.1)
follows. Q.E.D.

Conclusion

In summary, the essential ideas of the proof are:

1) The infinite hard rod system admits a representation by generating
K-process obtained by observing the pulses close to the origin (in the
reduced description, for convenience).

2) Rods which cross the origin tend to draw back pulses which
crossed before them. dN(t, -)/t is the random velocity with which pulses
are “pursued” by the origin (this has a clearer meaning in the reduced
description).

3) Due to the random character of the above velocity (which tends to
vy in the limit t— 4+ 00),¥0,6>03t>0 for which, with probability
> 1 —¢, no pulse which appeared at the origin before —t could reappear
after the time ¢ with the exception of those whose velocity is § close to v,.

4) When viewed as a process, systems from which pulses slow relative
to v, are excluded exhibit an approximate Markov property.

5) A generating family of processes, which are constructed on
countable partitions and have an approximate Markov property, can
be found. The Bernoulli property for these is proved in a way similar to
the proof for a Markov, K-process.
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Appendix: A Clarification of the Proof of Sinai’s Result

Sinai [1] constructed a K-partition ({, in his notation) for a one
dimensional hard rod gas with an infinite number of degrees of freedom.
However, Remark 4 in his article is incorrect as stated, leaving the proof
of the generating property of the partition incomplete.

t is called there a moment of intersection of zero of the trajectory
of point x € X, if either

1) x,(t)=0 for some i (there is a pulse in S,x which is crossing the
origin), or

2) t is a moment of collision of two rods which at this time are on
opposite sides of the origin (and therefore two pulses in S,x are jumping
across the origin).
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The intersection time, velocities and positions of the pulses involved
are called the characteristics of the intersection.
One still has to show that the generated partition (\/ S,Co), which
t

corresponds to partitioning by the characteristics of all the intersections,
completely separates the set of phase space points for which any pulse
has a moment of intersection of the origin (which was shown to be a
subset of full measure). This can be done using the reduced description.
The reduced position of a pulse in x can be obtained from its reduced
position in S,x by
q(0)=q(t)—tv+dN(t, x).

Further, by looking for the first, in terms of lowest |¢|, intersection of
zero of a pulse in x one can determine whether its index is positive or
negative. In this method, provided each pulse eventually crosses the
origin, one can reconstruct the reduced description of x from the charac-
teristics of all the intersections, which therefore determine it uniquely
(mod 0).
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