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Abstract. A generalization of the superposition principle of quantum mechanics is
proposed introducing the concept of maximal state of a logic.

1. Introduction and Basic Axioms

It is generally admitted that the superposition principle (in the sense
of Dirac’s book) is the point where the departure of quantum theory
from the classical physics is more evident. In order to have a precise
mathematical formulation of this principle, it is particularly convenient
the language of lattice theory where the difference between classical and
Quantum theories can be made very transparent. There exist at present,
many expositions of the lattice approach [1, 2]. In view of the formulation
of the superposition Principle, the Varadarajan’s framework is of
particular interest [2]. There it is given a notion of superposition of
states which includes both the concept of classical mixture of states as
well as the concept of quantum superposition of states.

In this way it is open the possibility of the existence of (non trivial)
pure superpositions of pure states. This situation comes out, of course,
specializing the lattice structure, to get, via Piron’s theorem [1a], the
standard logic. In view of the special nature of the assumptions leading
to a standard logic, it is of some interest the question if the above men-
tioned situation occurs in a more general context. In this paper we attempt
to give a positive answer to that question.

We associate to the physical system a pair (L, S): the logic L represents
the set of all the classes (propositions) of equivalent yes-no experiments
and the set S represents the set of all the preparing procedures pertaining
to the physical system. The mathematical assumptions on (L, S) are the
following. The set L has the structure of complete, orthocomplemented

* A scholarship from C.N.R. (Comitato Nazionale per le Scienze Matematiche) is
acknowledged.



94 V. Berzi and A. Zecca

and atomic lattice. The elements A\ a,= A {a,}, \/ a,= V {a,} denote

respectively the greatest lower bound and the least upper bound for
every family {a,} C L. The term 4 denotes the complement of ae L.
Theelements 1= V Land = A L are the greatest and the least elements
of L. An element se€ S is a map from L in [0, 1]. The number
s(a) (a€ L, s € S)is interpreted to give the probability of the outcome “yes”
for a test of the class a when the physical system has been prepared with
the practical procedures pertaining s. Denoting S,(a)={se S :s(@)=1}
and Sy(a)={seS:s(a)=0} (ae L), the set S is a subset of [0, 1]* satis-
fying the following conditions.

Al. a,be L a<b<S(a)CS,(b) (£ is the order relation in L).

A2. Si(a)=Sy(@)Vae L.

A3. S,(1)=S.

Ad. S, < A\ aa) = () S,(a,) for every family {a,} C L.

A5. Sis a g-convex set: if {s;} CS and {o;} C(0, 1), with ) o;=1, are

i
countable sets, then there exists se S such that s(a)= ) o;s,(a) Vae L,
namely s = X o;s;. '

Definition 1. A pair (L, S) with L a complete, orthocomplemented,
atomic lattice and S satisfying the assumptions A1—AS5, is said to be a
proposition-state structure.

It is immediate that a proposition-state structure has the properties:
i)S,(a)=S,(b)iffa=b; ii) So(a) = S,(a) Yae L; iii) S, (\/ aa) o JSi(ay)

for every family {a,} CL; iv) S,(#)=S,(1)= & (the empty set of states)
and So(#)=S; v) Vae L, S,(a) and Sy(a) are o-convex subsets of S;
vi) #+ae L implies S,(a)=+ .

Remark 1. 1If the logic L is the complete, orthocomplemented, weakly
modular and atomic lattice of all the closed subspaces of a separable
complex Hilbert space and S is the set of all the trace class states, then
one can easily verify that (L, S) is a proposition-state structure.

We do not require the o-additivity for the states as done in Ref. [2].

In the next sections, we use the notions of ideal and dual ideal of a
lattice, to formulate the concept of superposition of states. We also
introduce the concept of characteristic state which coincides with the
concept of pure state in the Hilbert model.

If we call maximal state a state contained in S,(e) when e is an
atom, the main result (Proposition 2) of the paper is the existence of
maximal (non trivial) superpositions of maximal states.

In this sense we give an indication for structures more general than
the standard ones admitting a quantum-like superposition Principle.
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Finally we propose a condition (A 6) which ensures the maximality
of the pure states and which implies a strong result in the case of com-
pletely distributive lattice (Proposition 1).

2. Ideals and Superposition of States

The states of S can be used to introduce ideals in L. Indeed the sub-
sets of L, L(s)={ae L:seS,(a)} and O(s)={ae L:se Sy(a)} have the
following properties:

a) L(s)={a'eL:aecO0(s)}=0(s) (0O(s)=L(s))

@g¢ L(s), Le L(s) Vse S

aeL(s), beL and a=<b=belL(s)
a,be L(s)=aAbe L(s)

aeL(s), be L=>av beL(s)

¢) O(s) has the dual properties which hold for L(s) in b).

A subset I C L is a dual ideal in L if and only if there exists +ae L
such that I={xeL:x2>a}: then a= AI= /\ x [1f]. In a dual way I

xel

is an ideal in L if and only if there exists 15 e L such that
I={xeL:x<b}: then b= VI=)\/ x. By A4 we have A L(s)e L(s)

xel

and V O(s) € O(s). Hence, taking into account b) and c), O(s) and L(s) are
respectively an ideal and a dual ideal in L completely determined by the
elements V O(s) and A L(s). The element A L(s) is the least proposition
in L which is certainly true on s and (A L(s)) = V O(s) is the greatest
proposition in L which is impossible on s. An atom of L is an element
ee L(e=+0) such that if §+be L and b<e implies b=e. An clement
me L(m=1) such that if 1+be L and b=>m implies b=m, is called a
maximal element in L. If the term A denotes the set of all the atoms of L,
then A’ will be the set of all the maximal element in L, L being ortho-
complemented.

It must be noticed that a dual ideal I C L is maximal if and only if
A Ie A. Hence there is a bijection between 4 and the set of all the
maximal dual ideals in L and between A’ and the set of the maximal
ideals in L.

Ideals can be introduced in L in a more general way. Indeed, for
every D C S, defining

L(D)={aeL:seS,(a)VseD} and O(D)={aeL:seSy(a)VYse D}

b)

we get:
L(D)= () L(s) and O(D)= () O(s).

seD seD
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Lemma 1. If DCS then A L(D)=\/ (A L(s)).

seD

Proof. From L(D)CL(s)¥seD, it follows A L(D)= \/ (A L(s)).

seD

On the other hand it holds \/ (A L(s))= A L(D) because \/ (A L(s))
is an element of L(D). seD seD
In a dual way it can be shown that V O(D)= /\ (V O(s)).

seD

Definition 2. The state s € S is said to be a superposition of the states
in DCS if L(s)D> L(D).

That is the same as saying that s is a superposition of the states in D
if and only if O(s) D O(D). This means that s is a superposition of the states
in D if and only if ae L and a e O(5) Vs € D=-a e O(s) which is taken as a
definition in the book of Varadarajan [3].

If L(s)= L(D) we say that s is a classical superposition of the states
in D.

Lemma 2. If's= ) o;s; as in A5, then L(s)= () L(s;) and O(s)= [} O(s,).

Proof. The relations follow directly considering that s(a)=1
(s(a)=0) if and only if s;(a) = 1(s;(a) = 0) for every index i.
From the very definition of L(s) and O(s) we also get (ﬂ L(si))’

= m L(s;).
3. Characteristic and Pure States

Definition 3. A state seS is said to be characteristic if s'€ S and
L(s)= L(s")=>s=+s". The set of characteristic states will be denoted with S.

Lemma 3. If se S then L(s) and O(s) are maximal ideals.

Proof. Let I be a proper dual ideal such that I D L(s) strictly. Then
seS(A L(s)) and s¢S,(A I)£S,(@). Hence s'e€S(AI)CS (A L(s))
exists such that s=+s and L(s")D L(s). Considering s=as+ (1 —a)s’
(¢ €(0, 1)) then 5+ s and L(5) = L(s) by Lemma 2. This is a contradiction,
s being characteristic. Hence L(s) is maximal, A L(s) is an atom of L
and S,(A L(s)) = {s}. If now an ideal I exists such that 1D O(s) strictly,
then I' D O(s) = L(s) and this is not possible, I’ being a dual ideal and L(s)
a maximal ideal.

Definition 4. An element seS such that s=os; +(1 —a)s,
(1,8, €8,0€(0, 1)) implies s = s, =5, is said to be a pure state. The set of
pure states will be denoted with Sp.

Lemma 4. S.CSp.

Proof. Suppose s€ S and s=as; + (1 —a)s,, « €(0, 1). By Lemma 2,
L(s)being maximal, it must be L(s) = L(s;) = L(s,) and hence s=s; =s,,
s being characteristic.
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Remark 2. If L is assumed to be a discrete direct union of standard
logics each of which is the lattice of all closed subspaces of a complex
separable Hilbert space and S is the set of all positive, g-additive functions
s on L such that s() = 1, then S = S, [1f]. In that model there also is a
bijection between atoms and pure states and between pure states and
maximal ideals.

If (L, S) is the pair of Definition 1, we have, as a special case of iii),
Si(@> |J Sy(e) where A(a)={ecA:e<a}(acL,a+0). However in

ecA(a)
general, there is no explicit connection between the set of atoms and the
set of pure states.

We propose a condition which is easily seen to hold in the case of
Remark 1, to get the counter part of Lemma 3 in what concerns the
pure states.

A6. Sl(a)={Zocis,~:{si}C U Si(e); {o} (0, 1); Zai=1}, VaeL.

ecA(a)

Indeed, defininga= A L(s) for se S we have s= ) o;s;asin A6. If se Sp

it follows s =s; V1.

Hence there exists e € A(a) such that se S,(e), L(s) is maximal and
e= N L(s)e A.

So the condition A6 implies {A L(s):seSc} C{A L(s):se Sp} CA4,
but it does not imply a bijection between 4 and Sp.

Proposition 1. Let (L, S) be a proposition-state structure satisfying A6
and such that L is a completely distributive lattice. Then

i) if seS and L(s) is maximal, then s€ S¢ and s(a)=0 or s(a)=1
Yael,

il) if 5€ Sp DCSp and L(5)D L(D)=5€D.

Proof. i) Let s € S and L(s) be a maximal dual ideal. Then A L(s)=e
is an atom and V O(s)=¢' is a maximal element in L. If a € L we have
a=(ane)Vv(ane)sothateithera=eora=e'. Thismeans L(s)uO(s)=L
and hence s(a)=1 or s(a)=0 Yae L. From this it immediately follows
S1(A L(s))={s} and hence se€ Sc.

ii) The point i) and A6 imply §eS, and DCS.. The elements
AN L(B)=e, N L(s)=e(s)VseD are atoms. From the assumptions and

Lemma 1, it holds e < \/ e(s). From the complete distributivity it follows
seD
e=eA (\/ e(s)) = \/ (e ne(s). Hence there exists s'eD such that

seD seD
e=r¢(s"). This implies 5= s € D.
Remark 3. As a consequence of Proposition 1 i), we get S¢c=Sp. In
this case the atomicity of L and the assumptions A1—A6 on S imply a
bijection between atoms and pure states: A= { A L(s): s e Sp}. Moreover,
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for every D C Sp, defining D to be the set of all the pure states which are
superposition of the states in D and M the class of all D C Sp such that
D =D, by Proposition 1 ii), M is infact the set of all the subsets of S, [3].
The map a— A(a)(a€ L) is easily seen to be an isomorphism (L being
completely distributive and atomic) between L and the set of all subsets
of A. Hence there also is an isomorphism between L and M.

The next Lemma is useful for the general case.

Lemma 5. Let L be a complete, orthocomplemented, atomic lattice
satisfying the following property:
BCA,é€A and €< \/ e=eeB.

eeB
Then L is a completely distributive lattice.

Proof. Let P(A) be the Boolean algebra of all subsets of 4. For every

B € P(A) consider the map B— @(B)= \/ efrom P(A)in L.If p(B) = ¢(B)
eeB

for some B, B'e P(A), B+ B’, then an atom e would exist such that

ec B, e¢ B (or vice-versa) and & < ¢(B) which contradicts the assump-

tion. Hence ¢ is a bijection of P(A) onto L. Let now {4,} be a family of

elements of P(A). From the definition of ¢ one gets ¢ ( ﬂ Aa) =\ o(4,).

Further ¢(B')=¢@(B) for every Be P(A) with B'=A—B, so that
® (U Aa> =\/ ¢(4,). Then ¢ is a completely distributive isomorphism

of P(A) onto L. This completes the proof?.

Proposition 2. Let (L, S) be a proposition-state structure and suppose L
not to be a Boolean lattice. Then 5€ S, DCS, 5¢ D exist such that L(5)
and L(s)Vse€ D are maximal dual ideals and s is a superposition of the
states in D which is not a classical superposition.

Proof. From the assumptions L is not completely distributive. By

Lemma 5, €€ A, B C A exist such that e < \/ e with ¢ B. Choose now a
ecB

state 5€S,(e) and a state s(e)eS,(e) for every ee B. Then L(s) and
L(s(e)) Ve e B are maximal dual ideals such that L(5)D () L(s(e)). The

ecB

theorem is proved pointing out that e L(5) but e¢ ) L(s(e)) and

setting D = {s(e) : e € B}. et
Remark 4. 1f (L, S) is a proposition-state structure satisfying A6 and e
is an atom, then, a priori, the following possibilities cannot be excluded:
1) S,(e) does not contain pure states. Then S, (e) contains at least two
states.

! For an alternative proof of Lemma 5, compare Ref. [4] Chapter X, Section 16, Theo-
rem 16.



A Proposition-State Structure 99

2) S;(e)C Sp. If S;(e)= {s} then s is a pure state which is character-
istic. If S;(e) does contain more then one state, then all the states in
S, (e) are pure but not characteristic.

3) Si(e)nSp*+® and S,(e)nSp+ Si(e). None of the elements of
S, (e) is characteristic.

It may be noticed that if we assume A = { A L(s): se Sp} for the pair
(L, S) of Definition 1, we have immediately the maximality of L(s) for
s € Sp without assuming A 6. Furthermore the standard property of the
pure superpositions of pure states of quantum mechanics is easily seen
to hold choosing, in the proof of Proposition 2, § and the states of D
to be pure. Anyway, also in that case, the situations 2) and 3) might, a
priori, arise.

In a forthcoming paper the Definition 2 will be used to describe the
reversible dynamical processes directly in the abstract (L, S) scheme.
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