The Absence of Even Bound States for $\lambda\left(\varphi^{4}\right)_{2}{ }^{\star}$

Thomas Spencer
Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France

Received June 18, 1974

Abstract

We use correlation inequalities for $\lambda\left(\varphi^{4}\right)_{2}$ to exclude even bound states of energy less than $2 m$.

Let H denote the Hamiltonian for the $\lambda \varphi^{4}$ quantum field model. We define m to be mass of H. The purpose of this note is to show that for $\lambda<\lambda$ (critical) H restricted to the even subspace has no spectrum in the interval ($0,2 m$). Thus we exclude even bound states of energy less than $2 m$. In [1] this result was established for λ sufficiently small. Feldman [2] obtained our results assuming $G_{4 n}<0$, where $G_{4 n}$ is the $4 n^{t h}$ truncated Green's function. These inequalities on $G_{4 n}$ are only known to hold for $n=1$.

Our proof is an immediate consequence of correlation inequalities due to Lebowitz [3] and the spin $1 / 2$ approximation of Simon and Griffiths [4]. Our methods are similar to those of Feldman.

Following [3] consider a spin $1 / 2$ pair ferromagnetic interaction and two duplicate spin variables denoted by s_{i} and σ_{i}. Let
and let

$$
q_{i}=\sigma_{i}+s_{i} \quad t_{i}=\sigma_{i}-s_{i}
$$

$$
q_{A}=\prod_{i \in A} q_{i} \quad t_{A}=\prod_{i \in A} q_{i}
$$

Then from [3] we have

$$
\left\langle q_{A} t_{B}\right\rangle \leqq\left\langle q_{A}\right\rangle\left\langle t_{B}\right\rangle
$$

where \langle.$\rangle denotes the product expectation.$
Similarly let Φ and Φ^{\prime} denote duplicate Euclidean fields for $\lambda \varphi^{4}$ and for $X_{i}=\left(X_{i}, X_{i}^{0}\right) \in R^{2}$ set
and

$$
Q_{X_{i}}=\Phi\left(X_{i}\right)+\Phi^{\prime}\left(X_{i}\right) \quad T_{X_{i}}=\Phi\left(X_{i}\right)-\Phi^{\prime}\left(X_{i}\right)
$$

$$
Q_{A}=\prod_{X_{i} \in A} Q_{X_{i}} \quad T_{B}=\prod_{X_{i} \in B} T_{X_{i}} .
$$

[^0]From the spin $1 / 2$ approximation and multilinearity it follows that

$$
\begin{equation*}
\left\langle Q_{A} T_{B}\right\rangle \leqq\left\langle Q_{A}\right\rangle\left\langle T_{B}\right\rangle . \tag{1}
\end{equation*}
$$

When $X_{1}^{0} \leqq X_{2}^{0} \ldots \leqq X_{2 n}^{0}$ and $A=\left\{X_{i}\right\}$, let

$$
\Psi_{A}=\varphi\left(\boldsymbol{X}_{1}\right) e^{-X_{1}^{0} H} \varphi\left(\boldsymbol{X}_{2}\right) e^{-\left(X_{2}^{0}-X_{1}^{0}\right) H} \ldots \varphi\left(\boldsymbol{X}_{2 n}\right) \Omega
$$

To establish the absence of even bound states it suffices to show that for each n

$$
\begin{equation*}
0 \leqq\left\langle\Psi_{A} e^{-t H} \Psi_{A}\right\rangle-\left\langle\Psi_{A}\right\rangle^{2} \leqq C_{A} e^{-2 m t} \tag{2}
\end{equation*}
$$

Here Ω is the vacuum of H and φ denotes the time zero field. The above inequality implies that the bound state (of energy less than $2 m$) is orthogonal to the even subspace.

We now turn to the proof of the estimate. Let

$$
A=\left\{X_{1} \ldots X_{2 n}\right\}, \quad B=\left\{X_{1}^{\prime}+\tilde{t}, \ldots X_{2 n}+\tilde{t}\right\}
$$

where $\tilde{t}=(0, t)$.
Observe that since there is a gap in the product theory the FeynmanKac formula shows that

$$
\left\langle Q_{A} T_{B}\right\rangle-\left\langle Q_{A}\right\rangle\left\langle T_{B}\right\rangle
$$

decays exponentially as $t \rightarrow \infty$. We determine the rate of decay by induction on n. For $n=1$ (2) follows as in [1]. Now suppose (2) holds for $j \leqq n-1$. Let $R(t)$ be defined by

$$
\begin{aligned}
& \left\langle Q_{A} T_{B}\right\rangle-\left\langle Q_{A}\right\rangle\left\langle T_{B}\right\rangle \\
& \quad=2\left\{\left\langle\Psi_{A} e^{-t H} \Psi_{A}\right\rangle-\left\langle\Psi_{A}\right\rangle^{2}\right\}-R(t)
\end{aligned}
$$

Note that $R(t)$ also vanishes exponentially. From (1) we have

$$
0 \leqq 2\left\{\left\langle\Psi_{A} e^{-t H} \Psi_{A}\right\rangle-\left\langle\Psi_{A}\right\rangle^{2}\right\} \leqq R_{t} .
$$

$R(t)$ is a sum of products of expectations obtained from expanding $\left\langle Q_{A} T_{B}\right\rangle-\left\langle Q_{A}\right\rangle\left\langle T_{B}\right\rangle$ into fields. The terms corresponding to $\left\langle Q_{A}\right\rangle\left\langle T_{B}\right\rangle$ are constant in time and do not require further analysis. The terms corresponding to $\left\langle Q_{A} T_{B}\right\rangle$ have the form
where

$$
\left\langle\Phi_{A_{1}} \Phi_{B_{1}}\right\rangle\left\langle\Phi_{\sim A_{1}} \Phi_{\sim_{B_{1}}}\right\rangle
$$

$$
\begin{array}{ll}
A_{1} \subset A, & \sim A_{1}=A \backslash A_{1} \\
B_{1} \subset B, & \sim B_{1}=B \backslash B_{1}
\end{array}
$$

and either A_{1} or B_{1} is a proper subset of A or B. Now if A_{1} has an odd number of elements then so has B_{1} because otherwise the term vanishes. Hence both factors contain fields localized in both A and $B=A+\tilde{t}$. It follows from the eveness of the theory and the definition of m that each
factor decays like $\mathcal{O}\left(e^{-t m}\right)$. If A_{1} has an even number of elements then so has B_{1} or again the expectation vanishes. By the induction hypothesis and the Schwartz inequality we can write

$$
\left\langle\Phi_{A_{1}} \Phi_{B_{1}}\right\rangle=\left\langle\Phi_{A_{1}}\right\rangle\left\langle\Phi_{B_{1}}\right\rangle+\mathcal{O}\left(e^{-2 m t}\right) .
$$

Note that the products $\left\langle\Phi_{A_{1}}\right\rangle\left\langle\Phi_{B_{1}}\right\rangle$ are constant in t. Consequently we have

$$
R(t)=\text { Const. }+\mathcal{O}\left(e^{-2 m t}\right) .
$$

Since $R(t)$ goes to zero for large t the constant vanishes and the estimate is complete.

References

1. Glimm, J., Jaffe, A., Spencer, T.: The particle structure of the weakly coupled $P(\Phi)_{2}$ model and other applications of high temperature expansions, Part I. In: Velo, G., Wightman, A. (Eds.): Constructive quantum field theory. Berlin-Heidelberg-New York: Springer 1973
2. Feldman, J. : Can. J. Phys. 52, 1583 (1974)
3. Lebowitz, J.: Commun. math. Phys. 35, 87-92 (1974)
4. Simon, B., Griffiths, R.: Commun. math. Phys. 33, 145-164 (1973)

Communicated by A. S. Wightman
Thomas Spencer
Physics Department
Harvard University
Cambridge, Mass. 02138, USA

[^0]: * Supported in part by "The National Science Foundation" under grant NSF GP 40354 X.

