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Abstract. Recently, Nelson [2] has constructed relativistic fields from Euclidean fields
which satisfy the Markoff and reflection property as well as an additional domain assump-
tion. In this paper we replace the Markoff and reflection property by a weaker condition,
a very simple positivity condition ("T-positivity") which can be very easily expressed in
terms of the expectation functional E(f) = <Ω, exp{iφ(f)}Ω}. We show that the special
role of the Markoff property in Nelson's approach is entirely due to features also shared
by T- positivity. The role of Nelson's domain assumption (A') in by-passing the difficulties
with the paper of Osterwalder and Schrader [4] are made transparent, and possible ways
to weaken this assumption are pointed out. If the conditions of [4] should turn out to be
sufficient after all, (A') can be replaced by a simple differentiability condition on E(τf).
Our approach can also be applied to Fermi fields. The notion of Markoff and reflection
property is discussed and shown to imply T- positivity.

Introduction

The proposal of Symanzik [1] to exploit Euclidean invariance in
relativistic field theory has recently found some interesting developments.
These were initiated by Nelson [2, 3] who described a procedure to
construct relativistic fields from Markoff fields which transform co-
variantly under the full Euclidean group and which satisfy an additional
domain assumption. The Markoff property, a fairly restrictive condition,
allows a simple Hubert space construction. Then Osterwalder and Schra-
der [4] attempted to give necessary and sufficient conditions for a set
of Euclidean Green's functions to lead to Wightman functions of a
relativistic theory by analytic continuation. However, their crucial
Lemma 8.8 is incorrect1, and it is doubtful whether their conditions are
indeed sufficient; it seems likely that one will need an extra assumption.

In this paper we construct, as Nelson, relativistic fields from Euclidean
fields over Sf or Θ, without Markoff property, however. We replace the
Markoff and reflection property used in [2] by a weaker condition,

1 This has been noted by several people. I learned this first from J. Yngvason who
also gave a simple counter-example. See also [12].
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namely by a very simple positivity condition ("T-positivity"), and obtain,
with exactly the same domain assumption 2 as Nelson's, a simple Hubert
space construction of a relativistic field. We show that the special role
played by the Markoff property in the approach of [2] is entirely due to
features which are also shared by T-positivity. We also make transparent
the role which the domain assumption plays in by-passing the difficulties
associated with Lemma 8.8 in [4] and point out possible ways to weaken
this assumption.

Let φ(x) be a commuting self-adjoint scalar field3 over a space Ψ*
of real-valued test functions on Rd, i.e.,

eiφ(fι)eiφ(f2) — eίφ(fi+f2) H n

for all fuf2 e f, where eίφ(τf) is a unitary operator in a Hubert space §
and weakly continuous in τ so that one can recover the generator </>(/).
Thus one deals with a unitary representation of an abelian group. If
Ω e § is a cyclic vector for φ, i.e., cyclic for {eιφ{f) f e f^} then, by the
reconstruction theorem for group representations [5], the representation
is uniquely determined by the expectation functional3

£(/) = <β,e '* ( / ) β>. (1.2)

We say that φ is a Euclidean (Bose) field if there is a unitary representa-
tion of the full Euclidean group IO(Rd) in § such that, for (R, a) e IO(Rd),
U(R, a) φ{x) U*(R, a) = φ{Rx + a) and U{R, a)Ω = Ω.

Let T be the unitary time reflection operator, Tφ(x)T=φ( — x°,X).
Let Rά

+ = {x e Rd; x° > 0} and let E+ be the projector onto the subspace
generated by {eίφ(f) Ω supp f C Rd+}. Then our positivity condition which
is related to that of [4] reads

E+ TE+ ̂  0 ("Γ-positivity"). (1.3)

This can easily be expressed by means of the expectation functional E(f).

Let (θ/)(x) = /(-x°,X). Then Eq. (1.3) is equivalent to 4

ΣλiλjEift-af^O, suppftcRd^ ^ eC. (1.4)

In Section 2 the Hamiltonian H and the Hubert space § 0 of the
relativistic field are constructed. § 0 is just the subspace of § on which
E+TE+ is nonzero. In Section 3 the domain assumption (A') through
which also continuity properties enter is explained and exploited. In
Section 4 the preceding results are used to construct the relativistic

2 Condition (A') in Section 6 of [2].
3 Cf. [7], Section 6.
4 Indeed, Eq. (1.4) just means that, for suppfi C Rd

+,
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theory. We indicate possible ways of weakening assumption (A') and we
show how to carry over our results to Fermi fields. In Section 5 we give
a formulation by means of the expectation functional E(f) and present
some simple examples.

In Section 6 we discuss the notion of MarkoίΓ fields. We propose a
definition of localization slightly different from that of [2] and show that
φ satisfies this Markoff property together with the reflection property
if and only if E+ TE+ is a projector. It is then pointed out that also for
the localization prescription of [2], and practically any other, Markoff
+ reflection property implies T-positivity.

We remark that Γ-positivity as expressed by the expectation func-
tional is stable under limits.

2. Hamiltonian H and Hubert Space § 0

Let φ be a Euclidean field over the real space5 6f(Rd) or !3(Rd) in
and assume that Γ ^ r ^ A / o

By the spectral theorem ξ>+=E+ξ> decomposes into a direct sum,

such that E+ TE+ vanishes on the null space $>w = E9lξ> and is strictly
positive on § 0 = £ 0 $ . Note that ξ>m = {ueξ>+ <w, Tu) = 0} and that
Ωeξ>0. We denote by To the restriction of E0TE0 to $ 0 . Then TQ1

exists as a densely defined positive operator. We will use repeatedly that

E+TE+=E0TE0. (2.2)

Lemma 2.1. For t ^ 0 , § + and %>& are invariant under the Euclidean
time translation Tt.

Proof. In variance of § + is obvious. Let ueξ>n. By Schwarz's in-
equality

0ύ(Ttu,TTtu} = (u,TT2tu)
u}ll2 = 0. QED.

Lemma 2.2. For ί^O, we define Ptu = E0Ttu for ueξ>0. Then
P f 0

Proof. Since Ttξ>^ C ξ> m and Ttξ>+ c ξ>+ for ί ^ 0 and since -Eol>9i = 0>
one obtains, with u ε § 0 ,

PtP,u = EoTtEoT3u = EoTtE+T,u-EQTtEΛT,u

= EoTtTsu-0 = Pt+su. QED.
Throughout we use real-valued functions.
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Proposition 2.1. We define Pt = T^2PtTQ-112 on T 0

1 / 2 § 0 Then
{Pt> t = 0} can be extended by continuity to a self-adjoint contraction semi-
group on § 0 . Hence there exists a positive operator H such that

Pt = e~tH. (2.4)

Proof, We first show that Pt, ί^O, is symmetric on Γ 0

1 / 2 § 0 . For
u,veξ>0, one has

= (Ptu, Tov} = </> Γ0

1/2κ, T^2v) .

Using the symmetry and Schwarz's inequality one obtains by in-
duction

P t T o

1 / 2 u > ^ ||Γ0

1/2iι|| | |P

which converges to ||Γ0

1/2w||2 for N^oo. Hence HPJI^l. QED.
We note that up to now no continuity or domain properties of the

field have been used. Instead of Pt one could also have considered Pt

which becomes a self-adjoint contraction semi-group if one introduces
the norm || T0

1/2 u\\ on § 0 and goes to the completion. The resulting space,
however, seems to be too large for the desired continuity properties of
the field operator to hold.

3. The Field Operator: Domains and Continuity

We want to define a sharp-time field on § 0 as a form and use for this
purpose the assumption (A') of Nelson [2]. Let Z o , ...,Xd_1 denote the
self-adjoint generators of Euclidean time-space translations in §, and put

K = (ΣXf)1/2.

Let § k , — oo ^ fc ^ oo, be the associated scale. That is, for k ^ 0, § k is the
domain ®{Kkl2) with norm | |κ | | f c = ||(1 +K)k/2u\l and 9)~k is the com-
pletion of § in the norm || ||_fc. One has ξ>ιDξ)k for l<k, δ°° = n $ k ,
§~°° = u § k . On δ 0 0 a topology is defined by the basic set of neighbour-
hoods NεΛ = {we§ r o ; | | tt | | k<ε} of 0.

We impose the following assumption on φ:
(A') <w, φ(f) v > is defined and separately continuous on §°°

x S){Rd) x §°°. This is equivalent to Nelson's assumption (Ar) of [2],
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namely that there exist finite k and / such that, for all fs2){Rd\ φ(f)
is a bounded linear operator from § k to § ί and f^φ(f) is continuous6.

As shown in [2], (A') implies that φ(f x <5)==φ(/,0) is a bounded
linear operator from § f c ' to § Γ , for fe ^{Rd~ι) and for some finite k'
and ΐ. We want to interpret φ(f, 0) as a form on § 0 . Our procedure is
somewhat more complicated7 than that of Nelson [2].

Lemma 3.1. a) T extends to a unitary operator on each § f e, and it
commutes with φ(f, 0). b) § 0 is invariant under space translations so that
their generators are self-adjoint on § 0 , and they commute with Pt.

Proof. The first part follows from [T,K] = 0 and from Tφ(g)T
= φ(Sg) where (Sg) (x) = g( — χ0, x). For the second part we note that the
space translations commute with E+, T and Tv hence with £ 0 T £ 0 ,
and thus with £ 0 , To and Pt. QED.

Z o , on the other hand, need not be defined on <r>0. For k ̂  0, we define
§+ = § f c n $ + while, for fc<0, §+ is defined as the completion of § + in
IHIfc-norm.

Lemma 3.2. §+fe is dense in ξ>+.

Proof. To show denseness for fc>0, it suffices to show that XQ is
densely defined on ί>+. Now, for u e f ) + and ̂  e ί̂ CR) with support on
the right half axis the vector j dτ g(τ) Tτu is in Q}(XQ)Γ\9)+ , and the set of
such vectors is dense in § + . QED.

Lemma 3.3. Let r be chosen so large that φ(f xδ)is a bounded linear
operator from ξ>2r to ξ)~2r. Then one can define a symmetric form φo(f)

= <M, Tφ(f x δ)v} (3.1)

where u,ve ξ)2

+

r.

Proof. First note that φ(f x δ)veξ>+2r for veξ>2+r. Indeed, let
fne@(Rd

+) such that φ(fn)^φ(fxδ) on ξ>2r. Then φ{Qveξ>+2\ and
limφ(fn)v = φ(f x δ)ve§)+21'. Now we intend to show that the r.h.s. of
Eq. (3.1) depends only on T 0

1 / 2 £ 0 u and on To

1 / 2£oίλ Let w n e § + such
that wn-^φ(fxδ)v in || | | _ _ 2 r n o r m Then, by Eq. (2.2), (u,Twn}
= <£ 0 w, ΓwM> so that also the limit depends on Eou only. Approximating
φ(f x δ)u in a similar way yields dependence on Eov only; here Lem-
ma 3.1a) has been used. Now the correspondence between Eou and
TQ/2E0U as well as Eov and Γ 0

1 / 2E ov is one-to-one. Hence the r.h.s. of

6 (A') implies that there are norms || ||j, | | ( m ), || ||fc on § c 0 , 5f{Rd) and g0 0, respectively,
such that |<«,φ(/)ϋ>|^ IMU/| { m ) Hull*. Hence, in particular, \\φ(f)\\k>ιύ\f\(m) so that the
former is a continuous semi-norm.

7 In [2], T is the unit operator on the space corresponding to our § 0 , and the Mark off
property holds.
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Eq. (3.1) depends on the latter vectors only. The symmetry of φ0 follows
from that of the r.h.s. QED.

Lemma 3.4. Γ0

1/2 £<>$+* is d e n s e in ^(Hk)n f] @(Xk\ fc=i,2,...,

and for ueξ>2

+

k one has

. (3.2)

Proof. Since T0

1/2 and Eo commute with Xh the above subspace is
contained in f] @(Xk). For the rest it suffices to prove Eq. (3.2), by

Lemma 3.2. Let u e ^(X£)n § + . Then

X%u=s-\im(-ϊ)k( Π —τj \u (3.3)
τ ^ + 0 W τj I

which, incidentally, lies again in jr>+. Applying TQ/2E0 to the r.h.s.
without the Urn and using u = Eou + E^u together with Lemma 2.2,
we obtain

(3.4)

By Lemma 2.1, the second term vanishes. Since, by Eq. (3.3), the norm
limit of Eq. (3.4) exists, the first term converges strongly for τ̂  ̂  + O
yielding Eq. (3.2). QED.

Now we are going to prove continuity properties of φo(f) which
are decisive for the following.

Proposition 3.1. Let E+ TE+ ^ 0 and let (A') hold. Define φo(f) as in
Eq. (3.1). Let f>0 be the Hubert space § 0 = 9)0nS){X[)r\... with the norm

\\uf= (1+ Σ \Xi\)ru\\ (3-5)
V i > o / II

Let H be the restriction of H to § 0

 8, and let {ξ)o

k} be the associated scale
spaces. Then φo(f) can be extended by continuity to a bounded operator
from I) 2/ to ξ>o2r which is continuous in f.

Proof. We first show boundedness. Let u° e T 0

1 / 2 £ 0 § ? , and let

u G § ? with To

1/2 Eo u = u°. If one puts X = (1 - iX0) (l-f Σ \XA > t h e n

A = χ-rφ(fxδ)χ-r is a bounded operator on § and TX = X*T.
Thus, by Eq. (3.1),

= {Xru,TAXru) .

H is self-adjoint on § 0 , by Lemma 3.1.
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For w e § + , one has Xrue5)+ and also Aueξ)+ since (1 — IXQY1

00

= j dte~ιTv Hence one deals with the positive operator E+ TE+ and
o

can repeatedly apply Schwars's inequality,

(Xru, TAXru) ^ (Xru, TXru}112 (Xru, TA2Xru}1/2

N

S (Xru, TXruy 2 (Xru, TA2NXru)2~N .

The last term is bounded by ||^4|| ||Xrw||2"2V + 1 which tends to
By Eqs. (2.2) and (3.2) and Lemma 3.1, we obtain

(ί+HY (1+ Σ \Xj\Yu\A lί, 1 A U/ —

This proves the boundedness. Since the r.h.s. of Eq. (3.1) defines a con-
tinuous linear functional on ^(R0'1) so does any limit, by the weak
completeness^of y , and the remark in footnote 6 applies. QED.

Now, e~tH maps each ξ>k

0 into ξ>Q. This has a simple but interesting
consequence.

Corollary 3.1. Let g e 6^(R+) and define g by

Then, for gieό?(R+) and fo,fe 5f{Rd-% i=t,2,...,

ί Π ίdτigi(τi)}<Ω9φo(fo)e-τ^φo(f1)...e'^φo(f1ίΩy
(3.6)

^H0θ(/θ)ΩH-2r Π

Proof. Let ueξ>lr. Then

\\Sdτg(τ)e-τSφo(f)u\\2r

and for the first factor on the r.h.s. one obtains sup|(l + q)2rg(q)\, by the
q

spectral theorem9. From this Eq. (3.6) results by Schwarz's inequality.
QED.

From this we obtain a result which can be used for analytic continua-
tion.

9 Note that if Eλ is the spectral decomposition of a self-adjoint operator then
\\if(λ)dEλ\\=sup\f(λ)\.
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Corollary 3.2. Let ζi = (τi5 xt — xt _ J, i = 1,2,..., ft. 77ιen, considered
as a distribution on ^{Rd~ *) x «$φί+) x x 9>{Rd~x),

(3 7)

w/jere qt = (q®, q) and where Wn is a distribution on Sf{Rdtt) with support
in{(qu...,qny,q0

k^O,k=i,...,n}.

Proof. By Lemma 8.2 of [4], the map gι-*g is a. continuous map of
ίf {R+) onto a dense subset of ίf (R+), where the latter consists of functions
U(q) = f(q)lR+, feS?(R), with norms

| / + | m = sup (l+<Z2Γ/2l/ω(<7)l,

m = 0,1,... . Eq. (3.6) shows that the l.h.s. of Eq. (3.7), when smeared in
JC0, ...,xn, can be extended to a distribution on ^(R+)... ^(R+). The
rest is translation invariance and continuity in the //s. QED.

Now we want to show how e~tHφo(f) acts as an operator.

Lemma 3.5. Let the assumptions be as in Proposition 3J, and let g
.Letve^. Then

δ)v (3.8)

where the expression following Eo on the r.h.s. lies in § + .

Proof. The last statement follows easily from the spectral theorem
and the transformation properties of φ(f x δ) under space translations10.
Now let ueξ>2+ and put g{Pτ)= \dτg{τ)Px and similarly for Pτ and Tτ.
Then, by Proposition 2.1, Lemmas 2.2 and 3.3 and Eq. (2.2),

= (g(Tτ)u, Tφ(f x δ)v} = <u, Tg(Tτ)φ(f x δ)v>

x δ)ύ> .

Since T 0

1 / 2 E 0 § ^ is dense in § 0 , Eq. (3.8) follows. QED.
From this we have a corollary which is crucial for the next section.

Corollary 3.3. Let ̂ (R*") denote the subspace of functions fe £f(Rdn)
such that /(α)(Xi,..., xn) = 0 for all α unless xj < < x®. Then, under the

See also the remark at the end of this section.
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assumptions of Proposition 3.1,

= (Ω,φ{xγ)...φ{xn)Ωy

as distributions on Sfκ (Rdn).

Proof. We smear the l.h.s. of Eq. (3.9) in all xt with f e ^{Rd~x) and
in ξf = χ9+ χ — χ° with g{ e ^(R+). By repeated application of Lemma 3.5
and by Eq. (3.1) together with T0Ω= TΩ = Ω we obtain

IdffβίίffjΦίΛ^SJ. .ΦίΛ^S + + a o ) - (3.io)

From this the lemma results by translation invariance. QED.
Remarks, (i) The existence of the π-point functions as distributions

on Sf (Rdn) can be directly inferred from assumption (A'). The latter
implies [2] that φ(δid)) = 0(0,0) is a bounded operator from ξ>2k to ξ>~2k

for some k> 0. Since, for / e ^{Rd\ j dx f(x) Tχ0 Tx maps § ~ °° into §°°,
by the spectral theorem, one has

Hence any product of field operators can be applied to Ω, mapping it
into §°°. One can also show that φ{f) maps §°° into §°° so that if (A')
holds field operators can be applied arbitrarily often on §°°, not only
o n ί λ

(ii) The r.h.s. of Eq. (3.9) is symmetric in x l 5 ...,%„ since φ is abelian.

4. Transition to Relativistic Theory

We are now able to go over to a relativistic field by analytic con-
tinuation. Further below we will also show that the Hubert space on the
relativistic theory is § 0 , too, and write down the relativistic field operators.

Theorem 4.1. Let φ be a commutative field over ^(Rd) or <3(Rd) in a
Hilbert space § with cyclic vector Ω. Let φ be covariant under the full
Euclidean group {{R,a);RεO(d),aeRd} with Ω as unique translation
invariant state. Let T be the unitary time reflection operator, and let E+

be the projector onto the subspace §+ generated by vectors of the form
eίφif) Ω, supp fc{x;x°>0}. Then, if

(i) E+TE+^0 and
(ii) condition (A') of Section 3 holds,

the n-point functions (Ω, φix^ ... φ(xn)Ωy, x? < ••• <x®, can be analyti-
cally continued in ξ°j =x°j -^x°j_1, j = 2, ..., n, to Re ξ°} > 0. For
£;-•— i(tj — ίj-i) they yield the Wightman distributions of a relativistic
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theory, satisfying relativίstic invariance, positivity, causality, spectral
condition and cluster property.

Proof. Eq. (3.7) together with Eq. (3.9) shows that one can analytically
continue in £°. The proof of relativistic invariance etc. is then identical
to that of Theorem 2 and 3 in [2] or to the similar procedure in [4].
Here Euclidean invariance and the commutativity of φ enter cru-
cially. QED.

Realization of Relativistic Field Operators in § 0

By Proposition 3.1, φ0 maps §§ r into f>o2r. L e t f(t,x)s^(Rd) and
put/ί(x) = /(ί,x). Then, by [6],

A(f)=ldtJStφ0(tte-iBt (4.1)

maps §°° into ξ>Q. Comparison with Eq. (3.9) shows that

(Ω,A{fι)...A{fn)Ωy

is just the analytically continued rc-point function at imaginary times
smeared with / x x - x fn. Hence instead of using Corollary 3.2 one
could have performed the analytic continuation by inserting operators
eιtjH on the l.h.s. of Eq. (3.9), quite analogous to [2]. The operator in
Eq. (4.1) is the relativistic field. By the spectral condition it is seen1 1 that
ξ>lk = @(Hk) so that H = H.

Remarks, (i) It may seem surprising, that, instead of Pt = E0Tt, we
have used Pt = TQ/2Pt To~1/2 for the construction of the Hamiltonian and
that this works. However, this is not quite unexpected. Since T and
φ(f, 0) commute it is not unreasonable that in

τ2

To~ "2 φo(f2) To1'2 P l 3 To-
1/2... Ω)

the operators T0

1/2 and T0~
1 / 2 drop out in some sense, reflecting some

sort of commutativity of To and φ0.
(ii) The operators T0

1/2 appearing in the definition Eq. (3.1) of φ0 are
important. If they are dropped one does get an analog of Proposition 3.1
if one introduces the new norm ||T0

1/2w|| and uses the generator for Pt,
but then Eq. (3.9) does not hold.

(iii) The role of assumption (A') is seen to be twofold. It assures the
existence of the Euclidean π-point functions and, together with the
T-positivity, it allows their analytic continuation, thus by-passing the
difficulties associated with the incorrect Lemma 8.8 of [4]. Corollary 3.1

1 1 By the spectral condition, the representation of the Poincare group decomposes
into a direct integral of irreducible ones with m2 ^ 0. For the latter one has Po = ]/P2 + n ?
so t h a t 0 ( P o ) C 0 ( P ) .
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shows possible ways to weaken (A'). One could try to obtain, instead of
Eq. (3.6), an estimate which, firstly, contains derivatives of g and which,
secondly, contains an explicit ^-dependence of the exponent 2r and of the
order of the derivative.

(iv) All previous results can be extended to Fermi fields and higher
spin Bose fields in an obvious way. If one assumes Euclidean Fermi
fields to anticommute for all points (not only for non-coinciding ones),
a doubling of the fields as in the case of the free field seems unavoidable.
It is simplest to assume that Ω, the unique translation invariant state,
is in the domain of all field products and cyclic. §+ can be defined
similarly as before as the subspace generated by

{Ω9ψki{f1)...ψkn(ttΩ; fiE^R*"), i = l , . . . , n ; n = l , 2 , . . . } .

With T-positivity, E+ TE+ ^ 0 , and assumption (A') for ψί9...,ψσ all
results of Section 2 to 4 go through as before, with the only modification
that in the proof of Theorem 4.1 the anti-symmetry of the rc-point
functions has to be used as in [4].

5. Functional Formulation and Examples

The conditions of Theorem 4.1 can be very simply expressed by
means of the expectation functional

except for condition (A') which has to be checked separately.
The following conditions (F), (E), (C) are the well-known conditions

on E(f) to determine an abelian self-adjoint field over £f (or 3)) which
is Euclidean covariant and has a unique invariant cyclic vector Ω.

(F) For fixed f, E(τ f) is continuous in τ, and for all fi e <f(Rά\ λ x e <C,

(E) For all f e ^(Rd) and (R, a) e IO{d\ E( f{R a)) = E{ f).
(C) lim E(fa + g) = E(f) E(g) for all /, g e d

Isl
As already remarked in the Introduction, T-positίvity is equivalent to

(T) Let (9f)(f) = f(-x°,x). Then for all fte &{*<+) and all A,eC

ΣλJjEift-W^O. (4.1)

In case the conditions of [4] should turn out to be sufficient after all
one can replace (A') by

(D) For each / e ^{Rά\ E(τf) is a C00-function of τ at τ - 0, with the
second derivative being continuous in /.

This last condition can be shown to be necessary and sufficient for Ω
to be in the domain of all field operator products and for the π-point
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functions to be distributions on £f(Rdn). The latter can then be obtained
by differentiating £(Σ τj^ at τf = 0.

Examples

ί. The Constant Field. We consider the functional

E(f) = <fl, e^Ω) = exp{iαf <fx /(x)-ySjrfsx |/(x)|2

+ j dsx J rfσ(A) [>"'<*> - 1 - iλ/(x)/(l + A2)]}

where α, /? are real constants with /? Ξ> 0, and where σ is a positive measure
on the real line satisfying

f dσ(λ) A2/(l + λ2) < oo, σ{0} = 0. (5.2)

These functionals are well-known [7]. For α = β = 0 and σ even they
belong to the fields underlying the ultra-local models [8,9]. Properties
(F), (C) and (E) are satisfied. If dσ has a sufficiently rapid decrease at
infinity, then also (D) is fulfilled, since one can then differentiate under
the integral. In view of the exp and of the integrals over x one sees
immediately that E(ft + f2) = £(/i) E(f2) whenever fx and f2 have
disjoint supports. Hence for f e S^(Rs+% i = 1,..., n9 £(/) - θ/})
= £(/i) £(θ//). Since by (E) one has E(Sf) = £(/), condition (T) is trivially
satisfied. The rc-point functions oΐφ can be easily computed by differentia-
tions, but this is not necessary here. It follows directly from the multi-
plicative property of £(/) that for noncoinciding points one has

<fl, φ(Xl)... φ(xn)Ω} = Π <β> W£>> = cM (5.3)
i

where <Ω, (/>(x) Ω} = const = c, by translation invariance12. Hence
analytic continuation yields constant Wightman functions also.

2. The Free Field. In Eq. (5.1) we put α = 0 and σ = 0, and replace /
by (-A + m2)~1/2f, where A is the s-dimensional (Euclidean invariant)
Laplacian and m ̂  0 for s ^ 3 and m > 0 otherwise. Thus we consider

£(/) = exp{-| |(-zl+m2)-1/2/ll2} (5-4)

Conditions (F), (E), (C), (D) are automatically satisfied. To check T-
positivity, the following lemma is useful.

Lemma 5.1. The nxn-matrix A(τ) = (eτaij) is positive-definite for
every τ > 0 if and only if the matrix (α^ ) is conditionally positive-definite,
i.e., if and only if, for all λί,..., λn e C with Σ λt = 0,

1 2 It is zero if σ is even, i.e., if dσ(λ) = dσ( — λ). Hence these fields can be added to any
Euclidean field without altering the associated Wightman field (if there is any).
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The proof is a transcription of the proof of Theorem 4 in Chapter III,
§4 of [7] and is therefore omitted. Replacing f(x) by f(x/τ), τ>0,
the lemma shows that E(f) in Eq. (5.4) satisfies (T) if and only if for

j

or
O^Σλiλj((-A+m2r1/2fpS(-A+m2r^2fi). (5.5)

We will show that Eq. (5.5) holds without restriction on the λt\ for all
fι e £f{Rs+)13. To this end we note that the r.h.s. is not only defined for
feSf(lRs) but also for f in the Sobolev space «^"1(1RS), in particular
for "sharp time" functions of the form

f{x) = gi(x) δ(x° - td, Qi e ^(IR S " ι ) . (5.6)

For tt > 0 these functions are total in the subspace of functions having
support in {x;x°>0}, and hence it suffices to prove Eq. (5.5) for f
given by Eq. (5.6). Using Fourier transforms one finds

( p 2 + m 2 y 1 / 2 e x p { - \tt + t\ ] / 2 + 2 }

and so Eq. (5.5) is satisfied if tt>0, ί=ί,...,n. The relativistic field
associated with this Euclidean field is the free field of mass m.

3. Some Generalized Free Fields. We consider the functional

£(/) = exp{-Jdρ(m 2 ) | | ( -2 l+m 2 Γ 1 / 2 / l l 2 } (5-8)

where dρ is a positive measure on [α, oo), α>0, satisfying Jdρ(m2)
• (i + m 2 ) " 1 < oo. Then E(f) is defined and continuous on ^(Rs).
Lemma 5.1 shows that E(f) satisfies condition (F), and (E), (C), (D) are
also seen to hold. Eq. (5.5) together with Lemma 5.1 shows that (T)
holds. The associated relativistic field is clearly a generalized free field.

Considering the usual momentum Fock space and making an auto-
morphism of the test function space, the fields of the last two examples
can be written as a sum of creation and annihilation operators. It is then
seen that, on the ^-particle space, one has (1 + K)~ * ̂  ί/n, and from this
one infers that the smeared creation operators are bounded operators
from § to § " 1 . Hence the annihilation operators, which are their
adjoints, are bounded operators from the dual of § " 1 to the dual of §,
i.e., from § 1 to §. Therefore the field is a bounded operator from ξ)1 to
§~1. Hence (A') holds. This procedure is similar to that at the end of [3].

1 3 This means that E+ &E+ ^ 0 , where E+ is the projector onto the closure of the
space {-Δ + m2y112
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Remarks. 1. A suitable choice of ρ yields examples like **

while functionals like

can be shown to violate (T).
2. From the way in which the free fields was obtained from the

"ultralocal" functionals of Eq. (5.1) it is tempting also to consider the
functionals

= EUL((-Δ+m2r1'2f)

where EUL is obtained from Eq. (5.1) by putting α = β = 0. Conditions (F)
and (E) are trivially satisfied since one has just made a transformation
of the test function space, corresponding to an automorphism of the
unitary group. With suitable behaviour of σ at infinity (D) is fulfilled too
and (C) follows since Δ commutes with translations. (T) may or may not
be verifiable. This question which reduces to the positivity of 9 for a
subspace of Sf (Rs) is under study.

6. On the Notion of Markoff Fields and Its Connection
with Γ-Positivity

In this section we introduce a notion of Markoff field which slightly
differs in the localization from that of Nelson [2] and which is just as
useful for the construction of relativistic fields. With its help the reflection
property which is so extensively used in [2] can be very simply expressed.
We then show that T-positivity is a natural generalization of Mar-
koff + reflection property.

Nelson defines a Markoff field over @>(Rd) in the following way. Let φ
be an abelian field over <2)(Rά) in § with cyclic vector Ω, let U C Rd be an
open set, let ξ>v be the subspace of § generated by {eiφif); suppf C U}
and let Eυ be the projector onto Sfrυ. Let F C Rd be a closed set, and define

?>F= Π $u. (6.1)
UDF

Let EF be the projector onto § F . We denote by U' the complement of U
and by dU its boundary. Then in [2] φ is said to satisfy the Markoff
property if, for all open sets U,

Ev> EU — EQUEU . (6.2)

1 4 The exponent equals 2/π \dm\f, ( — A +ml + m'2) */> which can be brought
to the form of Eq. (5.8).
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This can easily be expressed in probabilistic language in terms of con-
ditional expectations15.

In the construction of relativistic fields the Markoff property is
needed for open half spaces {x; x° ^ s} only, no other open sets appear.
This suggests a slightly different Markoff notion which is more sym-
metric in the localization.

Definition 6.1. Let Ψ' be a space of functions on Rd, and let φ be an
abelian field over Ψ* in § with cyclic vector Ω. Let U>s and U<s be the
half spaces {xeRd; x°ίξs}, respectively. Let § < s be the Hubert space
generated by {eiφ(f)Ω; suppfc U<s}, and similarly for <r>>s. Put
<r) ŝ = £ ) < s and § s = ξ)<sn<o>s, and denote the corresponding projectors
by £ > s , E<s = £ ^ s , Es. Then φ is said to satisfy the Markoff property of
second kind16 if

EύsE>s = EsE>s. (6.3)

Remark. In our definition the Hubert space associated with a closed
half space in Rd equals that for the open half space contained in it. This
is a more symmetric localization and yields as a trivial consequence

Corollary 6.1. φ has the Markoff property of second kind if and only

if E<SE>S is a projector,

E<SE>S = ES. (6.4)

Proof. Since ξ)sCξ>>s, Eq. (6.3) is equivalent to Eq. (6.4).
When one has a unitary representation Tt of the translations in

O-direction under which φ transforms covariantly and which leave Ω
fixed, then Eq. (6.3) can be further simplified.

1 5 One can realize § as a function space L2(X,Σ,μ) with Ω corresponding to 1.
(X, Σ, μ) is a probability space, i.e., X is a space, Σ a er-algebra of subsets of X and μ a measure
on Σ with μ(X)= 1. One can further realize φ(f) as multiplication by a function so that
φ(f) can be regarded as a linear stochastic process over Θ(Rd). Let &{U)cΣbc the smallest
σ-algebra with respect to which all functions in 9)v are measurable, and denote by SF{JJ)
the set of all functions which are measurable with respect to 08(U). The conditional expec-
tation with respect to a sub-σ-algebra ^ of Σ of a random variable (i.e., measurable function)
u is defined by a Radon-Nikodym derivative as

Then Eq. (5.1) can be extended to read

for all UG^(U) and for all open sets U C Rd.

1 6 This can again be expressed in terms of conditional expectations and linear

stochastic processes over TΓ, just as in the preceding footnote.
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Corollary 6.2. Let Ttφ(x)T* = φ(x°+ t,x), TtΩ = Ω. Let E_=E<0

and E+=E>0. Then φ has the Markoff property of second kind if and only
if E_E + is a projector,

E_E+=E0. (6.5)

Proof. This follows from E ̂  s = Ts E $ 0 Ts* and Es = Ts Eo Ts*. QED.
With this Markoff notion one can work just as with that introduced

in [2]. The reflection property needed in [2] means that there is a unitary
operator T in § satisfying Tφ(x°, x)T =φ(-x°, x) and TΩ = Ω such
that T is the identity on the Hubert space belonging to the hyperplane
{x e Rd; x° = 0}. Correspondingly we will say that a Markoff field of the
second kind satisfies the reflection property if T is the identity on § 0 .
The next necessary and sufficient condition is an easy consequence of the
definitions.

Theorem 6.1. Let φ be a field in § with cyclic vector Ω over a space Ψ~
of functions on Rd. Let {Tt;teR} and T be unitary operators such that
Ttφ(x)T* = φ(x° + t,x), Tφ(x)T=φ(-x°,x), and TtΩ=TΩ = Ω. Then
φ is a Markoff field of the second kind satisfying the reflection property
if and only if E+TE+ is a projector.

Proof. The necessity follows from Eo = TE0 = TE_E+=E+TE+.
Conversely, if E+ TE+ is a projector, E say, then E3 = TE_E+E_E+

= E=TE_E+. Hence ( £ _ £ + ) 2 = E_E+, and since | | £ _ E + | | ^ 1 it
follows that E_E+ is a projector [10]. From this and from E2 = E+E^E +

= E_E+=E= TE_E+ it then follows that T is 1 on £ _ E + § . QED.
We note that if E+ TE+ is a projector, it projects onto § 0 = § + n § _ ,

and T is 1 on § 0 . In particular E+ TE+ ̂ 0 . The next corollary shows
that T-positivity is the natural generalization of Markoff + reflection
property for practically any localization prescription.

Corollary 6.3. Let φ, TT, § , Ω, T be as in Theorem 6.1. If U CRd is
an open set, let ξ}v be the Hubert space generated by {eiφif)Ω; suppf C U}.
If F cRd is a closed set define § F in such a way that 9)F D 9)A whenever
FjA, but otherwise arbitrary11. If with this localization, φ is a Markoff
field which satisfies the reflection property, then E+ TE+ ^ 0 .

Proof. Let E± and Eo be the projectors onto the subspaces associated
with {x;x°$0} and {x;x° = 0} so that E_E+=E0Ej. and TE0 = E0.
Then multiplication by E+T yields E+ TE+ =E+E0E+ *>0. QED.

Remarks, (i) Under additional continuity properties different
localizations will give the same result. Thus in the case of a field over the
Sobolev space J>ίf~ί(Rά) Nelson's definition of the Markoff property
satisfies also Definition 6.1 since, in view of the assumed continuity of
eiφ{f), the Hubert spaces belonging to open and closed half spaces and
hyperplane are the same in the two localizations.

1 7 It suffices to consider open and closed half spaces and hyperplanes as in Defini-
tion 6.1.
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(ii) The localization in Definition 6.1 may be changed slightly
without spoiling the symmetry. One still associates to both open and
closed half spaces again the same Hubert space, but one now takes
ξ)>s= f] § > s , etc., where § > s is as in Definition 6.1, and puts

. Eq. (5.3) is then replaced, in obvious notation, by
E<SE>S = ESE>S. Then Corollaries 6.1 and 62 as well as Theorem 6.1
hold with the obvious changes. Although § o 3$o> f° r the relativistic
field no different Hubert space results [cf. Eq. (3.9)].

(iii) One may generalize the above considerations in an obvious way
to Fermi fields. With localization as in Definition 6.1 it would be natural
to say that a Fermi field possesses the Markoff and reflection property if
and only if E+ TE+ is a projector (cf. Remark (iv) in Section 4). Markoff
Fermion field have also been discussed in [11].

Acknowledgments. I would like to thank J. Yngvason for stimulating discussions in
connection with assumption (A') of [2].

Note Added in Proof. In a forthcoming paper we are going to give a functional
characterization of Markoff fields (which satisfy the reflection property) and show with
its help that T-positivity is indeed more general. It will turn out that the generalized free
fields of Section 5 are not Markoff fields, neither over W~λ nor over y , although they
satisfy T-positivity. It can also be shown that reflection invariance is not needed for the
construction of a relativistic field, i.e., the existence of the operator T is not needed. T-
positivity has then to be expressed by the functional E(f) as in Eq. (1.4). The derivation
uses bilinear forms instead of the operator T.
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