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Abstract. We generalize a theorem of Holley to include the case of continuous spins.
Holley's theorem is itself a generalization of the inequalities due to Fortuin, Kastelyn
and Ginibre.

1. Introduction

In the study of correlation functions for the Ising and other lattice
models in statistical mechanics the inequalities of Fortuin, Kastelyn
and Ginibre [2] (the FKG inequalities) play a fundamental role. The
object of this paper is to give a proof of some generalized FKG inequalities
which include the case of continuous spins. Results of this type have been
obtained from the original FKG inequalities by using discrete approxima-
tions (see [5]); also a direct proof has been given by Cartier [6]. In this
paper we will in fact generalize a result of Holley [3], which easily implies
the FKG inequalities. Let A be a finite set and let έP(Λ) denote the set of
subsets of A. Suppose μί9 μ2 :0*(Λ)-*1R. are probability densities, i.e.
μt ^ 0 and

Σ μAA)=ί for i = l , 2 .
ACΛ

Then we have:

Theorem 1 (Holley [3]). If for all A,

then
> Σ KA)μ2(A)

ACΛ ACΛ

for any increasing h:0*(Λ)-+1R. (where by increasing we mean that
h{A) ^ h(B) whenever ADB).

Using the well-known result of Birkhoff [1] that any finite distributive
lattice is isomorphic to some sub-lattice of &(Λ) for some finite set A,
it follows that Theorem 1 is true for any finite distributive lattice (where
we replace u by v and n by Λ ). From Theorem 1 we get the FKG
inequalities.
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Theorem 2 fFKG inequalities). Let μ:^(yl)->IR be a probability
density such that for all A,

μ(A u B) μ(A n B) ^ μ(A) μ(B).

Then for any increasing functions f g : 3P{Λ)-+ 1R we

X ^ X f(A)μ(A) £ ΰ(Λ) μ{A).
AcΛ AC A AC A

Proof By adding a constant we can assume that g>0. Define
μ2 = μ and

\
[BCΛ

Then μu μ2 satisfy the hypotheses of Theorem 1 and thus

X f(A)μi(A) = \Σ β(B)μ(B)}-1 Σ f(A)g(A)μ(A)^ £ f(A)g(A).
ACΛ [Be A J ACΛ AcΛ

We will now state our generalization of Theorem 1. The setting will
be a finite product of totally ordered measure spaces. Let A again be a
finite set and for each t e A let (Xt9 ίFv ωt) be a measure space with ωt

a non-negative σ-finite measure. Suppose that Xt is equipped with a
total order ^ that is ^-measurable, i.e. {(x, y) e Xt x Xt: x^i y} e ^t x ^t.
Let us denote Y\ Xt by X and the corresponding product σ-algebra

teΛ
Y\ 3Ft by ^ , and let ω = f\ ωt. Suppose fl9 f2 : X-> 1R are J^-measurable

with the properties (1) % f2 ^ 0; (2) J fx dω = j f2 dω = 1. For i = 1,2
let μf denote the probability measure fω on (X, #").

Theorem 3. Suppose fl9 f2 satisfy

Mxvy)f2(xΛy)^fi(x)f2{y) for all x j e l

(where if x = { x j ί e ^ y={yt}tsΛ t h e n xvy={max()c f,}; t)} t e^Λy
= {min(xί? yt)}teΛ). If /z:X-^lR is bounded, !F-measurable and in-
creasing (i.e. h(x) ^ /ι(y) if xt ^ >;f for all teA) then

J /z d μ x ^ J ft rfμ2

Remarks. (1) Theorem 1 follows of course from Theorem 3 by taking
^ = {0,1} for all teA and letting ωt be counting measure on {0,1}.

(2) Nothing would probably be lost if we replaced each X^ by 1R;
we use the present set-up to emphasize that the result only depends on
the properties of a total order.
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2. Proof of the Theorem

The proof of Theorem 3 is based on a proof of Theorem 1 due to
Holley [4]. (Holley's original proof of Theorem 1 in [3] was based on
the coupling of two Markov chains whose equilibrium distributions
were μx and μ2) The first step is to change the problem and consider the
following:

Proposition 1. Suppose fί9 f2 satisfy

M* v y) / 2 ( * Λ y) ̂  /i (*) fi(y) f°r all x, y e X .

Then there exists a probability measure v on (X x X, 3F x # ) such that

v(AxX) = μ1(A) for all Ae^ (1)

v(XxB) = μ2{B) for all Be^ (2)

v({(x, y)eX x X :x^y}) = 1, (where x^y means that

xt ^ yt for all t e A).

(1) and (2) say that the projection of v onto the first (resp. second)
factor is μλ (resp. μ2). Theorem 3 is an immediate consequence of
Proposition 1, since if h: X->1R is as in Theorem 3 and if we write
E = {(x, y)e Xx X :x^y} then we have

\hdμί-\hdμ2= J (h(x)-h(y))dv(x,y)
X X XXX

= l{h(x)-h{y))dv(x,y)>0,
E

because h(x) — h(y) ̂  0 if (x, y) e E.
We will prove Proposition 1 by induction on \Λ\, the cardinality

of Λ. The following notation will be useful: for A C A let

teA teA

Suppose for the moment that |Λ |^2, let teA and put A' = A — {t}.
For / = 1,2 let ρ(μf) denote the projection of μt onto X(A'). Then we have
Q(βd = QiU>A> where gt: X{A')-* 1R is given by

Lemma 1. Suppose that for all x,yeA

Then for all xf, y' e ^1' we have

v /) gf2(x' Λ /) ̂  gf^x') g2(y').
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Proof. Let G= {(ξ,ιj)e.2ζ x X,: ξ>η), E = {(ξ.^eX, x Jζ: ξ =

Gu£uL

= f J Λ(x' v / , 0 /2(x' Λ y', η) dωt(ξ) dωt(η)
E

+ Jf ί/i(*' v / , ί) /2(x' Λ / η) + / , ( * v / , η) f2{x' A y', ξ)} dωt(ξ) dωt(η).
G

Similarly

9i(x') 92(yf) = ff Ziίx', 0 fiiy\ n) dωt(ξ) dωM
E

+ ff {/i(χ', 5) Λ(/, n) + Mχr, η) fi(y', ξ)} dωt(ξ) dωM •
G

But by hypothesis we have

Λ(x' v y, ξ) /2(x' Λ / , ξ) ̂  Λ(x', ξ) f2(y', ξ)

and thus we can ignore the terms involving integrations over E. The
proof of the lemma would therefore be complete if we could show that

M* v / , ξ) f2(xf A /, η) + ftf v / , η) f2(x' A / , ξ)

^ fΛχ\ ξ) fiW, η) + AW, n) fi(yf, ξ)

whenever ξ > η. Let us write

a = f1(x'vy/,ξ)f2(xf Ay\η),

It is easily checked that if ξ >η then by hypothesis we have a^c, a^d
and ab ̂  cd. We want, of course, to show that a + b ̂  c + d, and this
follows from Lemma 2.

Lemma 2. Let α, b, c, d be non-negative real numbers with a^c,
and ab^cd. Then a

Proof. If a = 0 then c = d = 0 and the result is true; thus we can
assume that α>0. Now (a-c)(a-d)^0 which gives aa + cd^ac + ad
and since cd ̂  ab we get aa + αb ̂  ac + αd. Hence dividing by α gives
the result.

At this point it is worth outlining how the proof of Proposition 1
will proceed. Suppose the proposition is true for all sets with cardinality
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less than \Λ\; then from Lemma 1 there exists a probability measure
V on (X(Λf) x X(Λ% JF(Λ') x JF(Λ')) such that

v/(AxX(A'))=ρ(μ1)(A) for all Ae&(Λ)\ (1)

v'(X(/l')x£)=ρ(μ2)(£) for all Be^{Λf); (2)

v'({(x', / ) e X(Λ') x X(Λ'): x' ̂  /}) = 1. (3)

Now we can write μι(xf, ξ) = F^x', ξ) ρ(μf) (x') x ωt(ξ) where F^x', ξ)
as a function of ξ is the conditional density (with respect to ωt) of μt

on Xr given the event x' on X(Λ') (Equivalently Ft is the Radon Nikodym
derivative of μt with respect to ρ(μj x ω r) We will show that if x' ̂  y' then

i Γ

1 (x',ίvι / )F 2 (/,ξΛf / )^F 1 (x',0i ; i 2(y'^) for all ξ,ηeXt

and thus from Proposition 1 for the case of cardinality 1 we have there
exists a probability measure M(x',y') on (X, x l { , ^ x J^) such that

ί for all ^ G ^ ; (1)
A

M(x',y')(X1xB)=$F2(y',η)dω,(η) for all B e ^ ; (2)
B

M(x\ y') ({(ξ, η)eXtxXt:ξ^η})=ί. (3)

Then if we define a probability measure v on (X x X, 3F x <F) by

it is not difficult to show that v has the right properties. Of course, the
above recipe for a proof raises some problems, the most serious of which
is whether the measures M(x', y') can be chosen to depend in a measurable
way on x' and / . We get round this problem by giving an explicit
formula for M(x', / ) .

M(x',/) comes from the case \A\= 1 of Proposition 1 and since we
need to solve this case anyway to start the induction we will now look
at it. Let a be a non-negative σ-fϊnite measure on a measurable space
(Y, 0$) and suppose that Y is equipped with a ̂ -measurable total order ^ .
Let hu h2 be the densities with respect to α of probability measures
γi9y2 on (Y,^), and let α be the measure on ( 7 x ^ x J ) got by
projecting α onto the diagonal of Y x 7; thus if B e 3& x (% then

a(B) = a({yeY:(y,y)eB}).

Define a probability measure δ on (Y x Y , J x J ) by

δ(x, y) = minίA^x), h2(y)} 5 + [f Λ'2(z) dα(z)] " x Λi(x) Λ'2(y) α x α,

where Λ'̂ x) = [Λ^x) - Λ2(x)] + , ft'2(y) = [Λ2(y) - ft^)] + .
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(Note that since h'1 + h2 = hf

2 + h1 we have

thus if j h'2(z) doc(z) = 0 then h1 = h2 = 0 and we will leave out the second
term in the definition of δ.)

Lemma 3. Let δ be as above. Then we have

δ(AxY) = y1(A) for all Ae&, (1)

δ(YxB) = γ2(B) for all E e J . (2)

Proof. This is a simple calculation.

Lemma 4. Suppose for all x,yeY with x^y we have

Then δ{{(x9y)eY x Y : x^y}) = 1.

Proo/. It is sufficient to show that h'1(x)h'2(y) = 0 unless x^y, thus
suppose there exist x,y with x>y and /z/

1(>y)/2/

2(x)>0. Then we have
hi(y) > h2(y), h2(x) > ft^x), and hence

h1(x)h2{y)<h1{y)h2{x)

which contradicts the hypothesis of the lemma.
Together Lemma 3 and 4 give us Proposition 1 for the case \Λ\ = 1;

also the explicit expression for δ will enable us to complete the proof in
general. Let q:Xt-+lR with g^O and \q(ξ)dωt(ξ)= 1 and for ί = 1,2
d e f l n e r a r ε\

[q(ξ) otherwise.

Thus Fx (resp. F2) is a version of the Radon-Nikodym derivative
of μί (resp. μ2) with respect to ρ(μx) x ωt (resp. ρ(μ2) x cOj).

Define Q, R : X(^') x X(A!) xXtxXt-^]Rby

Q(x\ y, ξ, η) = min{F1(x', ξ\ F2(y\ η)}

R(x\ y\ ξ, η) = [S(x\ / ) ] " x [^(x', ξ) - F2(y\ ξ)] + [F2(y', i,) - F^x', η)] + ,

where S(x',/)= j[F2(/,f/) - F 1 ( x ' ^ ) ] + dωt(η\ and as in the definition
of δ we have S(x;, / ) = 0 if and only if F^x', ξ) = F2(y\ ξ) (for ωt - a.e. ξ)
and in this case we define R(x',y',ξ,η) = 0. Let ωt be the measure on
(Xt x Xt9 SFt x #ί) got by projecting ωt onto the diagonal of Xt x Xt and
define the probability measure v on (X(A) x X(A), ^{A) x &(Λ)) by

v = QV x ωt + Rvf xωtxωt.
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Lemma 5. v satisfies (1) and (2) of Proposition 1.

Proof. This is a straightforward calculation.
Finally we complete the proof of Proposition 1 with:

Lemma 6. v satisfies (3) of Proposition 1.

Proof. For i = 1, 2 let B, = {x'eX{A') :J /i(x', £) dωt(£) = 0}. If
x' <£ £ 1 ? y' φ B2 and x' ̂  y' then

whenever ξ^tη and exactly as in Lemma 4 we have R(x',y',ξ,η) = 0
unless ξ^η. Therefore we are finished provided we can show that
v(B1 xXtx X(Λ))=v(X(Λ) xB2x Xt)=0. But

v(B1 xXtx X{Λ)) = μ1 (Bί x Xt) = J J fx(x', ξ) dωt{ξ) dωA.(*Ί = °

and similarly v(X(Λ) xB2x Xt) = 0.

3. Some Remarks on the Theorem

Remark ί. For the case \Λ\ = 1 there is a simple direct proof of Theo-
rem 3. Let (1^ 8&\ α, hί9 h2, γί9 y2 be as before for the cardinality 1 case.
If for all x, y e Ywith x ̂  y we have h^x) h2(y) ^.h^y) h2(x) then for any
J -measurable, bounded, increasing / : 7-*lR we have j / dyx ^ / dγ2

because

i-ί/dy2 = iff[/(χ)-

(since the integrand is always non-negative).
Remark 2. At least for the case when each Xt is a finite set we have

that Theorem 3 and Proposition 1 are equivalent, because of the fol-
lowing result:

Proposition 2. Let S be a finite partially ordered set, and let μuμ2\ S-> IR
be probability densities. The following are equivalent:

(1) For any increasing h:S^ΊR £ h(t) μx{t)^ £ ft(ί) μ2(ί).
ίeS teS

(2) There exists a probability density v : S x S-> IR swc/z ί/zαί
fαj Σv(s,ί) = μ1(5)/orα

Σ
se

(c) v(s, ί) = 0
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Proof. This result seems to be quite well-known, but it is difficult to
find out where it first appeared. It can be found, for example, in Holley [4].
Clearly (2) = > (1); to prove the converse consider the following network
flow:

S'
Fig.l

Here S' is a copy of S; for each teS there is an edge from the source
a to the point t with capacity μγ(t)\ for each t' e S' there is an edge from t'
to the sink z with capacity μ 2 ( O > a n d for teS,tΈS' with t iΞ> t' there is an
edge from t to t' with unlimited capacity. The maximum flow through
this network is clearly ^ 1 and it is also clear that (2) holds if and only
if the maximum flow is exactly 1, [and v(ί, t') is then the amount assigned
to the edge from t to t' in some optimal flow]. But it is not difficult to
show that (1) implies that the flow through any cut is ^ 1, and hence
(1) = > (2) by the min-cut max-flow theorem.

Remark 3. In the case in which each Xt is a finite set we can prove
Proposition 1 without explicitly writing down any measures. This is
because there are no measurability problems with a finite set and thus
for each x\y'eX{Λ') with x ' ^ / we need only know that M(x',/)
exists with the right properties. But the existence of M(x', /) follows since
Proposition 2 and Remark 1 imply that Proposition 1 is true for \Λ\= 1.

Remark 4. The only property of a total order used in the proof of
Proposition 1 is that if x φ y then exactly one of x ^ y and y ^ x is true;
the transitivity of a total order is never used. It is thus perhaps worth
writing down exactly what has been proved For each tsA let
Dt = {(x, x): x G Xt} and let Et C Xt x Xt - Dt have the properties:

(a) Ete^tx^v

(b) If x, y e Xt with x + y then exactly one of (x, y) and (y, x) is in Et.

Let Et = Et\jDt and for x, y e Xt define

[x if (χ,y)eEt,
[y otherwise,

, [y if (x,y)eEt,
\x otherwise.
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if x = {xtϊteΛ* y = {ytiteΛthen d e f i n e

xiy={xti ytheΛ, χiy={χt

Suppose for all x, y e X(Λ) we have

Then the proof of Proposition 1 shows that there exists a probability
measure v on (X(Λ)xX_(Λ), ^(A)x^{Λ)) satisfying (1) and (2) of
Proposition 1 and also v(EΛ) = 1 where

EΛ = {(x, y) e X(Λ) x X(Λ): (xί? yt) e Et for all teΛ}.
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