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Abstract. Classical lattice gases moving on a simple cubic lattice are considered.
The lattice is assumed to grow only one-dimensionally. The gas particles have hard cores
(of diameter greater than the lattice spacing) and are further subject to interactions of
finite range and finite order. The interactions outside the hard cores may be represented as
the components of a v-dimensional vector, φ, which is initially allowed to be complex.

Using a transfer matrix technique, an asymptotic expression is obtained for the grand
canonical pressure (at complex values of the inverse absolute temperature β and the
fugacity z).

Let λx ... λM denote the eigenvalues of the transfer matrix. Define φ to be a D*-inter-
actίon if and only if the quotients, λjλki 1 Sj <kίk M, regarded as functions of β, z (with φ
fixed) are nonconstant. In this paper it is assumed that there exists at least one allowable
D*-interaction. With this assumption, the main result is that if F denotes the set of inter-
action vectors for which the distribution, Ω, of limit points of zeros of the grand partition
function in the complex z-plane at fixed β (res. complex β-plane at fixed z) contains a
domain, then F contains no product set A1 x x Av, Ak C <C, 1 ̂  k ^ v unless one or more
of the Ak consists of (at most) isolated points. This implies that the set of vectors for which Ω
consists of arcs is dense in the set of all allowable vectors (in the usual topology for (Cv).

1. Introduction

Since Yang and Lee [1] formulated their theory of phase transitions
and proved the celebrated "Circle Theorem", for ferromagnetic Ising
models, much work has been done to obtain more general results. The
greatest advance has been the extension of the circle theorem to quite
general classes of "quasi-ferromagnetic" Ising and Heisenberg models,
including those with suitable many-spin interactions [2].

The principles of the Yang-Lee theory apply to any statistical
mechanical system. In all cases the physical behaviour of the model
depends on the precise form of the distribution, say Ω, of limit points
of zeros, in the complex plane, of the grand partition function [3].

For the quasi-ferromagnets, the circle theorem states (in effect) that Ω
is a subset of the unit circle; so that Ω contains at most one positive
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element. However, it has been shown recently [4] that the circle theorem
breaks down at high temperatures if many-spin interactions are present
in the model. Moreover, it is possible for Ω to fill the whole complex
plane, as an example has shown1.

The Yang-Lee results and their extensions apply directly to the
lattice-gas analogues of the magnetic models; but it is natural, for lattice
gases, to allow: (i) gas particles with effective hard cores (leading to
exclusion effects near occupied sites), and (ii) finite repulsive forces as
well as attraction, outside the hard cores. For such models as these,
very few rigorous results are known about Ω. In particular, the circle
theorem is invalid 2 and it is by no means clear even that Ω must consist
of "curves" rather than "regions" in the complex plane. In the case of
continuous models the mathematical difficulties are very basic since Ω
depends on detailed analytic properties of the grand partition function.
Nevertheless, on the basis of a general conjecture due to Penrose (un-
published) it has been possible [5] to determine Ω for a class of one-
dimensional continuum models.

The purpose of my work is to show that, subject to one more con-
dition, the conjecture holds also "for almost all 3 interactions" for a class
of lattice gases including those where effective hard cores and many-body
(attractive or repulsive) forces of finite order and finite range are present.

To formulate this extra condition, we define an interaction vector φ
to be a D*-interaction if and only if all of the quotients λj/λk(jφk) of
eigenvalues of the transfer matrix (regarded as functions of β and z, with
φ fixed) are nonconstant. The main result of this paper may now be
formulated as follows.

Let Φ denote the set of all allowable interactions (see Section 2).
Define F C Φ by F = {φ e Φ : Ωφ contains a domain}, where Ωφ denotes
the Yang-Lee distribution corresponding to the given interaction φ.

If Φ contains at least one D*-interaction then Φ\F is dense in Φ, in
the standard topology for (Cv. In fact, every real vector in Φ is a limit
point of real vectors in Φ\F.

Roughly speaking, this means that the Yang-Lee distribution consists
of arcs "for almost all interactions" in this class of models. This will be
proved in Propositions 4, 5, and 6. The formal definition of Ω is as
follows.

1 See [4], Theorem 3.
2 See for instance Hemmer, P. C, Hauge,E.H., AasenJ.O.: J. Math. Phys. 7, 35 (1966).
A recent result of Ruelle [Phys. Rev. Lett. 26, 303 (1971)] shows that when repulsive

forces (but only "point hard cores") are allowed for lattices with periodic boundary con-
ditions then ΩcS) where *3) is a bounded region which may, at sufficiently low temperatures,
include a segment of the positive real axis in the z-plane.

3 This is not quite the standard use of the term "almost all": it is stronger (see Proposi-
tion 6).
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Let {βr(w)} denote the sequence of grand partition functions (where
w stands for either of β, z at a fixed value of the other).

Then we define Ω by the condition4:

we ΩoVη >0 V ί > 0 3 ω ε JΓη(w)3r>t: Qr(ω) = 0 .

2. Specification of the Models

We consider a simple cubic lattice growing only one-dimensionally
and with cyclic boundary conditions in the direction of growth. The
fmiteness of the range and order of the forces make it possible to specify
the interactions as the components of a vector, say ψ9 in <CV + 1, where v
is independent of the variable length of the lattice. We shall also suppose
that the one-body forces are constant over the lattice (constant external
field) with value μ, so that we may write ψ as an ordered pair (μ, φ\ where
φ specifies all other interactions outside the hard cores and hence
φ e Cv. We now define the class of vectors φ more precisely.

Since the cross-section, say D(CZ 2 ), is fixed, we may denote a general
chunk of lattice of length r by L(r). Let R = Max(£ f c: 1 ̂  k^ K) where
Rk denotes the finite range of the k-boάy forces. For any subset A of Xd,
denote by δ(A)-the diameter of A and by g?*(A) the set of all subsets of A
at the points of which gas particles could be placed with no hard cores
overlapping.

Now define a function φ on ^ * ( D x Z ) by: ( p : ^ * ( D x Z ) - ^ C ;
Y\->φγ, where

(a) φγ+ji = φγ (Translational in variance in the direction, e, of growth
of the lattice).

(b) φγ = 0 if δ(Y) >R (finite total range of interactions).
In view of conditions (a) and (b), the function φ may be replaced for

purposes of calculation by its restriction to the finite set D x {1, 2,..., R}.
This restriction may be associated with a vector in (Cv, where v < 2DR,
D being the number of points in D.

3. The Transfer Matrix

All of the subsequent analysis is based on the representation of the
grand partition function as a trace5.

4 jVn{vή = {W : \w — w'| < η}.
5 This general formalism is well-known, so the details are omitted. For a detailed

treatment for strictly one-dimensional models see Baur,M.E., Nosanow,L.S.: J. Chem.
Phys. 37, 153 (1962), Appendix.
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Proposition 1. There exists a square matrix T of finite order M,
independent of r, such that

QλV>)= Σ Π e ~ ' V χ = t rΓΓM|.
Ye^*(L(r)) XcΎ

Proof. Let Ck denote the difference of the sets L(k + R — 1) and
L(k\ where R is the overall range of the interaction and Cr+k = Ck.

Let C/CCkand VcCk + x.
Define a relation « (with negation φ) by:

Then T may be specified as:

f Π e~βΨx Π eβΨγ> if u~v

I 0, if UήiV.

The cyclic boundary conditions on L(r) give the trace of T\ as required.

4. Characterization of Ω in Terms of the Function A

So defined, T is a matrix-valued analytic function with domain
(C2 x Φ, corresponding to the variables β, z and φ. For the moment it is
convenient to regard φ as fixed in Φ and to write w for either of the
variables β, z at a fixed value of the other. The function T may then be
regarded as an analytic matrix-valued function of the single variable w.

Let us denote by A the analytic function determined by the character-
istic equation of T (which is a polynomial equation, Pτ(λ) = 0, where all
coefficients are entire functions of w). We now define subsets Si9 S29 and S
of C as follows:

Sx = {w E (C: A has a maximodular branch point at w}

S2 = {WE(£:A has no maxi-modular branch point at w

but at least two maximodular branches}

Proposition 2. (a) S1CS29

(b) S is closed in <C,
(c) ΩCS.

Proof (a) The form of Pτ shows6 that A has at most M values for
each value of w, and that the branch points of A are isolated and all

6 See, for instance, Saks,S., Zygmund, A.: "Analytic Functions", Chapter VI, §§ 14-15
(Warszaw 1965, P.W.N. Scientific Publications).
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algebraic. Let α e Sx be a branch point of order q — 1 at which q branches,
say λί9..., λq, of Λ, assume the common, maximodular value β.

Then there is a deleted neighbourhood of w = α, say Pδ(oή, on which

for l^fcrgg, where the AfcZ are complex coefficients and (w — oc)i/q

denotes a definite value (the same for each k) determined from the
equations (in θ): θq = w — α(w φ α). Consider now the functions gk, where,
for 1 ̂  k S q,

1=1

The gk are regular on J^δί/q(0\ and satisfy, on Pδ(oc) the conditions:

Since the branches λγ..Λq assume at w = α a common maximodular
value, the quotients Fmn(ζ) = gm(ζ)/gn(ζ) are also regular on jVδι/q(0) and,
moreover, |Fmn(0)| = 1 for ί^m<n ^q.

By applying the Maximum Modulus theorem separately to Fmn and
to ί/Fmn on J^i/q(0), we conclude that 1 cannot be either the maximum
or the minimum value of \Fmn\ on (say) J^χδi/q(0). We may now deduce,
from the conditions: gk((w — oc)1/q) = λk(w) on ij(α), that every neighbour-
hood of w = α contains a point of S2, and hence that Sx C S2, as asserted.

(b) To prove that SίuS2 is c/osed in C, it is sufficient to show that
the complement of S1uS2 is open. However, at a point w' of the com-
plement of S1uS2, the analytic function A has a unique maximodular
branch, and this branch is regular. Such a situation plainly obtains at
the points of some neighbourhood of w'; and hence, S i U S ^ as the
complement in C of an open set, is itself a closed set.

To prove (c) we observe that if w e C\S then yl has a unique maxi-
modular branch (say Ax) and this branch is regular in a neighbourhood,
say Jf(w), of w.

Using the trace representation of Qr we now obtain:

so that, if Q) is any closed subdisc of Jf(w\ then

where o(l) tends uniformly to 0 on Q) as r tends to oo. Hence 2 contains
no zeros of Qr for all sufficiently large values of r, so that, since w e <C\S
= > W G C \ Ω , we have ΩcS, as required.
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We show next that if S contains no domain then 5 is a subset of Ω,
which implies that Ω coincides with S. The Yang-Lee set is thus character-
ized in terms of a criterion depending only on the interaction vector.

Proposition 3. // S contains no domain then Ω coincides with S.

Proof7. In view of Proposition 2(c) it is enough to show that Ω D S.
Since Ω is closed (by definition of "limit point of zeros") and S1 CS2 [by
Proposition 2(a)] we need only show that ΩDS2.

Suppose not, that is, suppose that w0 e S2\Ω. Then there is a neigh-
bourhood, say Jf{w0), containing no zeros of the functions Qr for all
sufficiently large r, and hence a regular branch of Qllv may be defined on
•/Γ(w0) for all sufficiently large r. On writing Qr(ψ) explicitly in terms of β
and z one has:

M

Σ
fc=lso that

(It is worth noting that a uniform upper bound on βr

1/r(w) can always be
found for a system with stable potential - see, for instance, Ruelle11).

It follows that the sequence {Ql/r(w)} is uniformly bounded on each
closed subdisc, Qs, of J^(w0). Hence, by a corollary [6] to the Vitali con-
vergence theorem, there is a subsequence, say {Qljrj}, uniformly con-
vergent on 3) to a limit function q, where q is regular over 3. Since, by
hypothesis, S contains no domain, one may, without loss of generality,
assume that q(w') = λi(wr) at some point w' eQ), and hence throughout
3). On the other hand, since Q) contains points of S2, there are certainly
points w" e Q) where λx is not the unique maximodular branch, and at such
points {Qϊjrj(w")} cannot tend to λ^w"). This contradiction proves the
theorem.

We prove now 8 that if S contains no domain, then S (and hence Ω)
consists of analytic arcs.

Proposition 4. If S contains no domain then Ω comprises a system of
closed analytic arcs.

7 I am indebted to an anonymous referee for this elegant indirect proof, which is
both simpler and more widely valid than the constructive proof (cf. Ref. [7] § 6) that I had
intended to use. However, one result is lost in the present scheme; namely, that the density
on Ω equals (l/2π) (d/dcc)Aσ logλmax{w), where zlσlog/lmax(w) is the discontinuity in the
imaginary part of the pressure "across Ω at w(σ)", and each zero of Qy is given the weight

ίere σ denotes a

Cf. Ref. [5] § 5.



Yang-Lee Distributions 107

Proof. In view of Proposition 3 it suffices to prove that S has an
analytic parametrization with a real parameter.

Let weS2> Then, in a sufficiently small neighbourhood, Jf(w\
there are branches, say λpι ... λPί, such that for 1 ̂  a < b ̂  /, we have

w e S2njV(w)=>λPa(w)/λPb(w) = exρ{ivab}

where the numbers vab are real.
Now the quotient γab = λPa/λPb is regular (by definition of S2) and

nonconstant (since S contains no domain, by hypothesis). Hence γab has
nonvanishing derivative except (at most) on a set of isolated points.

Consequently, the inverse function y~b is well defined on Sr\Jί(w\
except (possibly) at isolated points. The set S may be parametrized
through a finite collection of representations of form:

Sab={w:w = gab(vab)}

where gab(vab) = yαV [exp {iυab}~\.

The closure of this system of analytic arcs coincides with Ω. We show
now that the set F = {φ e Φ : S contains a domain} is "small" in a certain
sense. First we need the following result.

Proposition 5. // S contains a domain then A has two branches that are
everywhere equimodular.

Proof. Let λx and λ2 be maximodular (and hence equimodular) on a
domain ®CS. Then, as in the proof of Proposition 4, the quotient
λjλ2 is regular on ®, but in this case its logarithm (which is also regular
since Si may be chosen so that λiφ0,λ2φ0 on 2) has constant real part,
namely zero, on Q).

By the Cauchy-Riemann conditions, therefore, Im{log[/l1//l2]} is
constant over ®, whence it follows that λί(w) = λ2(w)εxp{it} for some
fixed ίeIR and all we£)\ which implies that this relation holds for all
values of w, with the same fixed value of t.

5. Proof that F is "Small"

For our purposes it is better to state Proposition 5 in the equivalent
form:

Proposition 5'. If A does not have (at least) two branches everywhere
equimodular then S contains no domain.

The next (crucial) proposition shows that the set of vectors φ for
which A has at least two everywhere-equimodular branches is "small"
provided that Φ contains at least one D*-interaction.



108 J. S. N. Elvey

Proposition 6. Assume that Φ contains a D*-interaction and let

F = {φeΦ:S contains a domain} .

If AxxA2x -" xAvcF where each i4kCC, then at least one of the Ak

contains no point of accumulation.

Proof. We shall prove Proposition 6 as a corollary of the following
stronger result:

Proposition 6'. The result in Proposition 6 holds also for the set Ff

defined by:

F'=={φeΦ:A has two branches in a constant ratio}.

We observe first that φeF' if and only if there is a number s e C ,
independent of w, such that, regarded as polynomials in λ, the poly-
nomials Pτ(λ) and Pτ(λs) have (for all w) a common zero. This, in turn,
occurs if and only if the resultant in λ of Pτ(λ) and Pτ(λs) vanishes
identically in w. Next, we note that, from the definition of T, all matrix
elements of T have the form

r

Σ Bklm<Pn

where the akl and Bklm are integers and the akl are nonnegative, and
φί ... φv are the components of a vector φ. Moreover, since both Pτ and
the resultant of Pτ(λ) and Pτ(λs) are determinants, it follows that, as a
polynomial in 5, this resultant, say ρ(s), has coefficients of form

where a{ e N and Gijk e Έ.
Thus the dk are entire functions of β, z and each component of φ,

and hence dk has an everywhere-convergent series expansion in any or
all of these variables, the convergence being absolute and uniform on
any relevant compact set. Since9 arbitrary rearrangements of an abso-
lutely convergent multiple power series leave its sum unchanged, we may
now assert that ρ has an everywhere-valid representation in the form

ρ{φ9 w, s) = Σ Σ δjk(<P) WJ sk

jeN

where N is the set of natural numbers and H is a finite integer, depending
on the overall range of the interactions. We conclude that ρ vanishes

9 See, for example [6], §§ 1.62-1.64, from which our assertion follows directly.
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identically in w only if φ satisfies the sequence of conditions:

for some fixed value of 5, the coefficients δjk(φ) being entire functions of φ.
A necessary condition for the existence of a common zero of all the q$

is that, for the vector φ in question, all of the resultants ρab of distinct
polynomials qa9 qb should vanish. The set of values of φ for which this
can occur is, plainly, a subset of the null set of any one of these resultants.

We observe now that the existence of a ^^-interaction implies that
not all of the ρab vanish identically on Φ. Let ρmn φ 0.

We deduce that

F c { φ e Φ : ρ W I I ( φ ) = 0}.

We are now in a position to complete the proof of Proposition 6.
Since ρmn is just a determinant involving the coefficients oϊqm and qn,

which are entire functions of each component of φ9 the condition
ρmn(φ) — 0 exhibits φ as a zero of an entire function.

Since the ρmn are continuous in φ, the null set of ρmn is closed.
Moreover, if we write ρmn as an (everywhere-convergent) multiple power
series, then the basic condition has form

It is a standard result from the theory of functions of several complex
variables that the null set defined by this condition is closed and nowhere-
dense in (Cv. For our purposes, however, a slightly stronger condition is
desirable, namely the condition in Proposition 6'. This may be established
by repeated applications of the identity theorem for power series in a
single variable1 0, starting with

Σ ^2..Λ
...kve]N

which shows, after v steps, that if F contains a product set of form
Λ1xA2x " x Av9 Ak C <C, 1 ̂  k ^ v, where each Ak has at least one point
of accumulation, then all of the coefficients akι^kv vanish. Since F c Φ
and F C i7', the proof is complete.

Corollary. Let φe Φn[IRx {0}]VΞΞ Φ R and let ε be an arbitrary
positive number.

Then there is at least one vector φ* in ΦR such that

(b)\\φ-φ*\\=fsj\ X {φk-φt)2\<ε.-φ*\\=fsj\
[

See, for instance, [6], p. 87, § 2.6.
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Proof. Suppose that the Corollary is false. Then F contains a
product set Λ1 x x Av, where

which contradicts Proposition 6'.

6. Discussion

In the foregoing work, the following basic assumptions have been
made.

(a) Φ contains a D*-interaction.
(b) The lattice grows only one-dimensionally.
(c) The interactions have finite range and finite order.
(d) The interactions are translationally invariant (at least in the

direction of growth).
(e) Cyclic boundary conditions are imposed.
The basic assumption (a), that Φ contains at least one D*-interaction,

is of a purely technical nature. Hopefully, it can eventually be removed
by the construction of a D*-interaction, but this has not, so far, been
achieved. When there are no effective hard cores, assumptions (b) and
(c) preclude the existence of a phase transition in the strictly mathematical
sense11. This limitation can be overcome only if a suitable asymptotic
formula can be found for the grand partition function when one (or
both) of conditions (b) and (c) is removed.

When the hard cores can overlap the situation is not so clear-cut.
[See, for instance, Nilsen,T.S., Hemmer,P.C: J. Chem. Phys. 46, 2640

(1967)]. The general result is still an open question.
The translational invariance condition is commonly imposed and is

physically acceptable in a wide variety of situations. The cyclic boundary
condition, however, could, ostensibly, affect the equation of state.

That this is not so in the present models follows12 from conditions
(b) and (c). For, let both of β, z be positive. Since the cross-section, D,
of the lattice is fixed and finite, the extra interactions introduced by
imposing cyclic boundary conditions contribute an additional factor
less than exρ{2Mo/JJ} to each term in the "grand partition sum", where
Mo is the maximal number of nonoverlapping particles that can be
found in a chunk of lattice having cross-section D and length 2R (twice
the overall range of interaction) and J = Max{\φx\: Ie^*(L(K))}.
Consequently, if hr(β, z) denotes the difference between the "cyclic" and

1 1 See, for instance, Ruelle,D.: Statistical mechanics, Sec. 5.6. (New York: W. A. Ben-
jamin Inc. 1969). See also Baur and Nosanow, footnote 5.

1 2 The results on classical continuum systems in a toroidal container obtained by
Fisher and Lebowitz (Commun. math. Phys. 19, 251 (1970)) probably extend easily to
lattice systems, but the proof given here is simple and self-contained.
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"free" pressures for a lattice of length r, then we have

\hr(β, z)\ = r-γ |logίQ7chc(β, z)/QΪeQ(β, z)-]\ < 2M°βJ/r

for positive values of β and z.
Hence hr(β,z) tends uniformly to 0 as r tends to oo, so that the

operations r -• oo and d/dβ, d/dz may be interchanged, leaving the equa-
tion of state unaffected by the boundary condition.

On a more practical note, it has been shown recently [7] that if Ω is
assumed to consist of arcs in the β-plane, then all of the standard "critical
behaviour" can be obtained by suitable choice of the density of limit
points of zeros on Ω. Indeed, it is possible to obtain physically inter-
esting results by supposing that Ω does contain a domain (whose inter-
section with the positive real axis in the β-plane must, of course, consist
of isolated points, at most) and then prescribing a particular form for
the density on this domain. Similar work [8] has been done in terms of
assumed forms of density on Ω in the z-plane. Here, however, for Ferro-
magnetic systems, the Lee-Yang Circle Theorem guarantees that Ω
contains no domain 1 3 . It is clear from the present work that only the
maximodular eigen-values of T are relevant to the equation of state
(though it is known that the other eigen-values can be related to various
correlation functions). There seems, however, to be no simple criterion
for identifying eigen-values of co-maximal moduli rather than merely
equal moduli. (Criteria involving differentiation in λ would not improve
the results.)
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