A Generalization of the FKG Inequalities

C. J. Preston
Oxford University, Oxford, U. K.

Received December 11, 1973

Abstract

We generalize a theorem of Holley to include the case of continuous spins. Holley's theorem is itself a generalization of the inequalities due to Fortuin, Kastelyn and Ginibre.

1. Introduction

In the study of correlation functions for the Ising and other lattice models in statistical mechanics the inequalities of Fortuin, Kastelyn and Ginibre [2] (the FKG inequalities) play a fundamental role. The object of this paper is to give a proof of some generalized FKG inequalities which include the case of continuous spins. Results of this type have been obtained from the original FKG inequalities by using discrete approximations (see [5]); also a direct proof has been given by Cartier [6]. In this paper we will in fact generalize a result of Holley [3], which easily implies the FKG inequalities. Let Λ be a finite set and let $\mathscr{P}(\Lambda)$ denote the set of subsets of Λ. Suppose $\mu_{1}, \mu_{2}: \mathscr{P}(\Lambda) \rightarrow \mathbb{R}$ are probability densities, i.e. $\mu_{i} \geqq 0$ and

$$
\sum_{A \subset A} \mu_{i}(A)=1 \quad \text { for } \quad i=1,2
$$

Then we have:
Theorem 1 (Holley [3]). If for all $A, B \in \mathscr{P}(\Lambda)$
then

$$
\mu_{1}(A \cup B) \mu_{2}(A \cap B) \geqq \mu_{1}(A) \mu_{2}(B)
$$

$$
\sum_{A \subset A} h(A) \mu_{1}(A) \geqq \sum_{A \subset A} h(A) \mu_{2}(A)
$$

for any increasing $h: \mathscr{P}(\Lambda) \rightarrow \mathbb{R}$ (where by increasing we mean that $h(A) \geqq h(B)$ whenever $A \supset B)$.

Using the well-known result of Birkhoff [1] that any finite distributive lattice is isomorphic to some sub-lattice of $\mathscr{P}(\Lambda)$ for some finite set Λ, it follows that Theorem 1 is true for any finite distributive lattice (where we replace \cup by \vee and \cap by \wedge). From Theorem 1 we get the FKG inequalities.

Theorem 2 (FKG inequalities). Let $\mu: \mathscr{P}(\Lambda) \rightarrow \mathbb{R}$ be a probability density such that for all $A, B \in \mathscr{P}(\Lambda)$

$$
\mu(A \cup B) \mu(A \cap B) \geqq \mu(A) \mu(B)
$$

Then for any increasing functions $f, g: \mathscr{P}(\Lambda) \rightarrow \mathbb{R}$ we have

$$
\sum_{A \subset A} f(A) g(A) \mu(A) \geqq \sum_{A \subset A} f(A) \mu(A) \sum_{A \subset A} g(A) \mu(A)
$$

Proof. By adding a constant we can assume that $g>0$. Define $\mu_{2}=\mu$ and

$$
\mu_{1}=\left[\sum_{B C A} g(B) \mu(B)\right]^{-1} g \mu .
$$

Then μ_{1}, μ_{2} satisfy the hypotheses of Theorem 1 and thus

$$
\sum_{A \subset A} f(A) \mu_{1}(A)=\left[\sum_{B \subset A} g(B) \mu(B)\right]^{-1} \sum_{A \subset A} f(A) g(A) \mu(A) \geqq \sum_{A \subset A} f(A) g(A) .
$$

We will now state our generalization of Theorem 1 . The setting will be a finite product of totally ordered measure spaces. Let Λ again be a finite set and for each $t \in \Lambda$ let $\left(X_{t}, \mathscr{F}_{t}, \omega_{t}\right)$ be a measure space with ω_{t} a non-negative σ-finite measure. Suppose that X_{t} is equipped with a total order \geqq that is \mathscr{F}_{t}-measurable, i.e. $\left\{(x, y) \in X_{t} \times X_{t}: x \geqq y\right\} \in \mathscr{F}_{t} \times \mathscr{F}_{t}$. Let us denote $\prod_{t \in \Lambda} X_{t}$ by X and the corresponding product σ-algebra $\prod_{t \in \Lambda} \mathscr{F}_{t}$ by \mathscr{F}, and let $\omega=\prod_{t \in \Lambda} \omega_{t}$. Suppose $f_{1}, f_{2}: X \rightarrow \mathbb{R}$ are \mathscr{F}-measurable with the properties (1) $f_{1}, f_{2} \geqq 0$; (2) $\int f_{1} d \omega=\int f_{2} d \omega=1$. For $i=1,2$ let μ_{i} denote the probability measure $f_{i} \omega$ on (X, \mathscr{F}).

Theorem 3. Suppose f_{1}, f_{2} satisfy

$$
f_{1}(x \vee y) f_{2}(x \wedge y) \geqq f_{1}(x) f_{2}(y) \quad \text { for all } \quad x, y \in X
$$

(where if $x=\left\{x_{t}\right\}_{t \in \Lambda}, y=\left\{y_{t}\right\}_{t \in \Lambda}$ then $x \vee y=\left\{\max \left(x_{t}, y_{t}\right)\right\}_{t \in \Lambda} x \wedge y$ $\left.=\left\{\min \left(x_{t}, y_{t}\right)\right\}_{t \in A}\right)$. If $h: X \rightarrow \mathbb{R}$ is bounded, \mathscr{F}-measurable and increasing (i.e. $h(x) \geqq h(y)$ if $x_{t} \geqq y_{t}$ for all $t \in \Lambda$) then

$$
\int_{X} h d \mu_{1} \geqq \int_{X} h d \mu_{2} .
$$

Remarks. (1) Theorem 1 follows of course from Theorem 3 by taking $X_{t}=\{0,1\}$ for all $t \in \Lambda$ and letting ω_{t} be counting measure on $\{0,1\}$.
(2) Nothing would probably be lost if we replaced each X_{t} by \mathbb{R}; we use the present set-up to emphasize that the result only depends on the properties of a total order.

2. Proof of the Theorem

The proof of Theorem 3 is based on a proof of Theorem 1 due to Holley [4]. (Holley's original proof of Theorem 1 in [3] was based on the coupling of two Markov chains whose equilibrium distributions were μ_{1} and μ_{2}.) The first step is to change the problem and consider the following:

Proposition 1. Suppose f_{1}, f_{2} satisfy

$$
f_{1}(x \vee y) f_{2}(x \wedge y) \geqq f_{1}(x) f_{2}(y) \quad \text { for all } \quad x, y \in X
$$

Then there exists a probability measure v on $(X \times X, \mathscr{F} \times \mathscr{F})$ such that

$$
\begin{gather*}
v(A \times X)=\mu_{1}(A) \quad \text { for all } \quad A \in \mathscr{F} \tag{1}\\
v(X \times B)=\mu_{2}(B) \quad \text { for all } \quad B \in \mathscr{F} \tag{2}\\
v(\{(x, y) \in X \times X: x \geqq y\})=1, \quad(\text { where } x \geqq y \text { means that } \\
\left.x_{t} \geqq y_{t} \quad \text { for all } t \in \Lambda\right) . \tag{3}
\end{gather*}
$$

(1) and (2) say that the projection of v onto the first (resp. second) factor is μ_{1} (resp. μ_{2}). Theorem 3 is an immediate consequence of Proposition 1, since if $h: X \rightarrow \mathbb{R}$ is as in Theorem 3 and if we write $E=\{(x, y) \in X \times X: x \geqq y\}$ then we have

$$
\begin{aligned}
\int_{X} h d \mu_{1}-\int_{X} h d \mu_{2} & =\int_{X \times X}(h(x)-h(y)) d v(x, y) \\
& =\int_{E}(h(x)-h(y)) d v(x, y) \geqq 0,
\end{aligned}
$$

because $h(x)-h(y) \geqq 0$ if $(x, y) \in E$.
We will prove Proposition 1 by induction on $|\Lambda|$, the cardinality of Λ. The following notation will be useful: for $A \subset \Lambda$ let

$$
X(A)=\prod_{t \in A} X_{t}, \quad \mathscr{F}(A)=\prod_{t \in A} \mathscr{F}_{t}, \quad \omega_{A}=\prod_{t \in A} \omega_{t} .
$$

Suppose for the moment that $|\Lambda| \geqq 2$, let $t \in \Lambda$ and put $\Lambda^{\prime}=\Lambda-\{t\}$. For $i=1,2$ let $\varrho\left(\mu_{i}\right)$ denote the projection of μ_{i} onto $X\left(\Lambda^{\prime}\right)$. Then we have $\varrho\left(\mu_{i}\right)=g_{i} \omega_{\Lambda}$, where $g_{i}: X\left(\Lambda^{\prime}\right) \rightarrow \mathbb{R}$ is given by

$$
g_{i}(x)=\int_{X_{t}} f_{i}(x, \xi) d \omega_{t}(\xi)
$$

Lemma 1. Suppose that for all $x, y \in \Lambda$

$$
f_{1}(x \vee y) f_{2}(x \wedge y) \geqq f_{1}(x) f_{2}(y)
$$

Then for all $x^{\prime}, y^{\prime} \in \Lambda^{\prime}$ we have

$$
g_{1}\left(x^{\prime} \vee y^{\prime}\right) g_{2}\left(x^{\prime} \wedge y^{\prime}\right) \geqq g_{1}\left(x^{\prime}\right) g_{2}\left(y^{\prime}\right)
$$

Proof. Let $G=\left\{(\xi, \eta) \in X_{t} \times X_{t}: \xi>\eta\right\}, E=\left\{(\xi, \eta) \in X_{t} \times X_{t}: \xi=\eta\right\}$, $L=\left\{(\xi, \eta) \in X_{t} \times X_{t}: \xi<\eta\right\}$. Then

$$
\begin{aligned}
& g_{1}\left(x^{\prime} \vee y^{\prime}\right) g_{2}\left(x^{\prime} \wedge y^{\prime}\right)=\iint_{G \cup E \cup L} f_{1}\left(x^{\prime} \vee y^{\prime}, \xi\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \eta\right) d \omega_{t}(\xi) d \omega_{t}(\eta) \\
& =\iint_{E} f_{1}\left(x^{\prime} \vee y^{\prime}, \xi\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \eta\right) d \omega_{t}(\xi) d \omega_{t}(\eta) \\
& +\iint_{G}\left\{f_{1}\left(x^{\prime} \vee y^{\prime}, \xi\right) f_{2}\left(x^{\prime} \wedge y^{\prime} \eta\right)+f_{1}\left(x^{\prime} \vee y^{\prime}, \eta\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \xi\right)\right\} d \omega_{t}(\xi) d \omega_{t}(\eta) .
\end{aligned}
$$

Similarly

$$
\begin{gathered}
g_{1}\left(x^{\prime}\right) g_{2}\left(y^{\prime}\right)=\iint_{E} f_{1}\left(x^{\prime}, \xi\right) f_{2}\left(y^{\prime}, \eta\right) d \omega_{t}(\xi) d \omega_{t}(\eta) \\
+\iint_{\mathbf{G}}\left\{f_{1}\left(x^{\prime}, \xi\right) f_{2}\left(y^{\prime}, \eta\right)+f_{1}\left(x^{\prime}, \eta\right) f_{2}\left(y^{\prime}, \xi\right)\right\} d \omega_{t}(\xi) d \omega_{t}(\eta)
\end{gathered}
$$

But by hypothesis we have

$$
f_{1}\left(x^{\prime} \vee y^{\prime}, \xi\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \xi\right) \geqq f_{1}\left(x^{\prime}, \xi\right) f_{2}\left(y^{\prime}, \xi\right)
$$

and thus we can ignore the terms involving integrations over E. The proof of the lemma would therefore be complete if we could show that

$$
\begin{gathered}
f_{1}\left(x^{\prime} \vee y^{\prime}, \xi\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \eta\right)+f_{1}\left(x^{\prime} \vee y^{\prime}, \eta\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \xi\right) \\
\geqq f_{1}\left(x^{\prime}, \xi\right) f_{2}\left(y^{\prime}, \eta\right)+f_{1}\left(x^{\prime}, \eta\right) f_{2}\left(y^{\prime}, \xi\right)
\end{gathered}
$$

whenever $\xi>\eta$. Let us write

$$
\begin{aligned}
& a=f_{1}\left(x^{\prime} \vee y^{\prime}, \xi\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \eta\right) \\
& b=f_{1}\left(x^{\prime} \vee y^{\prime}, \eta\right) f_{2}\left(x^{\prime} \wedge y^{\prime}, \xi\right) \\
& c=f_{1}\left(x^{\prime}, \xi\right) f_{2}\left(y^{\prime}, \eta\right) \\
& d=f_{1}\left(x^{\prime}, \eta\right) f_{2}\left(y^{\prime}, \xi\right)
\end{aligned}
$$

It is easily checked that if $\xi>\eta$ then by hypothesis we have $a \geqq c, a \geqq d$ and $a b \geqq c d$. We want, of course, to show that $a+b \geqq c+d$, and this follows from Lemma 2.

Lemma 2. Let a, b, c, d be non-negative real numbers with $a \geqq c$, $a \geqq d$ and $a b \geqq c d$. Then $a+b \geqq c+d$.

Proof. If $a=0$ then $c=d=0$ and the result is true; thus we can assume that $a>0$. Now $(a-c)(a-d) \geqq 0$ which gives $a a+c d \geqq a c+a d$ and since $c d \leqq a b$ we get $a a+a b \geqq a c+a d$. Hence dividing by a gives the result.

At this point it is worth outlining how the proof of Proposition 1 will proceed. Suppose the proposition is true for all sets with cardinality
less than $|\Lambda|$; then from Lemma 1 there exists a probability measure v^{\prime} on $\left(X\left(\Lambda^{\prime}\right) \times X\left(\Lambda^{\prime}\right), \mathscr{F}\left(\Lambda^{\prime}\right) \times \mathscr{F}\left(\Lambda^{\prime}\right)\right)$ such that

$$
\begin{align*}
v^{\prime}\left(A \times X\left(\Lambda^{\prime}\right)\right) & =\varrho\left(\mu_{1}\right)(A) \quad \text { for all } \quad A \in \mathscr{F}\left(\Lambda^{\prime}\right) ; \tag{1}\\
v^{\prime}\left(X\left(\Lambda^{\prime}\right) \times B\right) & =\varrho\left(\mu_{2}\right)(B) \quad \text { for all } \quad B \in \mathscr{F}\left(\Lambda^{\prime}\right) ; \tag{2}\\
v^{\prime}\left(\left\{\left(x^{\prime}, y^{\prime}\right)\right.\right. & \left.\left.\in X\left(\Lambda^{\prime}\right) \times X\left(\Lambda^{\prime}\right): x^{\prime} \geqq y^{\prime}\right\}\right)=1 \tag{3}
\end{align*}
$$

Now we can write $\mu_{i}\left(x^{\prime}, \xi\right)=F_{i}\left(x^{\prime}, \xi\right) \varrho\left(\mu_{i}\right)\left(x^{\prime}\right) \times \omega_{t}(\xi)$ where $F_{i}\left(x^{\prime}, \xi\right)$ as a function of ξ is the conditional density (with respect to ω_{t}) of μ_{i} on X_{t} given the event x^{\prime} on $X\left(\Lambda^{\prime}\right)$. (Equivalently F_{i} is the Radon Nikodym derivative of μ_{i} with respect to $\varrho\left(\mu_{i}\right) \times \omega_{t}$.) We will show that if $x^{\prime} \geqq y^{\prime}$ then

$$
F_{1}\left(x^{\prime}, \xi \vee \eta\right) F_{2}\left(y^{\prime}, \xi \wedge \eta\right) \geqq F_{1}\left(x^{\prime}, \xi\right) F_{2}\left(y^{\prime}, \eta\right) \quad \text { for all } \quad \xi, \eta \in X_{t}
$$

and thus from Proposition 1 for the case of cardinality 1 we have there exists a probability measure $M\left(x^{\prime}, y^{\prime}\right)$ on $\left(X_{t} \times X_{t}, \mathscr{F}_{t} \times \mathscr{F}_{t}\right)$ such that

$$
\begin{gather*}
M\left(x^{\prime}, y^{\prime}\right)\left(A \times X_{t}\right)=\int_{A} F_{1}\left(x^{\prime}, \xi\right) d \omega_{t}(\xi) \text { for all } A \in \mathscr{F}_{t} ; \tag{1}\\
M\left(x^{\prime}, y^{\prime}\right)\left(X_{t} \times B\right)=\int_{B} F_{2}\left(y^{\prime}, \eta\right) d \omega_{t}(\eta) \text { for all } B \in \mathscr{F}_{t} ; \tag{2}\\
M\left(x^{\prime}, y^{\prime}\right)\left(\left\{(\xi, \eta) \in X_{t} \times X_{t}: \xi \geqq \eta\right\}\right)=1 . \tag{3}
\end{gather*}
$$

Then if we define a probability measure v on $(X \times X, \mathscr{F} \times \mathscr{F})$ by

$$
v\left(x^{\prime}, y^{\prime}, \xi, \eta\right)=v^{\prime}\left(x^{\prime}, y^{\prime}\right) M\left(x^{\prime}, y^{\prime} ; \xi, \eta\right)
$$

it is not difficult to show that v has the right properties. Of course, the above recipe for a proof raises some problems, the most serious of which is whether the measures $M\left(x^{\prime}, y^{\prime}\right)$ can be chosen to depend in a measurable way on x^{\prime} and y^{\prime}. We get round this problem by giving an explicit formula for $M\left(x^{\prime}, y^{\prime}\right)$.
$M\left(x^{\prime}, y^{\prime}\right)$ comes from the case $|\Lambda|=1$ of Proposition 1 and since we need to solve this case anyway to start the induction we will now look at it. Let α be a non-negative σ-finite measure on a measurable space (Y, \mathscr{B}) and suppose that Y is equipped with a \mathscr{B}-measurable total order \geqq. Let h_{1}, h_{2} be the densities with respect to α of probability measures γ_{1}, γ_{2} on (Y, \mathscr{B}), and let $\bar{\alpha}$ be the measure on $(Y \times Y, \mathscr{B} \times \mathscr{B})$ got by projecting α onto the diagonal of $Y \times Y$; thus if $B \in \mathscr{B} \times \mathscr{B}$ then

$$
\bar{\alpha}(B)=\alpha(\{y \in Y:(y, y) \in B\})
$$

Define a probability measure δ on $(\mathrm{Y} \times \mathrm{Y}, \mathscr{B} \times \mathscr{B})$ by

$$
\delta(x, y)=\min \left\{h_{1}(x), h_{2}(y)\right\} \bar{\alpha}+\left[\int h_{2}^{\prime}(z) d \alpha(z)\right]^{-1} h_{1}^{\prime}(x) h_{2}^{\prime}(y) \alpha \times \alpha,
$$

where $h_{1}^{\prime}(x)=\left[h_{1}(x)-h_{2}(x)\right]^{+}, h_{2}^{\prime}(y)=\left[h_{2}(y)-h_{1}(y)\right]^{+}$.
(Note that since $h_{1}^{\prime}+h_{2}=h_{2}^{\prime}+h_{1}$ we have

$$
\int h_{2}^{\prime}(z) d \alpha(z)=\int h_{1}^{\prime}(z) d \alpha(z),
$$

thus if $\int h_{2}^{\prime}(z) d \alpha(z)=0$ then $h_{1}=h_{2}=0$ and we will leave out the second term in the definition of δ.)

Lemma 3. Let δ be as above. Then we have

$$
\begin{array}{lll}
\delta(A \times Y)=\gamma_{1}(A) & \text { for all } & A \in \mathscr{B}, \\
\delta(Y \times B)=\gamma_{2}(B) & \text { for all } & B \in \mathscr{B} . \tag{2}
\end{array}
$$

Proof. This is a simple calculation.
Lemma 4. Suppose for all $x, y \in Y$ with $x \geqq y$ we have

$$
h_{1}(x) h_{2}(y) \geqq h_{1}(y) h_{2}(x) .
$$

Then $\delta(\{(x, y) \in Y \times Y: x \geqq y\})=1$.
Proof. It is sufficient to show that $h_{1}^{\prime}(x) h_{2}^{\prime}(y)=0$ unless $x \geqq y$, thus suppose there exist x, y with $x>y$ and $h_{1}^{\prime}(y) h_{2}^{\prime}(x)>0$. Then we have $h_{1}(y)>h_{2}(y), h_{2}(x)>h_{1}(x)$, and hence

$$
h_{1}(x) h_{2}(y)<h_{1}(y) h_{2}(x)
$$

which contradicts the hypothesis of the lemma.
Together Lemma 3 and 4 give us Proposition 1 for the case $|\Lambda|=1$; also the explicit expression for δ will enable us to complete the proof in general. Let $q: X_{t} \rightarrow \mathbb{R}$ with $q \geqq 0$ and $\int q(\xi) d \omega_{t}(\xi)=1$ and for $i=1,2$ define

$$
F_{i}\left(x^{\prime}, \xi\right)=\left\{\begin{array}{l}
\frac{f_{i}\left(x^{\prime}, \xi\right)}{\int f_{i}\left(x^{\prime}, \eta\right) d \omega_{t}(\eta)} \\
q(\xi) \text { otherwise }
\end{array} \text { if } \int f_{i}\left(x^{\prime}, \eta\right) d \omega_{t}(\eta)>0,\right.
$$

Thus F_{1} (resp. F_{2}) is a version of the Radon-Nikodym derivative of μ_{1} (resp. μ_{2}) with respect to $\varrho\left(\mu_{1}\right) \times \omega_{t}$ (resp. $\left.\varrho\left(\mu_{2}\right) \times \omega_{t}\right)$.

Define $Q, R: X\left(\Lambda^{\prime}\right) \times X\left(\Lambda^{\prime}\right) \times X_{t} \times X_{t} \rightarrow \mathbb{R}$ by
$Q\left(x^{\prime}, y, \xi, \eta\right)=\min \left\{F_{1}\left(x^{\prime}, \xi\right), F_{2}\left(y^{\prime}, \eta\right)\right\}$
$R\left(x^{\prime}, y^{\prime}, \xi, \eta\right)=\left[S\left(x^{\prime}, y^{\prime}\right)\right]^{-1}\left[F_{1}\left(x^{\prime}, \xi\right)-F_{2}\left(y^{\prime}, \xi\right)\right]^{+}\left[F_{2}\left(y^{\prime}, \eta\right)-F_{1}\left(x^{\prime}, \eta\right)\right]^{+}$, where $S\left(x^{\prime}, y^{\prime}\right)=\int\left[F_{2}\left(y^{\prime}, \eta\right)-F_{1}\left(x^{\prime} \eta\right)\right]^{+} d \omega_{t}(\eta)$, and as in the definition of δ we have $S\left(x^{\prime}, y^{\prime}\right)=0$ if and only if $F_{1}\left(x^{\prime}, \xi\right)=F_{2}\left(y^{\prime}, \xi\right)$ (for ω_{t} - a.e. ξ) and in this case we define $R\left(x^{\prime}, y^{\prime}, \xi, \eta\right)=0$. Let $\bar{\omega}_{t}$ be the measure on $\left(X_{t} \times X_{t}, \mathscr{F}_{t} \times \mathscr{F}_{t}\right)$ got by projecting ω_{t} onto the diagonal of $X_{t} \times X_{t}$ and define the probability measure v on $(X(\Lambda) \times X(\Lambda), \mathscr{F}(\Lambda) \times \mathscr{F}(\Lambda))$ by

$$
v=Q v^{\prime} \times \bar{\omega}_{t}+R v^{\prime} \times \omega_{t} \times \omega_{t} .
$$

Lemma 5. v satisfies (1) and (2) of Proposition 1.
Proof. This is a straightforward calculation.
Finally we complete the proof of Proposition 1 with:
Lemma 6. v satisfies (3) of Proposition 1.
Proof. For $i=1,2$ let $B_{i}=\left\{x^{\prime} \in X\left(\Lambda^{\prime}\right): \int f_{i}\left(x^{\prime}, \xi\right) d \omega_{t}(\xi)=0\right\}$. If $x^{\prime} \notin B_{1}, y^{\prime} \notin B_{2}$ and $x^{\prime} \geqq y^{\prime}$ then

$$
F_{1}\left(x^{\prime}, \xi\right) F_{2}\left(y^{\prime}, \eta\right) \geqq F_{1}\left(x^{\prime}, \eta\right) F_{2}\left(y^{\prime}, \xi\right)
$$

whenever $\xi \geqq \eta$ and exactly as in Lemma 4 we have $R\left(x^{\prime}, y^{\prime}, \xi, \eta\right)=0$ unless $\xi \geqq \eta$. Therefore we are finished provided we can show that $v\left(B_{1} \times X_{t} \times X(\Lambda)\right)=v\left(X(\Lambda) \times B_{2} \times X_{t}\right)=0$. But

$$
v\left(B_{1} \times X_{t} \times X(\Lambda)\right)=\mu_{1}\left(B_{1} \times X_{t}\right)=\int_{B_{1}} \int_{X_{t}} f_{1}\left(x^{\prime}, \xi\right) d \omega_{t}(\xi) d \omega_{A^{\prime}}\left(x^{\prime}\right)=0
$$

and similarly $v\left(X(\Lambda) \times B_{2} \times X_{t}\right)=0$.

3. Some Remarks on the Theorem

Remark 1. For the case $|\Lambda|=1$ there is a simple direct proof of Theorem 3. Let $(Y, \mathscr{B}), \alpha, h_{1}, h_{2}, \gamma_{1}, \gamma_{2}$ be as before for the cardinality 1 case. If for all $x, y \in Y$ with $x \geqq y$ we have $h_{1}(x) h_{2}(y) \geqq h_{1}(y) h_{2}(x)$ then for any \mathscr{B}-measurable, bounded, increasing $f: Y \rightarrow \mathbb{R}$ we have $\int f d \gamma_{1} \geqq f d \gamma_{2}$ because

$$
\begin{aligned}
\int f d \gamma_{1}-\int f d \gamma_{2}= & \frac{1}{2} \iint[f(x)-f(y)]\left[h_{1}(x) h_{2}(y)-h_{1}(y) h_{2}(x)\right] \\
& \cdot d \alpha(x) d \alpha(y) \geqq 0
\end{aligned}
$$

(since the integrand is always non-negative).
Remark 2. At least for the case when each X_{t} is a finite set we have that Theorem 3 and Proposition 1 are equivalent, because of the following result:

Proposition 2. Let S be a finite partially ordered set, and let $\mu_{1}, \mu_{2}: S \rightarrow \mathbb{R}$ be probability densities. The following are equivalent:
(1) For any increasing $h: S \rightarrow \mathbb{R} \sum_{t \in S} h(t) \mu_{1}(t) \geqq \sum_{t \in S} h(t) \mu_{2}(t)$.
(2) There exists a probability density $v: S \times S \rightarrow \mathbb{R}$ such that
(a) $\sum_{t \in S} v(s, t)=\mu_{1}(s)$ for all $s \in S$;
(b) $\sum_{s \in S}^{t \in S} v(s, t)=\mu_{2}(t)$ for all $t \in S$;
(c) $v(s, t)=0$ unless $s \geqq t$.

Proof. This result seems to be quite well-known, but it is difficult to find out where it first appeared. It can be found, for example, in Holley [4]. Clearly (2) $=>(1)$; to prove the converse consider the following network flow:

Fig. 1
Here S^{\prime} is a copy of S; for each $t \in S$ there is an edge from the source a to the point t with capacity $\mu_{1}(t)$; for each $t^{\prime} \in S^{\prime}$ there is an edge from t^{\prime} to the sink z with capacity $\mu_{2}\left(t^{\prime}\right)$, and for $t \in S, t^{\prime} \in S^{\prime}$ with $t \geqq t^{\prime}$ there is an edge from t to t^{\prime} with unlimited capacity. The maximum flow through this network is clearly $\leqq 1$ and it is also clear that (2) holds if and only if the maximum flow is exactly 1 , [and $v\left(t, t^{\prime}\right)$ is then the amount assigned to the edge from t to t^{\prime} in some optimal flow]. But it is not difficult to show that (1) implies that the flow through any cut is $\geqq 1$, and hence $(1)=>(2)$ by the min-cut max-flow theorem.

Remark 3. In the case in which each X_{t} is a finite set we can prove Proposition 1 without explicitly writing down any measures. This is because there are no measurability problems with a finite set and thus for each $x^{\prime}, y^{\prime} \in X\left(\Lambda^{\prime}\right)$ with $x^{\prime} \geqq y^{\prime}$ we need only know that $M\left(x^{\prime}, y^{\prime}\right)$ exists with the right properties. But the existence of $M\left(x^{\prime}, y^{\prime}\right)$ follows since Proposition 2 and Remark 1 imply that Proposition 1 is true for $|\Lambda|=1$.

Remark 4. The only property of a total order used in the proof of Proposition 1 is that if $x \neq y$ then exactly one of $x \geqq y$ and $y \geqq x$ is true; the transitivity of a total order is never used. It is thus perhaps worth writing down exactly what has been proved For each $t \in \Lambda$ let $D_{t}=\left\{(x, x): x \in X_{t}\right\}$ and let $E_{t} \subset X_{t} \times X_{t}-D_{t}$ have the properties:
(a) $E_{t} \in \mathscr{F}_{t} \times \mathscr{F}_{t}$.
(b) If $x, y \in X_{t}$ with $x \neq y$ then exactly one of (x, y) and (y, x) is in E_{t}.

Let $\bar{E}_{t}=E_{t} \cup D_{t}$ and for $x, y \in X_{t}$ define

$$
\begin{aligned}
& x \uparrow y= \begin{cases}x & \text { if }(x, y) \in \bar{E}_{t}, \\
y & \text { otherwise },\end{cases} \\
& x \downarrow y= \begin{cases}y & \text { if }(x, y) \in \bar{E}_{t}, \\
x & \text { otherwise }\end{cases}
\end{aligned}
$$

If $x=\left\{x_{t}\right\}_{t \in \Lambda}, y=\left\{y_{t}\right\}_{t \in A}$ then define

$$
x \uparrow y=\left\{x_{t} \uparrow y_{t}\right\}_{t \in \Lambda}, x \downarrow y=\left\{x_{t} \downarrow y_{t}\right\}_{t \in \Lambda}
$$

Suppose for all $x, y \in X(\Lambda)$ we have

$$
f_{1}(x \uparrow y) f_{2}(x \downarrow y) \geqq f_{1}(x) f_{2}(y) .
$$

Then the proof of Proposition 1 shows that there exists a probability measure v on $(X(\Lambda) \times X(\Lambda), \mathscr{F}(\Lambda) \times \mathscr{F}(\Lambda))$ satisfying (1) and (2) of Proposition 1 and also $v\left(\bar{E}_{A}\right)=1$ where

$$
\bar{E}_{\Lambda}=\left\{(x, y) \in X(\Lambda) \times X(\Lambda):\left(x_{t}, y_{t}\right) \in \bar{E}_{t} \quad \text { for all } t \in \Lambda\right\} .
$$

References

1. Birkhoff, G.: Lattice Theory. Am. Math. Soc., Providence, R.I. (1967)
2. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Commun. math. Phys. 22, 89-103 (1971)
3. Holley, R.: Remarks on the FKG inequalities. Commun. math. Phys. 36, 227-231 (1974)
4. Holley, R.: This proof can be found in an unpublished senior thesis directed by R. Holley, at Princeton's University
5. Several people working in classical and quantum statistical mechanics have noticed that this can be done, see for example Guerra, Rosen and Simon "The P $(\varphi)_{2}$ Euclidean quantum field theory as classical statistical mechanics". To appear
6. Cartier, P.: Seminaire Bourbaki, No. 431, 1972/73

Communicated by G. Gallavotti

C. J. Preston
Mathematical Institute
24-29 St. Giles
Oxford University
Oxford OX 13 LB, U.K.

