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Abstract. Recently, Nelson [2] has constructed relativistic fields from Euclidean fields
which satisfy the Markoff and reflection property as well as an additional domain assump-
tion. In this paper we replace the Markoff and reflection property by a weaker condition,
a very simple positivity condition (“T-positivity”) which can be very easily expressed in
terms of the expectation functional E(f)={Q,exp{i¢(f)}2>. We show that the special
role of the Markoff property in Nelson’s approach is entirely due to features also shared
by T-positivity. The role of Nelson’s domain assumption (A’) in by-passing the difficulties
with the paper of Osterwalder and Schrader [4] are made transparent, and possible ways
to weaken this assumption are pointed out. If the conditions of [4] should turn out to be
sufficient after all, (A’) can be replaced by a simple differentiability condition on E(tf).
Our approach can also be applied to Fermi fields. The notion of Markoff and reflection
property is discussed and shown to imply T-positivity.

Introduction

The proposal of Symanzik [1] to exploit Euclidean invariance in
relativistic field theory has recently found some interesting developments.
These were initiated by Nelson [2,3] who described a procedure to
construct relativistic fields from Markoff fields which transform co-
variantly under the full Euclidean group and which satisfy an additional
domain assumption. The Markoff property, a fairly restrictive condition,
allows a simple Hilbert space construction. Then Osterwalder and Schra-
der [4] attempted to give necessary and sufficient conditions for a set
of Euclidean Green’s functions to lead to Wightman functions of a
relativistic theory by analytic continuation. However, their crucial
Lemma 8.8 is incorrect !, and it is doubtful whether their conditions are
indeed sufficient; it seems likely that one will need an extra assumption.

In this paper we construct, as Nelson, relativistic fields from Euclidean
fields over & or &, without Markoff property, however. We replace the
Markoff and reflection property used in [2] by a weaker condition,

! This has been noted by several people. I learned this first from J. Yngvason who
also gave a simple counter-example. See also [12].
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namely by a very simple positivity condition (“T-positivity”), and obtain,
with exactly the same domain assumption? as Nelson’s, a simple Hilbert
space construction of a relativistic field. We show that the special role
played by the Markoff property in the approach of [2] is entirely due to
features which are also shared by T-positivity. We also make transparent
the role which the domain assumption plays in by-passing the difficulties
associated with Lemma 8.8 in [4] and point out possible ways to weaken
this assumption.

Let ¢(x) be a commuting self-adjoint scalar field*® over a space ¥~
of real-valued test functions on RY, i.e.,

&P gid(f2) — pld(f1+S2) (1.1)

for all f,, f, € v, where ¢'¢“/) is a unitary operator in a Hilbert space $
and weakly continuous in 7 so that one can recover the generator ¢(f).
Thus one deals with a unitary representation of an abelian group. If
Qe$ is a cyclic vector for ¢, ie., cyclic for {¢'*Y); fe ¥} then, by the
reconstruction theorem for group representations [5], the representation
is uniquely determined by the expectation functional3

E(f)=<2,e%PQy . (1.2)

We say that ¢ is a Euclidean (Bose) field if there is a unitary representa-
tion of the full Euclidean group I0(RY) in § such that, for (R, a) € IO(R?),
U(R, a) ¢(x) U¥(R, a) = ¢(Rx +a) and UR,a)2=Q.

Let T be the unitary time reflection operator, T¢(x) T = ¢(—x°, X).
Let R% ={xeR% x°>0} and let E, be the projector onto the subspace
generated by {e'*Q; supp f C R%.}. Then our positivity condition which
is related to that of [4] reads

E,TE, =20 (“T-positivity”). (1.3)

This can easily be expressed by means of the expectation functional E(f).
Let (31) (x)= f(—x° X). Then Eq. (1.3) is equivalent to *

In Section 2 the Hamiltonian H and the Hilbert space §, of the
relativistic field are constructed. $, is just the subspace of $ on which
E,TE, is nonzero. In Section 3 the domain assumption (A’) through
which also continuity properties enter is explained and exploited. In
Section 4 the preceding results are used to construct the relativistic

2 Condition (A') in Section 6 of [2].

3 Cf. [7], Section 6.

4 Indeed, Eq. (1.4) just means that, for supp f;C R%,

Z lje“‘"f”.Q, TZl,e"‘"ff’!D =0.
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theory. We indicate possible ways of weakening assumption (A’) and we
show how to carry over our results to Fermi fields. In Section 5 we give
a formulation by means of the expectation functional E(f) and present
some simple examples.

In Section 6 we discuss the notion of Markoff fields. We propose a
definition of localization slightly different from that of [2] and show that
¢ satisfies this Markoff property together with the reflection property
if and only if E, TE, is a projector. It is then pointed out that also for
the localization prescription of [2], and practically any other, Markoff
+ reflection property implies T-positivity.

We remark that T-positivity as expressed by the expectation func-
tional is stable under limits.

2. Hamiltonian H and Hilbert Space $,

Let ¢ be a Euclidean field over the real space® % (R?) or Z(R% in H
and assume that E,TE,>0. 2.1)

By the spectral theorem . = E, $ decomposes into a direct sum,

Hy =55o@55m

such that E, TE_ vanishes on the null space H=Eq$ and is strictly
positive on $,=E, 9. Note that Hy={ue 9, ; {u, Tuy =0} and that
Qe 9, We denote by T, the restriction of E,TE, to $,. Then T, !
exists as a densely defined positive operator. We will use repeatedly that

E,TE,=E,TE,. 2.2)
Lemma 2.1. For t 20, . and Hg are invariant under the Euclidean
time translation T,.

Proof. Invariance of $, is obvious. Let u € Hg. By Schwarz’s in-

equalit
0T, TTuy = Cu, T Ty

<u, Tup? {Tyu, TT,,ud*’*>=0. QED.
Lemma 2.2. For t>0, we define Pu=E,Tu for ue$,. Then

A

PP=P,, fort s=0.

Proof. Since T,Hq C Hy and T,H, CH ., for =0 and since E Hy =0,
one obtains, with u € §,,

P Pu=EoT,E,Tu=EoT,E, Tu—E, T, Eq T,u
—E,T,T,u—0=P,, .u. QED.

> Throughout we use real-valued functions.

(2.3)
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Proposition 2.1. We define P,=T{?B Ty V* on T?$H,. Then
{P,,t =20} can be extended by continuity to a self-adjoint contraction semi-
group on 9,. Hence there exists a positive operator H such that

P=¢ ", (2.4

Proof. We first show that P, t >0, is symmetric on Ty/?$,. For
u, V€ H,y, one has

(TP u, P, TE? vy = <u, Ty Pod = Cu, TyEo T,v)
=(u, E, TE+Ttv>=<Tu Tv) ={T,u,E, TE v)
=(Bu, Tyvy =P, Tgu, T3 v) .

Using the symmetry and Schwarz’s inequality one. obtains by in-
duction
(P,To"%u, P, Ty uy < || T2 ull || Py, To " ull
Z N N+1
ST %ulle | Pon, To?uf”

< ToPull® fluf ™"

which converges to ||T)/?u|?> for N —co. Hence |P|<1. QED.

We note that up to now no continuity or domain properties of the
field have been used. Instead of P, one could also have considered P,
which becomes a self-adjoint contraction semi-group if one introduces
the norm || T¢/?u|| on $, and goes to the completion. The resulting space,
however, seems to be too large for the desired continuity properties of
the field operator to hold.

3. The Field Operator : Domains and Continuity

We want to define a sharp-time field on §, as a form and use for this
purpose the assumption (A’) of Nelson [2]. Let X,, ..., X;_; denote the
self-adjoint generators of Euclidean time-space translations in £, and put

K=(Z X?)"2.

Let $*, — oo <k < o0, be the associated scale. That is, for k =0, H* is the
domain 2(K*?) with norm |u|,= ||(1 + K)**u|, and $* is the com-
pletion of § in the norm |-|_,. One has $'D>H* for I<k, H*°=nH,
9 =uH* On H™ a topology is defined by the basic set of neighbour-
hoods N, , = {ue $”; |ull, <&} of 0.
We impose the following assumption on ¢:
(A) <u, ¢(f)v)y is defined and separately continuous on H*
P(RY)x H=°. This is equivalent to Nelson’s assumption (A’) of [2],
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namely that there exist finite k and [ such that, for all fe2(R%, ¢(f)
is a bounded linear operator from $* to $' and f+¢(f) is continuous®.

As shown in [2], (A’) implies that ¢(f x 8)= ¢(f,0) is a bounded
linear operator from $H* to $', for fe L(R*" 1) and for some finite k'
and I'. We want to interpret ¢(f,0) as a form on £,. Our procedure is
somewhat more complicated’ than that of Nelson [2].

Lemma 3.1. a) T extends to a unitary operator on each S, and it
commutes with ¢(f,0). b) 9, is invariant under space translations so that
their generators are self-adjoint on 9,, and they commute with P,.

Proof. The first part follows from [T, K]=0 and from T¢(g)T
= ¢(9¢g) where (3¢) (x) = g(— x,, x). For the second part we note that the
space translations commute with E,, T and T,, hence with E,TE,,
and thus with E,, Ty and P,. QED.

Xy, on the other hand, need not be defined on §,. For k =0, we define
9. =99, while, for k<0, H* is defined as the completion of §, in
[l -norm.

Lemma 3.2. $2* is dense in §, .

Proof. To show denseness for k>0, it suffices to show that X§ is
densely defined on .. Now, for ue ., and g € #(R) with support on
the right half axis the vector | dt g(t) T,u is in D(XEHND ., and the set of
such vectors is dense in .. QED.

Lemma 3.3. Let r be chosen so large that ¢(f x &) is a bounded linear
operator from H*" to §~". Then one can define a symmetric form ¢o(f)
on To?Eo 93 x T2 EoH¥ by

(TP Egtt, ol f) TE2 Eqvy = Cu, TH(f X 8)v) (3.1)

where u,ve H%'.

Proof. First note that ¢(f x dve Hi?" for veH%. Indeed, let
fr€D(RY) such that ¢(f,) = ¢(f x 6) on $*". Then $(f,)ve H7?", and
lim@(f,)v=¢(f x djve H;?". Now we intend to show that the r.h.s. of
Eq. (3.1) depends only on T}? Eyu and on Ty/?Eqv. Let w,€ $, such
that w,2¢(f x v in ||-|_,,-norm. Then, by Eq. (2.2), <{u, Tw,»
= {Eyu, Tw,y so that also the limit depends on E,u only. Approximating
o(f x 8)u in a similar way yields dependence on E,v only; here Lem-
ma 3.1a) has been used. Now the correspondence between Equ and
Td?Equ as well as Eqv and T}/?E,v is one-to-one. Hence the r.h.s. of

6 (A’) implies that there are norms ||-|,, [limy» -1l on H°, P (R? and H=, respectively,
such that |(u, $(f)0>| < |l |f | |0l Hence, in particular, | $(f)]s,; =Sl so that the
former is a continuous semi-norm.

7 In[2], T is the unit operator on the space corresponding to our $,, and the Markoff
property holds.
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Eq. (3.1) depends on the latter vectors only. The symmetry of ¢, follows
from that of the rhs. QED.
Lemma 34. T32E, 93" is dense in 2(H) () 2(X)), k=1,2,...,

i>0
and for ue H%* one has

TA2Ey Xku=(iH) T Equ. (3.2)

Proof. Since Ty'* and E, commute with X;, the above subspace is
contained in () 2(X¥). For the rest it suffices to prove Eq. (3.2), by
i>0

Lemma 3.2. Let ue (XN, . Then
k

. . T, —1
Xbu= 5;;1_1}11’10(—— i) <j1;[1 ?) u (3.3)
which, incidentally, lies again in $,. Applying T¢/?E, to the rhus.
without the lim and using u=Eyu+ Equ together with Lemma 2.2,
we obtain

(—i) {(ﬂ %—1—) T4 Equ+ T4'?E, (n —T—’»’T—i) Emu} . (34)
j Jj j J
By Lemma 2.1, the second term vanishes. Since, by Eq. (3.3), the norm
limit of Eq. (3.4) exists, the first term converges strongly for t; = +0
yielding Eq. 3.2). QED.
Now we are going to prove continuity properties of ¢o(f) which
are decisive for the following.

Proposition 3.1. Let E, TE, 20 and let (A’) hold. Define ¢o(f) as in
Eq. (3.1). Let $¢ be the Hilbert space Ho= HoND(X{)N ... with the norm

llul™= (1+ Y IX;I)’u : (3.5

j>0

Let H be the restriction of H to 50 8, and let {530"} be the associated scale
spaces. Then ¢o(f) can be extended by continuity to a bounded operator
from H3" to Ho " which is continuous in f.

Proof. We first show boundedness. Let u°e T}/2E, 9%, and let
ueH% with T}2Equ=u®. If one puts X =(1 —iX,) (1 + Y lXjI), then
j>0
A=X""¢(f xI) X" is a bounded operator on H and TX=X*T.
Thus, by Eq. (3.1),
<u®, po(f)u®y = <u, TH(f x S)up
=(X"u, TAX ) .

8 H is self-adjoint on §,, by Lemma 3.1.
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For ue$,, one has X'ue$H, and also Aue$H, since (1 —iXy) !

= [ dte™'T,. Hence one deals with the positive operator E, TE, and
0
can repeatedly apply Schwars’s inequality,

(XTu, TAX"u> <X u, TXTudY? (X u, TA2 X" ud'?

N

2-v

T
SX'u, TX ud' (X'u, TA* X ud?™".
The last term is bounded by [A| || X u||>"""" which tends to |A].
By Egs. (2.2) and (3.2) and Lemma 3.1, we obtain
(X'u,TX"u) = “(1+H)’ (1 + Y |Xj|)’u°

j>o

2

This proves the boundedness. Since the r.h.s. of Eq. (3.1) defines a con-
tinuous linear functional on ¥ (R?"!) so does any limit, by the weak
completeness_of &, and the remark in footnote 6 applies. QED.

Now, e " maps each 9% into H. This has a simple but interesting
consequence. ‘

Corollary 3.1. Let ge S (R,) and define g by
g(@)=Jdre " g(r)} q=0.

Then, for g;e (R,) and fo, f;€ S(R*"1Y), i=1,2,...,

J 1T 40,2} <2 dolfole™ " Tdo(f) .. e go(£)2>
=l (3.6)

<[ bo( )@l 2 n {bo(f)l12r, -2, suplit + 9> di(@)} -

Proof. Let ue$H2'. Then

Ifdeg@e " go(Nulz,
<A+ Hy [drg@e (1 +HY | 1ol 2r, 20 1l

and for the first factor on the r.h.s. one obtains sup|(1 + ¢)*"d(q)|, by the
q
spectral theorem?®. From this Eq. (3.6) results by Schwarz’s inequality.
QED.
From this we obtain a result which can be used for analytic continua-
tion.

° Note that if E; is the spectral decomposition of a self-adjoint operator then
If f(D) dE;]| =sup|f(D).
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Corollary 3.2. Let &= (t;,x;—x;_4), i=1,2,...,n. Then, considered
as a distribution on #(R*™ ) x P(R)x -+ x F(RI™Y),

(Q, polxo)e ™™ ... e o (x,) 2
00_. (3.7
— XSk~ ikqr) nd
=je g VVn(qu--'aqn)d q
where q,=(q2, q) and where W, is a distribution on & (R®") with support
in{(qq,...,q);90 =0, k=1, ...,n}.
Proof. By Lemma 8.2 of [4], the map g ¢ is a continuous map of
Z(R,)onto a dense subset of (R ), where the latter consists of functions
f+@=f@R,, fe L (R), with norms

Feln= sup_ (10" 11 (a)],

m=0,1,.... Eq.(3.6) shows that the Lh.s. of Eq. (3.7), when smeared in
X, ..., X,, can be extended to a distribution on #(R,)... #(R,). The
rest is translation invariance and continuity in the f;’s. QED.

Now we want to show how ¢~ ¢o(f) acts as an operator.

Lemma 3.5. Let the assumptions be as in Proposition 3.1, and let g
F(R,). Let ve HY. Then

[drg)eFdo(f) T3 Egv=To*Eq [ de g@ T.4(f x v (3.8)
where the expression following E, on the r.h.s. lies in H%.

Proof. The last statement follows easily from the spectral theorem
and the transformation properties of ¢(f x ) under space translations *°
Now let ue $3" and put g(P,) = [ dt g(r) P, and similarly for P, and T..
Then, by Proposition 2.1, Lemmas 2.2 and 3.3 and Eq. (2.2),

(To"*Equ, g(P) ¢o(f) Tg /2E00>
= (T3 *G(P) Eou, ¢o(f) T4'? Eqv)
=T Eog(T)u, ¢o(f) To"* Eqv)
=Lg(T)u, To(f x 6)v) =<u, Tg(T) p(f x 6)v)
={To"? Equ, T3> Eog(T) ¢(f % )v) .

Since T4/* E, 93" is dense in H,, Eq. (3.8) follows. QED.
From this we have a corollary which is crucial for the next section.

Corollary 3.3. Let &_(R?") denote the subspace of functions f € & (R")
such that f@(xy, ..., x,) =0 for all « unless x3 <--- < x2. Then, under the

10 See also the remark at the end of this section.
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assumptions of Proposition 3.1,
€, dolxr)e™ CF7DH o (xy) .. em R0 by () Q)
=<, P(xy) ... P(x,)2)
as distributions on S (R™).

Proof. We smear the Lh.s. of Eq. (3.9) in all x; with f;e #(R‘"!) and
in & =x?,; — x? with g; € #(R.,). By repeated application of Lemma 3.5
and by Eq. (3.1) together with T, Q2 = TQ =Q we obtain

(3.9)

(29040 {I1 42 e} 912D . B4+ ¢2>s2> . (3.40)

From this the lemma results by translation invariance. QED.

Remarks. (i) The existence of the n-point functions as distributions
on & (R*) can be directly inferred from assumption (A"). The latter
implies [2] that ¢(6Y) = ¢(0, 0) is a bounded operator from $H* to ~*
for some k> 0. Since, for fe€ #(R?), [ dx f(x) T,o T, maps $~ into H,
by the spectral theorem, one has

Jd&, fil€) @&y .- [dE, fu&) $Cy + - +E,)QeH™.

Hence any product of field operators can be applied to £, mapping it
into H®. One can also show that ¢(f) maps H* into H® so that if (A")
holds field operators can be applied arbitrarily often on $®, not only
on Q.

(i) The r.h.s. of Eq. (3.9) is symmetric in x,, ..., x, since ¢ is abelian.

4. Transition to Relativistic Theory

We are now able to go over to a relativistic field by analytic con-
tinuation. Further below we will also show that the Hilbert space on the
relativistic theory is £, too, and write down the relativistic field operators.

Theorem 4.1. Let ¢ be a commutative field over & (R?) or Z(R% in a
Hilbert space $ with cyclic vector Q. Let ¢ be covariant under the full
Euclidean group {(R,a); R e O(d),ae R} with Q as unique translation
invariant state. Let T be the unitary time reflection operator, and let E
be the projector onto the subspace 9. generated by vectors of the form
e?DQ, supp f C {x;x°>0}. Then, if

(i) E,TE, =0 and

(i) condition (A") of Section 3 holds,
the n-point functions {Q, ¢(x,) .. d)(x,,)Q), x) <+ <x2, can be analyti-
cally continued in &9=x)—-x%_,, j=2,...,n to Re&)>0. For
&) = —i(t;—t;_,) they yzeld the Wzghtman distributions of a relativistic
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theory, satisfying relativistic invariance, positivity, causality, spectral
condition and cluster property.

Proof. Eq.(3.7) together with Eq. (3.9) shows that one can analytically
continue in £. The proof of relativistic invariance etc. is then identical
to that of Theorem 2 and 3 in [2] or to the similar procedure in [4].
Here Euclidean invariance and the commutativity of ¢ enter cru-
cially. QED.

Realization of Relativistic Field Operators in §,

By Proposition 3.1, ¢, maps $H2” into Hg 2" Let f(z, x) € #(R?) and
put f,(x)= f(t, x). Then, by [6],

A(f)= [die™ go(fe i (CRY
maps $H into 5530 . Comparison with Eq. (3.9) shows that
QA - A(f) D

is just the analytically continued n-point function at imaginary times

smeared with f; x---x f,. Hence instead of using Corollary 3.2 one

could have performed the analytic continuation by inserting operators

e''" on the Lhs. of Eq. (3.9), quite analogous to [2]. The operator in

Eq (4.1) is the relativistic field. By the spectral condition it is seen'! that
2k — 9(H") so that H=H.

Remarks (i) It may seem surprising, that, instead of P E,T,, we
have used P, = T2/? P, T; '/? for the construction of the Hamlltoman and
that this works. However, this is not quite unexpected. Since T and
¢(f, 0) commute it is not unreasonable that in

<Q ¢o(f1 1/2 TO—1/2 ¢0 f )T1/2 To— 1/2 Q>

the operators Ta/?> and Ty /2 drop out in some sense, reflecting some
sort of commutativity of T, and ¢,,.

(ii) The operators T4/? appearing in the definition Eq. (3.1) of ¢ are
important. If they are dropped one does get an analog of Proposition 3.1
if one introduces the new norm | Tq4/?u|| and uses the generator for P,
but then Eq. (3.9) does not hold.

(1)) The role of assumption (A’) is seen to be twofold. It assures the
existence of the Euclidean n-point functions and, together with the
T-positivity, it allows their analytic continuation, thus by-passing the
difficulties associated with the incorrect Lemma 8.8 of [4]. Corollary 3.1

11 By the spectral condition, the representation of the Poincaré group decomposes
into a direct integral of irreducible ones with m? 2 0. For the latter one has P, =]/P? +m’
so that Z(P,) C 2(P).
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shows possible ways to weaken (A’). One could try to obtain, instead of
Eq. (3.6), an estimate which, firstly, contains derivatives of g and which,
secondly, contains an explicit n-dependence of the exponent 2r and of the
order of the derivative.

(iv) All previous results can be extended to Fermi fields and higher
spin Bose fields in an obvious way. If one assumes Euclidean Fermi
fields to anticommute for all points (not only for non-coinciding ones),
a doubling of the fields as in the case of the free field seems unavoidable.
It is simplest to assume that Q, the unique translation invariant state,
is in the domain of all field products and cyclic. $, can be defined
similarly as before as the subspace generated by

(e, (f)... v, ()2 fieFRY), i=1,..,n;n=12,.}.

With T-positivity, E, TE, =0, and assumption (A") for y,,...,p, all
results of Section 2 to 4 go through as before, with the only modification
that in the proof of Theorem 4.1 the anti-symmetry of the n-point
functions has to be used as in [4].

5. Functional Formulation and Examples

The conditions of Theorem 4.1 can be very simply expressed by
means of the expectation functional

E(f)=(Q,¢*"Q),

except for condition (A’) which has to be checked separately.

The following conditions (F), (E), (C) are the well-known conditions
on E(f) to determine an abelian self-adjoint field over & (or &) which
is Euclidean covariant and has a unique invariant cyclic vector Q.

(F) For fixed f, E(z f) is continuous in 7, and for all f;€ & (R%, 1, eC,
= A LE(fi~ 1) 20,

(E) For all fe %(R% and (R,a)e10(d), E(fg.)=E(f).

©) 13313100 E(f,+9)=E(f) E(g) for all f, g€ ¥ (RY).

As already remarked in the Introduction, T-positivity i$ equivalent to
(T) Let (31)(f)=f(—x° x). Then for all f;e #(R%) and all 1,eC

L LAE(fi—9f)=20. (4.1)

In case the conditions of [4] should turn out to be sufficient after all
one can replace (A') by

(D) For each fe &(R%, E(1f) is a C*-function of 7 at T =0, with the
second derivative being continuous in f.

This last condition can be shown to be necessary and sufficient for Q
to be in the domain of all field operator products and for the n-point
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functions to be distributions on & (R“"). The latter can then be obtained
by differentiating E(X 7, f;) at 7,=0.

Examples

1. The Constant Field. We consider the functional

E(f)=<2,e*0 Q) =explia [ &x f(x)— B [ d*x |f(0)]*
+ [ & x [do(d) [+ —1 —idf()/(1 + D]}

where a, § are real constants with f = 0, and where ¢ is a positive measure
on the real line satisfying

[do(D) 22/ +12)< o0, a{0}=0. (5.2)

These functionals are well-known [7]. For «=f=0 and ¢ even they
belong to the fields underlying the ultra-local models [8, 9]. Properties
(F), (C) and (E) are satisfied. If do has a sufficiently rapid decrease at
infinity, then also (D) is fulfilled, since one can then differentiate under
the integral. In view of the exp and of the integrals over x one sees
immediately that E(f; + f,)=E(f,) E(f,) whenever f; and f, have
disjoint_supports. Hence for f;e £(R%), i=1,...,n, E(f;—3f)
= E(f) E(3 f)). Since by (E) one has E(8 f) = E(f), condition (T) is trivially
satisfied. The n-point functions of ¢ can be easily computed by differentia-
tions, but this is not necessary here. It follows directly from the multi-
plicative property of E(f) that for noncoinciding points one has

(R, ¢(xy) ... p(x,) 2> = [[(Q, p(x) Q) =" (5:3)

where {(Q, ¢(x)Q) =const=c, by translation invariance'?. Hence
analytic continuation yields constant Wightman functions also.

2. The Free Field. In Eq. (5.1) we put « =0 and ¢ =0, and replace f
by (—4+m?) Y2 f, where 4 is the s-dimensional (Euclidean invariant)
Laplacian and m =0 for s=3 and m >0 otherwise. Thus we consider

E(f)=exp{—(=4+m»)~'2f|?}. (5.4)

Conditions (F), (E), (C), (D) are automatically satisfied. To check T-
positivity, the following lemma is useful.

(5.1)

Lemma 5.1. The nxn-matrix A(z)=/(e**V) is positive-definite for
every ©>0 if and only if the matrix («;;) is conditionally positive-definite,
i.e, if and only if, for all ,, ..., 4, € C with £ 4;=0,

T 22020

12 1t is zero if ¢ is even, i.e., if do(A) = do(— A). Hence these fields can be added to any
Euclidean field without altering the associated Wightman field (if there is any).
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The proof is a transcription of the proof of Theorem 4 in Chapter 111,
§4 of [7] and is therefore omitted. Replacing fi(x) by fi(x/1), t>0,
the lemma shows that E(f) in Eq. (5.4) satisfies (T) if and only if, for
2 A;=0and f;e L (R%),

0= ZLAKLi= 8 (=Aa+m) ™" (fi=81)
0=%X lizj<(_A +m?) LY (—A+mP) TS (5.5)

or

We will show that Eq. (5.5) holds without restriction on the 4,’s, for all
fie #(R5.)'3. To this end we note that the r.h.s. is not only defined for
f:€ #(R¥) but also for f; in the Sobolev space # ~!(R®), in particular
for “sharp time” functions of the form

fix)=g:(x)6(x"—1), gie LR, (5.6)

For t;> 0 these functions are total in the subspace of functions having
support in {x;x°>0}, and hence it suffices to prove Eq. (5.5) for f;
given by Eq. (5.6). Using Fourier transforms one finds

S (—A+m?) 181>
=g, 9> (P> +m) "2 exp{—|t; + 1|}/ p* +m*},
and so Eq. (5.5) is satisfied if ¢,>0, i=1,...,n. The relativistic field

associated with this Euclidean field is the free field of mass m.
3. Some Generalized Free Fields. We consider the functional

E(f)=exp{— [do(m®) [[(—4+m?*)~ ' f||?} (5.8)

(5.7)

where dg is a positive measure on [a, o), a>0, satisfying {do(m?)
-(1+m*») " '<oo. Then E(f) is defined and continuous on &(R®).
Lemma 5.1 shows that E(f) satisfies condition (F), and (E), (C), (D) are
also seen to hold. Eq. (5.5) together with Lemma 5.1 shows that (T)
holds. The associated relativistic field is clearly a generalized free field.

Considering the usual momentum Fock space and making an auto-
morphism of the test function space, the fields of the last two examples
can be written as a sum of creation and annihilation operators. It is then
seen that, on the n-particle space, one has (1 + K)~! < 1/n, and from this
one infers that the smeared creation operators are bounded operators
from $ to $!. Hence the annihilation operators, which are their
adjoints, are bounded operators from the dual of $ ! to the dual of §,
ie., from ! to H. Therefore the field is a bounded operator from $H! to
$ 1. Hence (A) holds. This procedure is similar to that at the end of [3].

3 This means that E, €, =0, where £, is the projector onto the closure of the
space (—A4 +m?) ™12 P(RS,).
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Remarks. 1. A suitable choice of ¢ yields examples like 14
E(f)=exp{—I(=4+mg)""*f|?},
while functionals like
E(f)=exp{—[(=4+m*)~*2f|*}, 2<keN,

can be shown to violate (T).

2. From the way in which the free fields was obtained from the
“ultralocal” functionals of Eq. (5.1) it is tempting also to consider the
functionals

E(f)=Ey(—4+m*) "2 f)

where Ey; is obtained from Eq. (5.1) by putting & = ff = 0. Conditions (F)
and (E) are trivially satisfied since one has just made a transformation
of the test function space, corresponding to an automorphism of the
unitary group. With suitable behaviour of ¢ at infinity (D) is fulfilled too
and (C) follows since 4 commutes with translations. (T) may or may not
be verifiable. This question which reduces to the positivity of 3 for a
subspace of ¥ (R®) is under study.

6. On the Notion of Markoff Fields and Its Connection
with T-Positivity

In this section we introduce a notion of Markoff field which slightly
differs in the localization from that of Nelson [2] and which is just as
useful for the construction of relativistic fields. With its help the reflection
property which is so extensively used in [2] can be very simply expressed.
We then show that T-positivity is a natural generalization of Mar-
koff + reflection property.

Nelson defines a Markoff field over Z(R" in the following way. Let ¢
be an abelian field over Z(R?) in § with cyclic vector @, let U C R? be an
open set, let H, be the subspace of § generated by {'?Y); supp f C U}
and let Ey, be the projector onto $y. Let F C R? be a closed set, and define

Hr= () Du- (6.1)

UDF

Let Eg be the projector onto H. We denote by U’ the complement of U
and by 0U its boundary. Then in [2] ¢ is said to satisfy the Markoff
property if, for all open sets U,

EU' EU = EauEU . (6.2)

4 The exponent equals 2/m [ dm'{f,(—4+m§+m'*)™* > which can be brought
to the form of Eq. (5.8).



From Euclidean to Relativistic Fields 169

This can easily be expressed in probabilistic language in terms of con-
ditional expectations *°.

In the construction of relativistic fields the Markoff property is
needed for open half spaces {x; x° = s} only, no other open sets appear.
This suggests a slightly different Markoff notion which is more sym-
metric in the localization.

Definition 6.1. Let ¥ be a space of functions on R? and let ¢ be an
abelian field over 7~ in § with cyclic vector Q. Let U, and U, be the
half spaces {x e R?; x°=s}, respectively. Let $; be the Hilbert space
generated by {e*YVQ; suppf CcU.}, and similarly for $.,. Put
De=9<and H;=H.,nH., and denote the corresponding projectors
by E.,, E.,=E_,, E,. Then ¢ is said to satisfy the Markoff property of
second kind'° if

EésE>s=EsE>s‘ (6.3)

Remark. In our definition the Hilbert space associated with a closed
half space in R? equals that for the open half space contained in it. This
is a more symmetric localization and yields as a trivial consequence

Corollary 6.1. ¢ has the Markoff property of second kind if and only
if E. E.is a projector,
E_E.,=E,. (6.4)

Proof. Since $,C 9., Eq. (6.3) is equivalent to Eq. (6.4).

When one has a unitary representation 7, of the translations in
0-direction under which ¢ transforms covariantly and which leave Q
fixed, then Eq. (6.3) can be further simplified.

5 One can realize $ as a function space I*(X, X, u) with Q corresponding to 1.
(X, X, p)is a probability space, i.e., X is a space, X a o-algebra of subsets of X and y a measure
on X with u(X)=1. One can further realize ¢(f) as multiplication by a function so that
¢(f) can be regarded as a linear stochastic process over Z(R%). Let 8(U) C X be the smallest
o-algebra with respect to which all functions in $, are measurable, and denote by Z (U)
the set of all functions which are measurable with respect to 4(U). The conditional expec-
tation with respect to a sub-o-algebra 4 of X of a random variable (i.e., measurable function)
u is defined by a Radon-Nikodym derivative as

E{u| B} = %
B

Then Eq. (5.1) can be extended to read
E{u|#B(U")} = E{u|3(0U)}

for all u e #(U) and for all open sets U C RY.

16 This can again be expressed in terms of conditional expectations and linear
stochastic processes over ¥/, just as in the preceding footnote.
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Corollary 6.2. Let T,p(x)T*=¢p(x°+1t,x), ,Q=Q. Let E_=E_,
and E, = E. . Then ¢ has the Markoff property of second kind if and only
if E_E, is a projector,

E_E,=E,. (6.5)

Proof. This follows from E, = T,E<, T and E,=T,E, T,;*. QED.

With this Markoff notion one can work just as with that introduced
in [2]. The reflection property needed in [2] means that there is a unitary
operator T in § satisfying T¢(x°, x) T = ¢(—x° x) and TQ=Q such
that T is the identity on the Hilbert space belonging to the hyperplane
{x e R?; x° =0}. Correspondingly we will say that a Markoff field of the
second kind satisfies the reflection property if T is the identity on §,.
The next necessary and sufficient condition is an easy consequence of the
definitions.

Theorem 6.1. Let ¢ be a field in § with cyclic vector Q over a space V"
of functions on R®. Let {T,;te R} and T be unitary operators such that
T,0(X)T*=¢(x°+1,x), To(x)T=p(—x° x), and T,Q=TQ=Q. Then
¢ is a Markoff field of the second kind satisfying the reflection property
if and only if E, TE, is a projector.

Proof. The necessity follows from E,=TE,=TE_E,=E,TE,.
Conversely, if E, TE, is a projector, E say, then E>=TE_E,E_E,
=E=TE_E,. Hence (E_E,)*=E_E,, and since |E_E | <1 it
follows that E_ E_ isa projector [10]. From this and from E*=E, E_E,
=E_E,=E=TE_E, it then follows that T is 1 on E_E, $. QED.

We note thatif E, TE, is a projector, it projects onto H, =9, NH_,
and T is 1 on 9,. In particular E, TE, =0. The next corollary shows
that T-positivity is the natural generalization of Markoff + reflection
property for practically any localization prescription.

Corollary 6.3. Let ¢, ¥, 9, Q, T be as in Theorem 6.1. If UCR* is
an open set, let 9§y, be the Hilbert space generated by {¢'*" Q; supp f CU}.
If FCRY is a closed set define Hy in such a way that Hp> 9, whenever
F D A, but otherwise arbitrary*”. If, with this localization, ¢ is a Markoff
field which satisfies the reflection property, then E, TE, 0.

Proof. Let E,and E, be the projectors onto the subspaces associated
with {x;x°=0} and {x;x°=0} so that E_E, —E0E+ and TE,=E,.
Then multiplication by E, T yields E, TE, =E,E,E, =0. QED.

Remarks. (i) Under additional continuity properties different
localizations will give the same result. Thus in the case of a field over the
Sobolev space # ~*(R% Nelson’s definition of the Markoff property
satisfies also Definition 6.1 since, in view of the assumed continuity of
¢'?V) the Hilbert spaces belonging to open and closed half spaces and
hyperplane are the same in the two localizations.

7 1t suffices to consider open and closed half spaces and hyperplanes as in Defini-
tion 6.1.
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(i1) The localization in Definition 6.1 may be changed slightly
without spoiling the symmetry. One still associates to both open and
closed half spaces again the same Hilbert space, but one now takes

ﬂ 9., etc, where $H., is as in Definition 6.1, and puts
53 53 N$.,. Eq. (5.3) is then replaced, in obvious notation, by
E_E.,=E, E - Then Corollaries 6.1 and 6.2 as well as Theorem 6.1
hold w1th the obvious changes. Although $,2 9, for the relativistic
field no different Hilbert space results [cf. Eq. (3.9)].

(iii) One may generalize the above considerations in an obvious way
to Fermi fields. With localization as in Definition 6.1 it would be natural
to say that a Fermi field possesses the Markoff and reflection property if
and only if E, TE, is a projector (cf. Remark (iv) in Section 4). Markoff
Fermion field have also been discussed in [11].

Acknowledgments. 1 would like to thank J. Yngvason for stimulating discussions in
connection with assumption (A’) of [2].

Note Added in Proof. In a forthcoming paper we are going to give a functional
characterization of Markoff fields (which satisfy the reflection property) and show with
its help that T-positivity is indeed more general. It will turn out that the generalized free
fields of Section 5 are not Markoff fields, neither over # ™! nor over &, although they
satisfy T-positivity. It can also be shown that reflection invariance is not needed for the
construction of a relativistic field, i.e., the existence of the operator T is not needed. T
positivity has then to be expressed by the functional E(f) as in Eq.(1.4). The derivation
uses bilinear forms instead of the operator T.
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