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Abstract. It is shown that naked "shell crossing" singularities can occur in the
gravitational collapse of a spherically symmetric ball of perfect fluid for a large family of
equations of state in which the pressure has an (arbitrarily large) upper bound, and,
moreover, that this behaviour is stable with respect to spherically symmetric perturbations
of the initial data, as well as with respect to perturbations of the equation of state.

I. Introduction

In a previous paper [1], we displayed explicit solutions of Einstein's
field equations for the gravitational collapse of an isolated, spherically
symmetric object, in which regular initial data evolve into naked singu-
larities - contrary to the widely accepted [2] conjecture that, according
to general relativity, collapse inevitably leads to black holes which hide
the singularities. In one family of these solutions (inhomogeneous dust
clouds), the singularities are associated with "shell crossing", or caustics
in the congruence of matter flow lines. One might be inclined to dismiss
these solutions by asserting that i) such caustics become quite innocuous
if the pressure is nonzero, ii) these singularities are in any case unstable.

We shall, however, show here that naked "shell crossing" singularities
can occur in the collapse of a spherically symmetric ball of perfect fluid
for a large family of equations of state in which the pressure has an
(arbitrarily large) upper bound, and, moreover, that this behaviour is
stable with respect to (spherically symmetric) initial conditions and
equation of state.

The restriction of bounded pressure is not necessarily so unphysical
as it may seem. Our upper bound can be arbitrarily large, say 10114 erg/cm3
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(corresponding to the "Planck length" for radius of curvature). It seems
quite likely that long before such pressures could be attained, the concept
of classical spacetime (and with it, classical general relativity) would
anyway become physical nonsense.

We restrict, as usual, our attention to spacetimes which contain
only a single object1. We say that this object is undergoing gravitational
collapse if 1) the spacetime contains a regular ("initial") spacelike hyper-
surface on which the energy-momentum tensor has connected compact
support and all physical quantities are well behaved, 2) there exists a
nonextendible causal curve within the matter which has finite affine
length. We say that the singularity is naked if there exists a causal curve
with one end on </+ and the other end "on the singularity".

It should be noted that we are treating dynamical solutions which
evolve from regular initial data into singularities. There are many well
known static solutions which have naked singularities, but their physical
significance is far from clear, and they are excluded from the present
discussion by condition 1) of our definition of gravitational collapse.

Our procedure here is the following. We pose a Cauchy problem,
but instead of giving regular initial data, we specify final data on a
spacelike hypersurface such that the energy density becomes infinite on
this hypersurface. We show that with this final data our Cauchy problem
has a regular solution into the past. Then taking as initial surface some
spacelike hypersurface in the past of our final surface, one sees that there
exist regular initial data which evolve (now forward in time) into a naked
singularity.

In Section II we write down Einstein's field equations and state our
Cauchy problem. In Section III we discuss the specification of appropri-
ate final data, including a condition for the presence of naked singu-
larities. In Section IV we show that our Cauchy problem is well posed
and prove the existence and uniqueness of solutions into the past,
and the stability of the occurrence of the corresponding naked singu-
larities. Section V contains a concise statement of our results, along
with a few remarks; the appendices treat technical details.

Π. Statement of the Cauchy Problem

We consider the isentropic collapse of a sphere of perfect fluid,
assuming that the specific entropy is uniform throughout the sphere.
Then the equation of state can be specified by giving, say, pressure p
as a function of energy density ε. If u is the specific internal energy

1 In physical terms, this means that the collapsing object is assumed sufficiently
far away from everything else in the universe so that everything else can be neglected.
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(including rest mass) and v the specific volume2 of a unit quantity of
matter, then ε = u/v.

Because of our thermodynamical assumptions one can, if one prefers,
write the pressure as a function of v [3] this form is more convenient
fθΓUS Set ι;1:=sup{t;|p(t;)>0}; (1)

we neglect any atmosphere surrounding the object by assuming that v^
is finite; then p ( v ί ) = 0.

We shall use a slightly modified version of the equations derived by
Misner and Sharp [3,4] for spherically symmetric perfect fluids. We
write the spacetime metric in the form

ds2 = eλ(r>»dr2 + R2(r, t) dΩ2 - e2φ(r^dt2 (2)

where r is a comoving radial coordinate.
The number A of unit quantities of matter contained in a sphere

of coordinate radius r,

A(r):=\4πR2eλ/2υ-ldr, (3)
o

is independent of ί, and we shall choose our comoving radial coordinate3

as r:= (3A/4π)1/3. We define, with Misner and Sharp, the quantities

I7(r, t): = DtR = e~φR Γ(r, t): = DrR = e~λ/2R

where': = -̂ r— and': = —-. We shall take as our basic functions U, v, R, Γ.
or ot

The metric coefficients can be written [3,4] as (recall that u and p are
functions of v) ~

MI r v M 1

R2 ' u + pv '

so clearly our four basic functions fully determine a solution. Einstein's
field equations are in fact equivalent [4] to the constraint equations

p2 p/ ^TΛΛ

0 (6)
r' v R

along with the system of evolution equations

,ίJ/
j) = 0, (7)

2 Note that v = n 1

9 where n is the number density. For our purposes, ί; is a vastly
preferable quantity to n, since v is finite (in fact, zero) at the singularity.

3 This choice for r has two nice properties: it is proportional, in first order, to the
radial distance to the center; and our system is hyperbolic with this choice [see Section IV].
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provided that Γ > 0 everywhere. Here we have defined

/:=( U , v , R, Γ)

o 2φp

dv r2 -, o, o'

A: =

B:= \eφ[4πpR

eφR2

Γr2

0

n

ί-

-, o

, o

e^υ dp *, e u
dv r

f U2-Γ2\

2R r

, 0, 0

, 0, 0 1

'2 n o /
L 1

P<P f,<P
6 R ' e

(8)

(9)

(10)

If the constraint Eqs. (6) hold at one time, then the evolution Eqs. (7)
imply that they hold at all times.

Our set of basic functions is redundant; in fact two basic functions
suffice to determine the solution [3,4]. But there is no harm in this
redundancy, and it has the virtue that the evolution Eqs. (7) for our set of
basic functions are quasilinear.

We consider now the Cauchy problem for these equations. Let
r e /: = [0, fo] be the region occupied by matter. The appropriate Cauchy
data for this system of equations are "mixed": in addition to giving the
four functions /l(I, ί0)

 a^ some time ί0, one must specify the boundary
conditions (7(0, ί) = 0 and v(b9t) = vi. The first of these boundary
conditions ensures that the line r = 0 is a regular center of spherical
symmetry, and the second ensures that the pressure is zero [recall
Eq. (1)] at the junction with the vacuum r = b, which is the necessary and
sufficient condition for this interior solution to match to a vacuum
exterior [3].

We shall show in Section IV that this really is a properly posed
Cauchy problem. For the moment, we note that in order for the solution
to be C2, we must impose on the initial data the consistency conditions
17(0, ί0) = 0, U(Q, f0) = 0, ύ(b, t0) = 0, ϋ(b, ί0) = 0 [5 p. 472].

III. Final Data

Let t = ts be the final hypersurface. We want to specify the four
functions /'(/, ts) in such a way that our Cauchy problem has a regular
solution into the past, but the corresponding spacetime has a naked
singularity4. So we first need a condition on our final data which ensures
the presence of a naked singularity; this is provided by the following

4 For details about some possible causal structures of such spacetimes see Ref. [1].
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Lemma. Suppose v(rs, ts) = 0, rs e /; R(r, ts) is monotonically increasing
for re [rs, b]; and R(rs, ts)>2m(b, ts). Then if a solution to the Cauchy
problem exists, it has (when maximally extended) a naked singularity.

Proof. The mass of the Schwarzschild exterior to which this interior
solution matches is m(b,t) [3]. But the surface area of ί = constant
sections of the horizon cannot increase into the past [6; p. 318], so
R 5̂  2m(b, g everywhere on the horizon when the horizon is extended
into the interior. On the other hand, it follows from our hypotheses
that R(r, ts) > 2m(b, ts) for all r e [rs, b~\. The point (ft, ts) is certainly outside
the horizon, and since R ̂  2w(ί>, g everywhere on the horizon, no
point of the horizon can lie in the past of the set {re [rs, /?]; t = ts}.
Therefore either the singularity at (rs, ts) can communicate with ,/+, or
at least the horizon encounters some other naked singularity. Π

We can now list all the conditions to be fulfilled by our final data.
There are five sets of conditions:

a) Constraint equations: Γ = —5— Γ2 - U2 - 1 + -̂ - = 0;
r2v R

b) shell crossing singularity at (rs, g, with regularity to the past:
t;(rs, g = 0; f(r, ge(0,fj for re/, r s Φ r φ f c ; R'(rs, ts) = 0; R'(r,ts)>Q
for r e /, rs Φ r; ύ(rs, ts) < 0;

c) boundary and consistency conditions: #(0, g = 0; £7(0, g = 0;
ι/(o, g=o; c/(o, g=o ; V(b, g=v, ; ύ(b, g=o ; ϋ(b, g=o ;

d) nakedness conditions: R\t=ts monotone, R(rs,ts)>2m(b,ts);
e) smoothness conditions: V,υ,R,Γ are C2 on {ί = ίs},Γ>0.
We must show that these conditions are compatible. We shall

proceed by expressing all our data in terms of two functions m(/, g
and R(I, g. First, we have

But since v is determined as a function of ε by the equation of state,
this equation fixes v. Then the first constraint equation fixes Γ, after
which the second constraint equation fixes U to within its sign. This
sign we are free to choose; we shall fix it in the following paragraph.
With this procedure, conditions a) are of course automatically satisfied.

We now show how to choose R and m in such a way that the remaining
conditions are also fulfilled. First, choose rs, b, and a monotonically
increasing C3 function m(r), with ra(0) = 0, m(r) = 0 at and only at r = 0,
and ~ , ^

...n.^ . 3 mW

where

ι;1 m(

m'^4πr2u0 ( l ib)
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If (as we shall assume later) p(v) has an upper bound pm9 then u0

+ pmv1. Then choose a monotonically increasing C3 function R(r),
with R(Q) = 0, R(rs) > 2m(b\ R'(r) = 0 at and only at r = rs9 and

m"(rs) rsR(rs) - 2m'(rj Λ(rs) + 16π2r>|2=0 Φ 0, (He)

#2.R' £Ξm'^πε^), with equality at, and only at r = b . ( l id)

Conditions d) are obviously satisfied. If, having obtained U2 by means
of the constraint equations, the sign of U is chosen such that [7'(rs)<0
(which implies that ύ(rs) <0), conditions b) will also be satisfied [Eq. (He)
ensures that t/'(rs)Φθ]. Equation (lid) is just the condition v = vi

at the boundary r = b, with v < v^ for r e [0, b).
Equation (Ha) is a consistency relation between (lid) and the

nakedness conditions. Unfortunately, it does not give any significant
restrictions on the occurence of naked shell crossing singularities.
First, it could surely be weakened (since the nakedness conditions are
sufficient, but certainly not necessary ones), and in any case it is already
very weak from a physical point of view. For instance, if we take φj
equal to the density of water and m(rs)/m(b)= 10~2, then (Ha) only
implies that m(b) < 4 107 solar masses5.

Equation (l ib) implies that Γ> 1, which ensures that U, obtained
from the second constraint equation, is real. A sufficient condition for
the compatibility of (Ha) and (lib) is

b3 - r3 ̂  -^— [m(b) - 32πφx) m(fo)3] ,

which can certainly be fulfilled with rs < b.
Finally, we note that the conditions c) and e) only add (via the

evolution equations) restrictions on the first three derivatives of .R
and m, evaluated at r = 0 and r = b, which obviously can be fulfilled.
It makes sense to have restrictions on the third derivatives of R(r) and
m(r) because if all four of our basic functions /|ί=ίs(r) are C2, this implies
that R\t = ta(r) and m|ί = ίs(r) are C3.

IV. Existence, Uniqueness, and Stability

We return now to a consideration of the evolution Eqs. (7)-(10).
For a quasilinear system (in two variables) of the form (7), with a set of
initial data f i \ t = t o ( r ) = ψi(r), Courant and Hubert [5; p. 461 ff.] show by

5 Given the minimum energy density 8(1 )̂, a necessary condition for the occurrence
of any naked singularity is (11 a) with rs = b. But this inequality is precisely equivalent to the
demand that the surface of the object is not a trapped surface, which is surely a natural
requirement.
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an iteration procedure that there exists a unique solution possessing
Lipschitz continuous first derivatives in a suitable neighbourhood
{t e [ί0 — h, ί0]} if the following conditions hold:

a) the system is hyperbolic with respect to the given initial data;
b) the initial data ψ, the coefficients A, B, and the left eigenvectors lk

and the corresponding eigenvalues λk of the matrix A possess Lipschitz
continuous first derivatives with respect to r, ί, and /. It is not hard to see
that if the condition of Lipschitz continuity of first derivatives in b)
is replaced by the demand that these functions should all be C2, then the
solution will be C2 in a suitable neighbourhood; let us call this condition

b')
Under condition b7), the spacetime metric is, as one wants, C2

everywhere in the regular region. However, the fact that the solution
to our system of equations continues to be C2 also at the singularity
does not mean that the spacetime is C2 at the singularity (this would
contradict the circumstance, already built into our final data, that
the Ricci scalar is infinite at the singularity). There is no inconsistency
here: One need only note that no comoving radial coordinate can be
admissible at a shell crossing singularity.

The system is hyperbolic with respect to the data ψ if and only if the
matrix A has four linearly independent left eigenvectors lk,

ΐiA] = λkl], (12)

when the initial data are inserted in place of/ everywhere in A [5 pp. 425,
476]. In our case, the left eigenvectors can be chosen as

(13)

These are linearly independent with respect to our final data if dp/dv
is strictly negative.

The smoothness condition b') holds everywhere except at r = 0 if the
equation of state is such that p(v) is of class C3 in the closed interval
[0, t J; this implies in particular that the pressure p must be bounded,
and that the speed of sound \/dp/dε must tend to zero as ε tends to
infinity, in such a way that ε2dp/dε is bounded. Within the set of bounded
equations of state, this does not seem to be a very strong restriction:
for instance, it holds for any equation of state for which p(ε) is an inverse
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power series. Moreover, our restrictions on the equation of state are
compatible with the physical requirement dp/ds< 1.

As for the failure of the smoothness condition at r = 0, we shall show
in Appendix I that the existence proof can be modified so as to admit
this violation of the smoothness condition. Obviously, this is a mere
technicality; the fact that it can be done just means that one can treat
perfect fluids with regular centers.

For our mixed Cauchy problem, we must show in addition that
we have specified our boundary conditions properly. Let gk denote
the canonical functions for our system:

ff* :=/?/'. (14)

In every iteration step, the functions gk propagate along the fcth character-
istic, that is, along the curves for which dr/dt = λk. For our system,

(15)

It is seen that only the characteristic numbered 2 emanates from the
"corner" (0, ίs) into the region {r e (0, i>); ί < ίs}, and only the character-
istic numbered 1 emanates from the "comer" (b, ίs) into the region
{re(0,b);t<ts}. Therefore [5; p. 472] in a properly posed Cauchy
problem, we must specify g2 along the boundary r = 0, and g1 along the
boundary r = b. This specification can be done by giving g2 as a linear
combination of the other gk plus a function of time along r = 0 (and
correspondingly for g1 along r = b). But this is precisely the way we have
stated our problem in section II, since

= 2 (16)

v = v\l

Hence there exists a unique solution of our Cauchy problem in
some neighbourhood to the past of the final surface.

Let /(r, ί) be this solution. If tt < t89 with ts - tt sufficiently small, then
the initial data given by f\t=ti(r) are regular, and evolve into a naked
singularity.

By construction, our singularity has the property that the energy
density approaches infinity as (rs, ts) is approached. In Appendix II
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it it is shown that, in addition, there are incomplete causal geodesies
terminating at the "sphere" (rs9 ίs).

Finally, we consider the important question of stability.
First we extend the equation of state p = p(v) to negative values of v9

in any way that maintains the smoothness requirements on p. Having
done this, there exists also a unique solution of our system of evolution
equations to the future of the final surface. Since we have chosen the
final data such that v(rs9 ts) < 0, the specific volume υ takes on negative
values to the future of the final surface. This formal extension therefore
cannot be regarded as an extension of the spacetime; it is, however,
useful for proving stability.

With the formal extension, our problem has a unique solution in a
neighbourhood {ίe [ts — h, ts + h]}, for some h>0. In particular, if we
choose our "initial" time tt such that ts — tt<h9 then the initial data
f\t=tί(r) evolve past ts into the region of negative v.

The formal extension shows that the occurrence of a shell crossing
singularity is, in our formalism, a C° condition on the solution, and the
nakedness conditions [Section III] are also C° conditions. Therefore,
any solution of our system which lies in a sufficiently small uniform C°
neighbourhood of the solution fs in the domain {ίe [ίs — h9 ts + h]}
has a naked singularity.

But it follows immediately from the convergence of the iteration
procedure used in the existence proof for the Cauchy problem in Ref.
[5 pp. 464-478] that given any uniform C° neighbourhood N0 of the
solution fs9 there exists a uniform C2 neighbourhood N^ of the initial
data fs\t=t.(r) and a uniform C3 neighbourhood N2 of the equation of
state p = p(v) such that for any initial data in Λ^ and any equation of
state in N2, the solution lies in AΓ0

6.
That is to say, the occurrence of naked singularities treated in this

paper is stable with respect to (spherically symmetric) initial data and
equation of state.

V. Conclusions and Remarks

We have proved the following
Theorem. For any equation of state p(v) which is C3 for ve [0, î ],

with dp/dv strictly negative1, there exist regular spherically symmetric
initial data for Einstein's field equations such that

6 The width h > 0 of the strip in which the solution exists can be chosen uniformly
for sufficiently small neighbourhoods NltN2. Hence ti can be chosen such that every
solution with initial data in Nl and equation of state in N2 actually can be extended by
means of the iteration procedure beyond ίs into the region of negative v.

1 This is equivalent to the demand that s2dp/dε is strictly positive. By the way, it is
possible to weaken this condition to admit a large family of equations of state for which
dp/dv is allowed to be zero at v = 0, but the proof is too tortuous to be worth explication.
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the unique maximally extended solution of Einstein's field equations

with these initial data has a naked singularity,
moreover, this property is stable for arbitrary spherically symmetric

perturbations of the initial data lying in a sufficiently small uniform C2

neighbourhood, and arbitrary perturbations of the equation of state
lying in a sufficiently small uniform C3 neighbourhood.

Since our system of equations explicitely assumes spherical symmetry,
the proof of stability based on those equations naturally holds only for
spherically symmetric perturbations of the initial data. But because we
need only C° conditions on the solutions for stability, it seems likely
that one has stability also for nonspherical perturbations.

One is somewhat inclined to regard an equation of state in which
the pressure is bounded as unphysical. We remind the reader that our
upper bound on the pressure can be arbitrarily large: It is well to bear
in mind that no assertions about the behaviour of the equation of state
for pressures greater than, say, 10114 erg/cm3 can be taken very seriously,
since in this regime our whole present theoretical framework can hardly
be considered meanigful. Indeed, the most sensible approach to this
matter is probably to accept the suggestion of Hawking and Ellis
[6; p. 363] that any region with radius of curvature of the order 10"15 cm
"for all practical purposes could be regarded as a singularity".

The results reported in this paper make it plausible that naked
"singularities" of this much weaker sort can occur for any smooth
monotonic equation of state p = PI (ε), since, given p1, one can find another
equation of state p = p2(ε) such that p2 satisfies the restrictions of the
above theorem and Pι=p2 for β^ 10114 erg/cm3, say. Unfortunately,
our theorem is only a local existence theorem; therefore it does not
amount to a proof that the development into the past can be extended to
reach "reasonable" initial data. Here "reasonable" would mean roughly
a state in which, throughout the interior region, ε(v1)^ε<ε2, where
ε2 is, say, of the order of 1010g/cm3, and the distribution of density
and velocity is not too strange.

Returning again to the more stringent definition of singularity,
we remark that there appears to be some small hope of extending our
present method to the case of equations of state for which the pressure
is a logarithmic function of the energy density, and to singularities which
occur at the center of the object.

Acknowledgement. We thank Prof. J. Ehlers and Prof. A. H. Taub for helpful critical
comments.

Appendix I

The existence and uniqueness proof for hyperbolic first order systems
in Ref. [5] uses the smoothness requirements of Section IV in order to
get estimates on certain integrals (for instance, see the top of [5 p. 468]).
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These estimates are needed to prove that the iteration operator is
contracting. If the smoothness conditions hold, one can apply the mean
value theorem directly to obtain the required estimates, as done in [5].

In our case, the smoothness conditions are violated at r = 0, but in
such a way that the required estimates can be obtained by a different
method than that used in [5], so that the existence and uniqueness
theorem still holds. Namely, a number of our coefficients are proportional
to R2/r2, so that the first derivatives of these coefficients with respect
to R and r are unbounded at r = 0 (since R is proportional to r in a
neighbourhood of r = 0). The violation of the smoothness conditions
is always of this particular type. Let us then see how we can get estimates
on integrals of the general form

>:=J
Ώ \2 / r> \2

τ MT "I"
F,\dt

Λ Γ/ Z? \2 // n \2M ( F ι_F a ) +tf*ι

where Fn: = F(r, £,/„) has Lipschitz continuous first derivatives.
From the first constraint Eq. (6),

so that

Thus

!= $3r2Γvdr,
b

at.

For the second term, note that the mean value theorem implies

ίL)2_(^)J

=κ(r)[(M3_(JV3

r j \ r ) [\ r I \ r

with K(r] finite for all r. Therefore,

lU-fSrV^-r^JI

Thus

which can now be dealt with by routine methods.
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Appendix II

We show here that there exists an incomplete timelike geodesic
which terminates on the singular "sphere" (rs, ίs).

Let [tn] be a monotonically increasing sequence which approaches
ts, and let Pn be the point with coordinates (rs, π/2,0, ίn), for each n.
Define Kn = J+(P0)nJ"(PM); this is compact for each n, whence there
exist timelike geodesies gn between P0 and Pn for each n. Some subsequence
of the gn tends to a causal geodesic g in some neighbourhood of P0. In
fact, g cannot be null, for t is a global time function in (the regular part of)
our spacetime, which implies that the points of intersection of the past
light cones of the Pn with the future light cone of P0 tend to limit spheres
with t<ts.

Finally, we note that —— ^ eφ along any timelike curve. Since eφ

at
is bounded, g has finite proper length, and is therefore an incomplete
timelike geodesic terminating on the singular "sphere" (rs, ίs).
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