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Feynman Path Integrals
I. Linear and Affine Techniques

II. The Feynman-Green Function
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Abstract. Path integrals techniques are derived from a new definition [1] of Feynman
path integrals. These techniques are used to establish that Feynman-Green functions for a
given physical system are covariances of pseudomeasures suitable for its path integrals.
The variance of a pseudomeasure is a more versatile tool than the Feynman-Green function
it defines.
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I. Introduction. Feynman Space

In a previous paper [1], a new definition of Feyman path integrals
has been proposed. In this paper, this definition is exploited to derive
new techniques and obtain new properties of the Feynman-Green
function.

In [1] Feynman path integrals were defined on the space ^ of
continuous functions defined on the time interval T= [ίfl, ίfc] and van-
ishing at one end point of the interval. The Feynman formulation of
Quantum Mechanics and Quantum Field Theory sets up a much greater
class of path integrals than the one studied in [1]: transition probabilities,
expectation values, quantum fluctuation defined with respect to a given
classical background field, for instance, are expressed as path integrals
on a space of paths [histories] between given initial and final points
[states of the system]. Moreover the computation of a given path integral
may be easier on a space other than the space on which it is defined or
with respect to a different pseudomeasure.

The mathematical analysis of a physical system in Feynman theory
begins with the identification of the space of all its possible, non-equiv-
alent, paths. Paths are said to be equivalent if they cannot be physi-
cally distinguished; for instance, fields related by a gauge transformation.
The space of all the possible, non-equivalent, paths (histories) of a physical
system will be called the Feynman space of the system and denoted F.

In this paper, we shall consider spaces which can either be obtained
from ^ or mapped into ^ by linear and affine mappings; thus we deal
here only with Feynman integrals in non-relativistic Quantum Mechanics.
However, the linear and affine transformation techniques are presented
in a form suitable to path integrals for Quantum Field Theory. This
paper is concerned with applications; mathematical subtleties which are
not important in the present context are mentioned but not discussed.

II. Notations1. Basic Definitions and Properties

1. Feynman Integral on ^_

In [1] paths integrals were defined on a space of paths vanishing
at time t = tb. We shall need henceforth to consider both the space of
paths vanishing at tb and the space of paths vanishing at ί f l; we shall call

# _ the space of paths x defined on (ίfl, ίfe] such that x(ί)->0 when ί-»ίfl

%?+ the space of paths x defined on [ία, tb) such that ;c(£)->0 when t-+tb

%> the space of paths x defined on (ta,tb) such that x(t)->Q when ί->fα

and when t-^th.
1 To a large extent, the notation is the same as in [1] a few superficial differences have

been introduced.
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The paths x are continuous functions; the topology on ̂ _, #+, ̂  is
the norm topology induced by the uniform norm ||x|| = sup|x(ί)| for all ί
in the range of x. When it is not necessary to distinguish the three ranges
(ta, ίft], [ίfl, fj,), and (ία, ίb) we shall simply speak of paths x on T; the letter
T stands also for tb — ta.

The Feynman integral of a function F on ^_ is a complex number
written symbolically

K= f F(x)dw_(x).
#-

w_ is the complex gaussian pseudomeasure on ^_ of co variance
infimum; i.e. w_ is the pseudomeasure whose Fourier transform
is a function on the dual2 Jl of ̂ _ given by

where W_ is the quadratic form on Jl defined by

W(μ) = j dμ(r) $ dμ(s) inf (r -ta,s- ta)
T T

inf (r - ί f l, s - ta) = Y+(r- s) (s - ta) + Y~(r- s) (r - ta) .

Y+ is Heaviside step-up function on T equal to 1 for positive arguments
and equal to 0 otherwise; Y~ is Heaviside step-down function on T
equal to 1 for negative arguments and 0 otherwise; Y+(t)= Y~( — t).

W is called the variance of the gaussian3 w.
We shall designate by the same letter in different types a bilinear

form on Jl x Jl and its corresponding quadratic form on Jl

W(μ, v) = ±(W(μ + v) - W(μ) - W(v)) ,

W(δr9δJ = iΏf(r-ta9s-tJ = G ( r , s ) .

W(δr, δs) is called the covariance of w.

2 Let X be a topological vector space, let X' be its dual, let xeX and x'eX'\ x'(x)
is denoted <x', x>; the operational meaning of <X, x> depends on the space X considered;
for instance:

a) Let X = (£_, then X' = Jΐ is the space of bounded measures μ on the range of
x e ̂ _ and <μ, x> = J x(ί) dμ(ί).

r
Examples: Let λ be the Lebesgue measure <Λ, x>= Jx(£)ί/ί;

r
let δr be the Dirac measure at r <<5,., x> = x(r).

b) Let X be the Hubert space of real square integrable functions on T, then X' is
isomorphic to X and </, 0> = j/(ί) g(t) at for f,ge3^. In a complex Hubert space

r
</9 gf> = J/*(ί) gf(ί) dί. If μ is a regular measure rfμ(ί) = m(ί) dί and <μ, x)^ = <m, x)^.

T

c) Let X be equal to IR", X' is isomorphic to X and <x', x> = £ xjx1.
ι= 1

3 In this paper, "gaussian" stands for "complex gaussian".
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We shall assume that F is the limit of cylindrical functions:

F= l im/°Pπn — oo

where Pn is a linear continuous mapping from <β to 1R" and / is a Γ-inte-
grable function on lRn; i.e. {Γ,/)^ <oo where Γ is a complex gaussian.
Moreover we shall assume that

lim J (f°Pn)(x)dw_(x)= f ]im(f*PJ(x)dw_(x).
<β- <6-

When these conditions are satisfied, we say that F is Feynman inte-
grable. This is not a definition of Feynman integrability because these
conditions are sufficient but may not be necessary.

The Feynman integral of a function F on ̂  + is defined similarity,
mutatis mutandis: the co variance W+ of the pseudomeasure w+ is

= M(tb-r,tb-s)=Y+(r-s)(tb-r)+Y-(r-s)(tb-s).

The pseudomeasure induced on ̂  either by W_ or W+ is computed in
Section III.

2. Continuous Linear and Afβne Mappings

a) Transformation of a complex gaussian [pseudo] measure under a
linear mapping. Let X and Y be two topological vector spaces, Hausdorff
and locally convex; let X' and Y' be their topological duals; let P be a
linear continuous mapping from X into 7; let P be the transposed mapping
from Y' into X' defined by <P/, x> - </, Px>.

By definition, a complex gaussian [pseudo] measure on X of variance
Q is the [pseudo] measure whose Fourier transform is the function
exp( — iQ/2) on X' where Q is a positive quadratic form. Its image under
P is the gaussian [pseudo] measure on Y whose Fourier transform is the
function exp(-jβ°P/2) on Y'.

b) Transformation under an affine mapping. Let τ be the translation
jχH>χ + y with x , y e X . The Fourier transform at x' of the image of a
gaussian with variance Q under the translation τ is

exp(-K*',3>>)exp(-iβ(x')/2).

It is no longer the exponential of a quadratic form, hence, according to
the previous definition, it is not a gaussian. We shall call it a translated
gaussian. A translated gaussian is often casually called a gaussian (of
mean m); a proper gaussian for which m = 0 is then called a centered
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gaussian. This terminology originates from the equation

f exp( — i<x', x»— τ=^exp(ί(x — m)2/2a)dx
JR |/2πfα

= exp( — i <x', m> exp ( — ίuxf2/2)) .

The image of the gaussian [pseudo] measure of variance Q by the
affine mapping τ ° P is the translated gaussian whose Fourier transform is
defined by

c) Examples. Let F stand for either #_ or #+ or #; the dual of
F is Jί.

In this paper we shall use the following linear continuous mappings:
P: F-*F, Pn : F->IR" and P : Jf ->F where JV is a Hubert space.

III. Paths with Given Boundary Values

In the first paragraph we compute the pseudomeasure on IR^ induced
by the pseudomeasure w_ on ^_; in Paragraph 2 we consider path
integrals over the space of paths with non vanishing Dirichlet boundary
values in Paragraph 3 we determine the pseudomeasure on 2tf which
induces vv_ on ^_ .

1. Measures on IRn

Let Pn:F-»IRn by χt->u where u is the w-tuple (ul=(μhxy) for
μA . . . μn G Jί . Because the family (δt ί e T) is a basis for Jί, the mapping
from F into lRn defined by (μf = δt) will be called the natural mapping
into IRn for the basis (δt).

The transposed mapping Pn : W-+JI by ζ±-+μ is defined by

= ΣζiU1 where (Cf) are the coordinates of ζ in the dual basis

Proposition 1. 77ιe zmα^β on IR^ by Pn of the pseudomeasure w on
is ί/ie gaussian measure wn o/ covarίance if= (i^lj) where

Proof. . The variance V^Π of wn is
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Remark. w_ and w+ induces gaussian measures on 1R" of covariance

Hry = W_ (μ.5 μ ) and W? = 1/1/+ (μf, μj) respectively .

Application. Path integrals of cylindrical functions on F can be
immediately reexpressed as integrals over IR":

F

du^du2 ...du"

Equation (1) generalizes a result4 given in [1]. Many results previously
derived [2-5] can be obtained readily from Eq. (1) by choosing μi = δti

or μi = δtι — δtι_l with ta=t0<tί< <tn=tb. Equation (1) is used
extensively in this paper.

2. Path Integrals on %ab

Transition probabilities and expectation values are computed from
path integrals on a space ̂ ab of paths q on T= [ία, ίb] with given Dirichlet
boundary values: q(ta) = a and q(tb) = b. The space ^ab is not a linear
space; ql,q2 e^^g1 + q2 E^ab. It is not an affine subspace of
^_; qG^ab=>qφ^- unless a = 0. The pseudomeasure wab on ̂ ab

induced by the pseudomeasure w on ̂  can be obtained from the transla-
tion τ : ̂ -^^ab by x\->q = x + q where q is the average path in ̂ ab

(μ) = exp( - i<μ, ί» exp( - i W(μ)/2) . (2)

Because wα b on ̂ αfc has the same variance as w on ̂

f F(q-q)dwab(q)=$F(x)dw(x).
<$ab <£

In particular

iG(r,s)= J <δr,q-qy<δs,q-qyd\va
(gab

J <^r, </> <^s, ί> dwβί(9) = iG(r, s) + ή
cgab

The average qeΉab can be computed from the average z in the
affine subspace (gb~ac(^~ defined by <δίb, y) = b — α: indeed the trans-
lation ZH>^ = z + 0 yields g(ί) = z(t) + α

δt,yydw_(y) (3)

4 Last equation p. 62. Note a misprint in the first equation p. 63; it should read
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where χ(y) is the characteristic function of cβb~a c ^_

*()>) = 1 if <<5ίb? yy = b-a, χ(y) = 0 otherwise

and where the normalization N is given by

N= f χ (y)dw_GO. (4)

The integrands of N and z (ί) AT are cylindrical functions and can be
reexpressed as integrals over IR and R2 respectively by using Eq. (1):

Let Pί : y H> u = <δίb, j;> ί/zen τSΓ_ - W(tb) = T and

N = f 5(tt - 6 + fl)ττ== exp(in2/2Γ) = T7=L= exp(i(fr - α)2/2T) .

and

Finally q(t) = b + - a.

The average "̂ can also be computed from the average path in the
affine subspace of ̂  + defined by <<5ία, y> = a — b.

Proposition 2. The pseudomeasure w on %> induced by either the
pseudomeasure w_ on ^_, or the pseudomeasure w+ on Ή+, is the gaussian
pseudomeasure of covariance

G(r, s) = W(δr, «5S) = inf((r - ίa) (tb - s) T~ \ (s - ία) (tb - r) Γ" l ) .

Proof. Let χ be the characteristic function of ^C^_ defined by
χ(x) = 1 for paths x such that <(5rb, x) = b and 0 otherwise, then

where N is the normalization given by Eq. (3) and q is the average
of the paths in %b given by Eq. (3). The integrand is a cylindrical function
and the integral over <$ '_ is readily expressed as an integral over IR3

[Eq.(i)] by using P~:^_->1R3 by wf = <5 i 9x> with δ^δ,, δ2 = δs,
δ3 = δtb. We obtain Proposition 2 by a calculation similar to the calcula-
tion of N and q previously outlined.

Remark: In some cases it is preferable to solve a problem on # and
then make a translation to ^ab, in others it is preferable to set up the
problem directly on ^ab. A similar situation occurs in field theory; in
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some cases it is preferable to compute vacuum expectation values, in
others it is preferable to consider quantum fluctuations with respect to a
non zero classical background field.

3. Canonical Measure on 3Ίf

Definition. The canonical gaussian pseudomeasure on a Hubert
spaced of real square integrable functions on Tis the gaussian of variance

T

Let P, P_, P+ be the primitive mappings defined by

?_ by P_/(ί) = χ(ί)= f/( r )dr
ία

> + by

-># by

The transposed of the primitive mappings are

P-μ(r)=$γ-(r-t)dμ(t)
T

P+μ(r)=$Y+(r-t)dμ(t)
T

Pμ(r) = j dμ(t) = Γ~ (r - ί) - - Y + (r -
τ

in particular

Proposition 3. The pseudomeasure w on <$ is the image by P of the
canonical pseudomeasure on ffl .

Proof.

ί/,-5

= J dμ(r) J dv(s) inf((r - ίj (ί, -s)T~\(s- ta) (tb - r) T
T T

= W(μ,v).
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Similarly one show that / °P_ = !/!/_ and I°P+ = W+; these last two
equations generalize to vv_ and w+ a well-known property of the
Wiener measure.

IV. The Feynman-Green Functions

1. Introduction

In this section we establish the relationship between the action S of a
system and the pseudomeasures of its path integrals. The action is a

function on the path space F of the system; the pseudomeasures are
defined in terms of their Fourier transform, i.e. in terms of functions on the
dual of F. We cannot construct directly a "natural" mapping from F
into its dual, nor vice versa, but we can do so via the natural mapping
Pn: ̂ -^IR" and via the primitive mapping P : ffl -+%> defined in Section III
because there exist canonical isomorphisms between IR" and its dual,
and, between ffl and its dual.

The gaussian of covariance infimum on <€ is induced from the
canonical gaussian on ffl by the primitive mapping P. The gaussian of
covariance ifr=('Wlj=W(δti,δt)) on IR" is induced from the gaussian
of covariance infimum on # by the mapping P", natural for the basis
(δt) on Jί.

Fig. 1 a, b. The gaussian of covariance infimum on ̂  is induced from the canonical gaussian
on 2tf by the primitive mapping P. The gaussian of covariance iΓ = (i^ίj= W(δtι, δtj))
on IR" is induced from the gaussian of covariance infimum on ̂  by the mapping P", natural
for the basis (δt) on M

Fig. la shows the construction of P° J°P :^->^; the canonical
isomorphism J : ffl -> #C is the identity when $C is real and is the complex
conjugation when 2? is complex. Figure. Ib shows the construction
Pn° J°Pn: ^-^Ji\ in this section Pn is the natural mapping for the basis
(δt) on M, i.e. Pn: x^(ul = <<5ίί5 x»; J is the identity and will be omitted
for brevity. To simplify the presentation we consider the case Έ = ($\
the results can immediately be restated for the cases F = ̂ _ and F = ̂  +
it will also be clear how they can be extended to other spaces.
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2. Definitions

In this paper a Green function is defined in its strict sense:
Definition: The Green function for a positive (elliptic) second order

linear differential operator D2 with constant coefficients defined on an
open set U is a kernel on U x U such that

— D2. G(r, s) = δs G is an elementary kernel of — D2

G(r,s) = OϊoΐredU,seU vanishing on the boundary

G is C°° on U x U — {r = s} which is C°° except on the diagonal.

Definition. The small disturbance operator of a system S defined on
%?ab is the operator D2 defined on ̂  by the equation

= S(x,y)=-$x(t)D2y(t)dt with qe^ab and x,y,£%

where S" is the second derivative of the action S of the system S and where
q is the classical path of S, i.e. S'(q) = 0.

Definition. Let S0 be a quadratic action, i.e.

S0(x + 5) = So© + iS'όίfl) ** q e «"b, x 6 <?

the small disturbance operator of S0 is a positive second order linear
differential operator with constant coefficients defined on (ίfl, ίb); its
Green function will be called "the Green function of S0" for brevity.

Definition. The Feynman-Green function for the system S is the
expectation value of the time ordered product x(r) x(s) in the transition
from the initial state A = (x(ta) = 0, ta) to the final state B = (x(tb) = 0, tb)
of the system S. It vanishes for either r or s equal to ta or tb.

3. The Feynman-Green Function as a Covariance

Proposition 4. The covariance W(δr, δ^) of the gaussian pseudomeasure
w on %? is the Feynman-Green function G(r,s) for the free particle.

In general, given a system 8=80 + 8^ where S0 is a quadratic action,
the Green function of S0 is the covariance of a pseudomeasure suitable
for the path integrals of the system S; i.e. the Feynman-Green function
of the small disturbance operator S0 is the covariance of a pseudomeasure
suitable for the path integrals of the system S.

We shall give four proofs of the fact that W(δr, ί>6,) is the Feynman-
Green function for the free particle in order to illustrate different aspects
of the path integral formalism; three proofs are given in Paragraphs a, b, c
below, the fourth is given in Paragraph 5.
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a) Let S0 = ̂  Jx2(ί)dί, we have shown in [1] that the formal
r

expression Jexρ(/ίS0(x))Sίx defined by Feynman is equal to Jdw(x).
# #

Hence

r) x(s))>So = f χ(r) x(s) exp(iS0 W) ®* = ί <^r, *> <δs, x

b) One can check directly that W(δr,δs) is the Green function of
d2/dt2. m

c) The third proof shows, on a particular case, the relationship
between an action S and the pseudomeasures suitable for the path
integrals of the system S. Let Pn be the natural mapping from # into 1R"
by χ\-*u = (ul=(δti9xy) for ta = t0<t1<- <tn<tn+ι = tb. Pn maps w
into the gaussian of covariance H/" = (i^ij) where i/^ij= G(th ί,-).

Hf has the typical pattern of an uinfimum matrix"; its inverse is a
second order difference operator.

OC2β2 <X2β3...OC2βn

where αf — tt — ta

i 1 -1_j

1 1 -1
I

o

o -i i "••••• i
- + -

ίπ-ίn-i ί«-ί«-ι ί fc-W

i^J V = -(uί+1 - ul)/(ti + ί - ti) + (ι/ - Mf ~ ^/(ί/ - ί f _ i) together with

Let zlj be the difference operator corresponding to the differential
operator d2/dt2 defined on the space ̂  of paths vanishing on the boundary,

using

= <μ(v),G(v,φ
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we obtain

£<-<μ(ι;),G(Mj)>4,A>x> = <μ»x> Vμe^ and
j

which can be written more explicitly, albeit symbolically

ί j Σ
T l j=ι \r

for μ = δr, it comes

uhence

where Aj operates on the second argument of G, hence

- AjG(r, t) = δ\3 where δ\j is the Kronecker δ .

This is the difference equation corresponding to

— —2- G(r, t) = δ(r — f) together with the boundary condition

G(r,ίJ = G(r,g = 0

G is the unique inverse of — δ" satisfying these properties.
Remark. This proof explains the remark that "the Feynman-Green

function behaves like a finite matrix" [6].
Remark. Similar results can be derived for the covariances G_ and G+ :

(Or- \. = (i/r- \ except for i =j = n.

(Hr- \. = (nr- \. except for ί = j = 1 .

The "first edge" term OΪW+1 and the "last edge" term of 1^~l differ
from the edge terms of Hf ~ 1 because of the different boundary values
of x in^_, ̂ + and <β.

i/^~1u = Qis the difference equation corresponding to — d2x/dt2 = 0

for x e %

i^~ lu = 0 is the difference equation corresponding to — d2x/dt2 = 0

f o r x e ^ _

i^+ίu = 0 is the difference equation corresponding to - d2x/dt2 = 0

for xe^+ .
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Because difference operators are finite matrices, they have unique inverses
an equivalent statement is: because a difference equation has built-in
boundary conditions, its solution is uniquely defined. Thus G, G _ , G +
are unique solutions of difference equations defined respectively by

The co variances G_ and G+ are not Green functions; they are not
expectation values of time ordered products because the paths in ^_
and ^Y do not have fixed values at both t = ta and t = tb.

d) The proof c can be restated in more general terms to complete the
proof of Proposition 4 :

where q is the classical path of the action S0 defined on (€ab.
Let G(r, s) be the Green function for S0, let w be the gaussian pseudo-

measure on Ή defined by the covariance G, then the pseudomeasure
wab on ̂ ab induced by the measure w on ̂  [see Eq. (2)] is suitable to
compute the path integrals of the system S: The path q minimizes S0,
hence the bilinear form S0 on ^x^ defined by S0(x9y) = SfQ(q)xy
is positive, and the Green function of S0 defines a positive variance:

4. The Uhlenbeck-Ornstein Approximation

Given an action 5, there are often different ways of separating out
the quadratic terms S0, leading to different approximations. For example,
let
S(x)= J(ix2-iω2x2- Y(x))dt we can either choose S0(x) = ^$x2dt

T T

and use the pseudomeasure wab of covariance

G(r, s) = inf((r - ta) (tb - s) T~ \ (s - ta) (tb - r) T~ *)

or choose ς ί ϊ — 1 f r 2 — 2 2 W
r

and use the gaussian pseudomeasure w^ of covariance

Gω(r, s) - Y+ (r - s) : — sinω(5 - ta) sinω(tb - r)
ωsmω 1

+ Y~(r- s) : — sinω(r - ίfl) smω(tb - s ) .
ωsinωT

The latter choice leads to perturbation expansions which converge
more rapidly than the former [5].
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5. The White Noise Approximation

We have shown in Paragraph III.3 that the pseudomeasure w on ̂
is the image by the primitive mapping P of the canonical gaussian
pseudomeasure on ffl. It is natural then to call w a white noise pseudo-
measure and to call white noise approximations the approximations
consisting in a power expansion of the path integral J exp(iS(x)) dw(x).

Although we have already proved three times that the covariance
of w is the Green function of the free particle action, we shall prove it
again here from the definition of w as a white noise pseudomeasure:

G(r,s)=W(δr,δs)

The mapping P does not have an inverse nevertheless P ° J ° P has an
inverse, namely — d2/d t2 operating in ̂ , and (P ° J ° P),~ 1 G (ί, s) = δs .

V. Covariances of Quantum Mechanics

In this section we establish the relationships between the covariances
of the gaussian pseudomeasure used in the path integral formalism and
some basic functions of Quantum Mechanics.

Let G be the covariance of a gaussian pseudomeasure w on the
space # of paths vanishing on the boundary of T; let G_ and G+ be the
covariances of the pseudomeasures w_ and w+ on the spaces %> _ and ̂ +

of paths with a free end point that induces w on #. Let G, G_, G+ be
elementary kernels of a second order linear positive differential operator
with constant coefficients D2.

1. Advanced and Retarded "Green" Functions

Let Gadv and Gret be the advanced and retarded elementary kernels of

D2: D2G°e*(r,s) = δs; Gadv(r,s) = Q when r>s; Gret(r,s) = Q when r<s.
Then

G_(r, s) = Gret(r, s) - Gret(r, ta) r, 5, e (ta, ί J

G+ (r, 5) - Gfldϋ(r, 5) - Gadv(tb, s) r, s e [ίβ, g.

Proo/. Set F = G_ - Gret; F(r, s) is a solution of £>,2F(r, s) = 0 which
goes to 0 when r-+ta such that F(r,s)-F(s,r)=Gadv(r,s}-Gret(r,s)
it follows that F(r, s) = -Gret(r, ta).
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2. Van Vleck Determinant

Let M be the Van Vleck determinant; for paths g:T->IR3 by
q(t) = ((f(t);oι= 1,2,3) such that qa(ta) = aa and q«(tb) = b", M is the
determinant of the matrix

_ d2S(a,b,q)
aβ~ da«dbβ '

When S(q)= ^q2(t)dt with g(f)eIR then M = T~l. In general let
T

M be the Van Vleck determinant for the action whose small disturbance
operator is the differential operator D2, then

G(r,s)=G_(r,s)MG+(r,s).

Proof. Following the notation and the proof of Proposition 1, we
obtain:

G(r, 5) = W- (δr,

G(r,s)=G_(r,s)MG + (r,s).

This result is readily generalized to pseudomeasures on space of paths
with values on JRW: The Feynman-Green function is then defined by

" , s) = ί <δr,

The covariances Gi^ and Gα/ are defined similarly and

Gα/*(r, 5) = Gβ_y(r, 5) MyδG
δ

+

β(r, s) .

By expressing the covariances G°L^ and G°̂  in terms of the retarded and
advanced "Green" functions, this equation yields a relationship derived
by Bryce DeWitt [7] by a variational method for a large class of actions.

Remark. The determinant M was introduced in 1 928 by Van Vleck [8]
in his classic paper on the correspondence principle. It was later found [9]
to be the normalization factor in Feynman integrals necessary to maintain
the unitarity of the probability amplitudes. The product of n such
factors, and its formal limit when 77->oo, comes in the original definition
of Feynman integral [9, Eq. (21)]. It can be shown to be equal to the
determinant of the co variance "W whose ij element is

3. Uncertainty Principle

An analysis of the uncertainty principle in the framework of the path
formalism can be made by studying the product q(r) q(s) of the position
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and velocity of a particle: The uncertainty principle is a physical statement
of the undefined value of q(s) for qe^ab.

Let FFbe the variance of the pseudomeasure wab on %>ab corresponding

to the free particle dimensionless action —j~\\ <J2(t) dt.
Formally τ

(b,tb\Tq(r)q(s)\a,tay = - J <δr,q><.δ',,qydwab(q)
<gab

= -iW(δr,δ's)-q(r)ί(s)

δ's is not in Jt, hence W(δr,δ's) is not defined; the extent to which it is
not defined provides some insight in the uncertainty principle; for r ^s
we obtain

W(δr9 *s)=— G(r, s)=-(Y-(r-s}(r- ta) -Y+(r- s) (tb - r)) .

The discontinuity of W at r = s is equal to h/m. The expectation value of
q(r) q(r) of a particle of mass m with known positions at ta and tb cannot
be determined with an accuracy better than h/m.

VI. The Diagram Technique

The diagram technique is derived from the new definition of the
Feynman integrals so that it can be readily combined with the linear-
affine techniques.

The Feynman rules are a prescription for the integration of

with S^q) = j V(q(t}) dt = <A, V(q)y where λ is the Lebesgue measure.
r

The power expansion of S gives

/ = Σ-4/B with /„= J <λ,V(q)y*dwab(q)
HI

1. Linear Continuous Potentials. S^q) = \f(t) q(t) dt
T

Proposition 6. Let V be a linear continuous mapping from ^ into #, let
V be its transposed mapping, then

J <μ1; V(q)-V(q)y <μ2, V(q) - F©> ••• <μπ, F(ςr)- F©> rfw^^)

't>(μι,,μ,,)WoF(μ i3,μ i4)...M/
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for n even and 0 for n odd. The quantity

In = jb <μ1? V(q)y <μ2, 7(β)> ... <μπ, F(^)> dwβbte)

is readily obtained by multiplying out the lefthand side of this equation.

The proof of Proposition 6 is given in three steps

a) J<μ 1 ? x> <μ2, x> ... <μ2π, x> dw(x)
#

= (ίyιΣW(μil9μi2) W(μi3,μu) ... W(μi2n_ί9μi2n)

where the sum Σ is taken over all partitions of {1,... 2n}.

j<μ 1 ? x> ... <μ 2 w + 1,x>dw(x) = 0.

These equations can be proved by using Eq. (1). They can also be proved
by expressing the multilinear form <μ l 5x> ... <μ2n>*> on ̂ x •••
as a linear combination

The integral of each term can be reexpressed in an integral over 1R, it
gives :

L n\

Using W(Σ(μi)) = ΣW(μi) + 2ΣW(μhμj), the desired result is obtained.

b) f (μι,q-&(μ2><l-'<L> •••(V2n><l-qydwab(q)

= (ίrΣW(μil9μi2)...W(μi2n_ί9μiJ.

c) V being a linear mapping V(q) — V(q) = V(q — q)= V(x). We can
treat F:^->^ as a change of variable; the pseudomeasure induced by
this change of variable is the gaussian of variance W° V.

For easy comparison with results derived previously in the case
μ( = δt. we write out /„; set W^V=WV

I, = <μ, V(q)y

h = iWv(μl9 μ2) + <μ

I4 = -ΣWv(μil9 μi2) Wv(μ^ μj + iΣWv(μ^ μj <μ/3,

+ <μι,
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Example. The forced harmonic oscillator

S = J (±χ2(t) - ±ω2x2(t) + f ( t ) x(t)) dt = S0 + S,

where
S 1 ( x ) = S V ( x ( t ) d t = $ f ( t ) x ( t ) d t .

T T

Let w^b be the gaussian pseudomeasure defined for the Uhlenbeck-
Ornstein approximation in Paragraph IV A; let Wω be the variance of
w^, the variance is:

Wω o V(λ) = $dr$ds f(r) /(s) Gω(r, s) .
T T

The integrals In are conveniently recorded by the Feynman diagrams in
which f ( r ) f ( s ) Gω(r, s) is represented by a particle line from r to s. To
each line is associated a propagator: the Feyman-Green function Gω, to
each vertex is associated the interaction /. The sum Σ gives all possible
diagrams of a given order. The number of possible diagrams is n !/(]/2)w

• (n/2) ! = 1 3 (n — 1) as can be seen readily by setting μί=μ2 = » μ2n

in the 2 integrals of paragraph a.

2. Non-linear Potentials Satisfying J V(u) exp(iw2) du<oo
R

Set J V(x(t)) dt=\dt V((δt, x» and use
T T

where ϋ^ is the matrix whose ίj element is G(th tj).
When V(u) is a polynomial, the integration over IR" is straightforward

and the computation of /„ can again be stated in terms of diagrams.
When V is an arbitrary non-linear interaction, the integral over

1R" is usually not expressible in closed form.

VII. Conclusion. Variances Versus Feynman-Green Functions

A brief statement of the progress made in this paper could be this:
the variance W(μ, v) is a more versatile tool than the Feynman-Green
function G(r9s)=W(δr9δ^ it defines; a more sophisticated statement



Feynman Path Integrals 8l

could be this: In the "definition" of Feynman integrals in terms of the
action, the emphasis is on x(ί); in the definition of Feynman integrals
in terms of a pseudomeasure, the emphasis is on x e F where F is the
Feynman space of the system. By shifting emphasis, one can use simple
and reliable techniques to simplify and generalize previous results as
well as to obtain new ones.
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