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Abstract. Analyticity and uniqueness of correlation functions is investigated for a
number of systems by application of Ruelle's theorem on zeros of Asano contracted
polynomials to the partition function. To answer the question when the partition func-
tion of a system is the Asano contraction of those of subsystems the groups appearing
in the low and high temperature expansions are employed.

Introduction

In a series of papers that appeared recently ([7,11,12], and references
given there) a technique generalizing that of Lee-Yang was applied to
find regions free of zeros of the partition function, and to deduce analyticity
properties of the pressure. The results are obtained mainly for systems
with two-body interactions.

The technique consists in decomposing the system in a finite volume
into subsystems with uniformly bounded size, when the volume tends to
infinity, and in using theorems relating the zeros of the system to those
of subsystems. Systematic development of these ideas allows us here
to prove analyticity and uniqueness properties of the pressure and the
correlation functions of quite general systems.

In applying this method one has to solve two problems. Fii st, one has
to show that the partition function of the system can be obtained from
those of subsystems by the operation called Asano contraction. Second,
suitable information about the zeros of the partition functions of sub-
systems should be available.

We give a solution of the first problem in terms of groups that appear
in the low and high temperature expansions [3,4,6,14]; these groups
were studied recently in connection with the duality [6,14]. In the low
temperature region, in which we are interested here, and for ferro-

* On leave of absence from Department of Physics and Astronomy, Tel Aviv Uni-
versity Ramat-Aviv, Israel.
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magnetic interactions, a solution of the second problem comes from the
following observation:

If the partition function for a system with energy

17= -
Be

is expressed in terms of variables

then, up to a harmless factor, one obtains a polynomial

M(zΛ)

with free term equal to 1. Therefore, if ZB are small enough, and this is
the case for positive J(B) and low temperature, M(z^) is not zero.

Uniqueness and analyticity of the (magnetic) correlation functions
ρ(σ^) are obtained by showing that the modified pressure with β Σ J(B) σβ

Be®

replaced by β Σ J(B) % + ̂  Σ °AΊ where si is the set of translates of
Be® A'ejtf

A, is a function of A analytic at 0. This is true only if σA is a product
of the σBs from U9 and follows from the fact that in M(z^u^) the variables
ZA, appear only in product with ZB and therefore M does not vanish if
ZA, are close to 1 and ZB are small. We now describe the content of the
paper in more details.

Section 1 introduces the notation and the groups of the low temper-
ature expansion. In Sections 1.1 to 1.4 we give the "magnetic" formulation
of results proved usually in the lattice gas language. The low temperature
expansion and the groups are introduced in Section 1.5; we follow here
[6]. In Sections 1.6-1.8 we give additional information about these
groups. In Section 1 .9 we show that the pressure is, up to a non interesting
term, equal to its reduced (with respect to ground state for ferromagnetic
interaction) value. The polynomial M corresponds to the partition func-
tion for the reduced pressure, and the proof that it is non-vanishing for
small arguments can be viewed as a perturbation argument, around the
ground state.

Section 2.1 contains the theorem by Ruelle [11] on zeros of poly-
nomials contracted according to Asano. In Section 2.2, we show that the
polynomial M of a system is the Asano contraction of those of subsystems
if a group of Section 1.5 corresponding to the system is generated by the
subgroups corresponding to subsystems. This allows easily (Section 2.3)
take into account the modifications of the partition function needed in
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discussion of the correlation functions, and to prove (Theorem 2.4) that
the absence of zeros of M in suitable region implies the uniqueness and
analyticity of the correlation functions. That the assumptions of Theo-
rem 2.4 are satisfied for quite a general class of interactions, cf. Sec-
tion 2.5 for a list, is shown later. It seems that a theorem of this type
should hold for all finite range interactions.

Theorem 2.4 yields a result about the entropy. Namely, it is shown
(Proposition 2.5) that for ferromagnetic systems and for low enough
temperatures, the entropy is the same for all translation invariant
equilibrium states and tends to zero with the temperature (the proof
depends in fact only on the analyticity properties of the pressure). This
can be compared with the situation for antiferromagnetic interactions
where examples are known, [16], with non zero residual entropy. One
of the differences between ferromagnetic and antiferromagnetic inter-
actions is in the number of ground states: in the first case it is given by
the cardinality of the symmetry group £fA (Section 1.5) and, as proved
in Section 1.8,

whereas in the antiferromagnetic case ground states are not related to the
symmetry group. In the quantum case even for ferromagnetic inter-
actions the residual entropy is in general non vanishing (cf. [15]).

In Section 3 we consider even interactions with Ising type bonds
contained in the set of all bonds. This is a special case of essentially regular
systems considered in later sections but because of the presence of the
Ising type bonds considerable simplifications occur. We show that
Theorem 2.4 applies here, and that for such systems at most two ergodic
equilibrium states are possible for low temperatures, i.e. each translation
invariant equilibrium state is a combination of the state ρ+ defined by the
+ boundary conditions and the state obtained from ρ+ by flipping all
spins. The last statement admits a generalization to a description of all
the translation invariant equilibrium states of systems to which Theo-
rem 2.4 applies [13]. As a special case we reobtain here by a different
method a result of [2]. In Section 3.4, we discuss a generalization to
partially antiferromagnetic systems which is close to but weaker for
two-body interaction than [1]. Section 3.5 deals with systems called
here trivial. We show in [13] that for such systems the invariant equilibri-
um state is unique.

In Sections 4.1-4.5 we show that the assumptions of Theorem 2.4
are fulfilled if the bonds satisfy a regularity condition (Definition 4.2).
This condition is weakened in Section 4.6 and in the next sections. The
last section contains a series of remarks.
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1. Translation Invariant Equilibrium States

1.1. For 5pm \ classical systems on the v-dimensional lattice Έv a
configuration is defined by specifying for each lattice site one of two
possible configurations which are identified here with 1 and — 1 1 .
Therefore in what follows a configuration is a function X :ZV-»{1, — 1}.
The set of all configurations ΈV

Jί = {1, 1}

is made into a compact separable space by the product topology. A
state of the algebra ^(3Γ) of continuous functions on 2E or, what is the
same, a probability measure on 9C will be called a state of our system.
For i e Έv we let σf denote the function on 9C which to each configuration
assigns its value at the lattice site i, and for a finite subset A of the lattice
we put ,_,

°A = 1 1 σi
ieA

The linear span of {σA}Ae0>f(zv) 2 *s dense in ^(SK). Therefore in order to
specify the state ρ it is enough to give {ρ(σA)}Ae0>f(Έv).

For a subset A of the lattice we let SKA denote the configurations in A :

and we do not distinguish between σA,AcA, and the corresponding
function on S£A.

1.2. An interaction will be identified with a real valued function on
the set of finite subsets of the lattice. The elements of the support of an
interaction are called bonds, i.e. for the interaction J the set of bonds is

& = {B E 0>f(Έv) : J(B) φ 0} .

The energy of the subsystem in a finite volume A is

UA=- Σ J(B)°B;
Be@Λ

here 3&Λ = {Bε3$:BcA}. The partition function for the subsystem in

Λ is given by: ^= ^ ^^
Xe9CΛ

and the Gίbbs state in A ascribes to the configuration Xe$£A probability

eA(X) = z-A

le->Ό*™.
Putting, according to tradition,

1 The configurations are also called "up" and "down", or " + " and " — ", or "0" and "1"
2 For a set Λ, 0*r(Λ) denotes the family of all finite subsets of A.
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we rewrite: Σ κ(B)σB(χ)
ZΛ= Σ e^Λ

X**Λ (11)

Σ K ( B ) σ B ( X ) V ;

ρA(X) = Z^e** *

In what follows we consider only translation invariant systems with
a finite range interaction (see, however, Section 4.8 d). This means that for
a bond B and αeZ v the translate τa(B\ denoted also by B + a, is again
a bond and K(τa(B)) = K(B). Moreover, each bond is congruent with an
element of a certain finite family of bonds. Minimal families with the
property that any bond is congruent to an element of the family will be
called fundamental

Translation invariant finite range interactions form a linear subspace
of the space of all interactions.

1.3. For a translation invariant finite range interaction the pressure

p(K)= lim — logZ^
Λ-»oo \A\

exists and is a convex function of K. Here A is allowed to tend to infinity
in the sense of Van Hove (cf. [8], p. 14); for instance through a sequence
of parallelepipeds with the length of all the edges tending to infinity.

For any translation invariant state the mean energy

is defined, and, as is easy to see, is equal to

- ρ / Σ K(B)σB

where ̂ 0 is any fundamental family of bonds. We adopt here the defini-
tion that a (translation invariant) equilibrium state is a translation
invariant state maximizing the difference between the entropy and the
mean energy. This maximum is equal to the pressure. In other words,
ρ is an equilibrium state if

We let Δκ denote the set of all equilibrium states corresponding to an
interaction K.

1.4. Proposition. Let for a finite subset A of the lattice the interac-
tion KA be defined by

ί 1 if B is a translate of A

10 otherwise.

We refer to [5, 9, 18] for a discussion of the notion of an equilibrium state.
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// the function λ\->p(K + λKA) is differ entiable at zero then Q(GA) has the
same value for all ρ e Aκ and

\λ = 0 . (1.3)

[In fact also the converse statement is true: in general Q(GA), ρεAκ,
fill out the interval between the left and right derivatives of λ±->p(K + λKA)
at zero.]

The proposition follows directly from formula (4) of [10] and well
known properties of convex functions.

1.5. To introduce the low temperature expansion we start with a
finite set A, an interaction K on A with the family & of bonds, and

Σ K(B)σB(X)

Z= Σ e**® where # = {1, -I}"1.
XeSC

We introduce now following [4, 3, 14, 6] several abelian groups.
The group structure in 3C is defined by considering it as the product

{1, - l }x ... x { l , -1} (|Λ|-times),

{1, - 1} being equipped with the group operation for which 1 is the unity.
For any set, say A, we consider the family of all its subsets, 0*(A), as
an abelian group, the group operation being the symmetric difference

A9B\->(A\B)v(B\A).

The elements of 3P(β) will be denoted by α, β, ..., and the elements of
0>(A) by A,B, ... . The group operation in X and 9(3S) will be written
additively, and in έP(A) it will be denoted by juxtaposition.

The mapping

defines an isomorphism of &(A) onto the group dual to % .
The inclusion mapping ^^^(Λ) extends uniquely to a homomorphism

denoted by

For Xe% let

Xt->y(X) is a homomorphism of % into &(3t\ The image of &($) in 0>(Λ)
is denoted by 2%, and the image of y by Γ. That βt->βisa homomorphism
is obvious; we will show that the same is true about y. Bey(Xί +X2)
means that σB(Xί +X2)= - 1, that is σB(Xi)σB(X2)= -i. The last
equality means that one of the numbers σB(Xί), oB(X2\ but not both,
is equal to — 1 which is equivalent to B e γ(Xί) + y(X2)
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In the case of the Ising model γ(X) can be identified with the broken
lines that are drawn in discussions of the spontaneous magnetization.
For more examples we refer to [6].

Two further groups, Jf and y, are defined as the kernels of the
homomorphisms β^-^β and Xt-*y(X), respectively. £f is called the
(internal) symmetry group of the system since it has the property:

U(X+Y)=U(X), Xe%, Yε6f.

It can also be defined as {Xε%: σB(X)= 1, all Be&}. For the Ising
model £f contains just two elements: the zero of 3£ and the configuration
equal everywhere to — 1 .

We can now write down the low temperature expansion of the partition

function: -z = |*Ί Π eK(B} Σ Π e~2K(B) (1.4)
Be® βeΓ Beβ

It is obtained by the following transformations.

Σ K(B)σB(X) Σ K ( B ) ( σ B ( X ) - l ) + Σ K(B)
\^ pBeSδ __ V^ pBe& BeOS

XeSC XeSC

Σ K(B)(σB(X)-D Γ -2 Σ K(B)]

= Π eK(B} Σ e**® = Π eK(B]\\y\ Σ e Beβ

Be® Xe% BeOS I βeΓ \

The last equality is a consequence of the fact that Σ K(B)(σB(X)— 1)

= -2 Σ X(B) [by the definition
Beγ(X)

We introduce the pressure

p =T7and the reduced pressure I71'

K1! βeΓ Beβ
so that i .

p=— logm + — Σ K(B) + p°. (1.5)
K1! 1^1 Be^

The inequality (2.15) of [8] gives

I
, ^- . . - -

and this yields

K K BCΛ

Putting here K2 = 0 we get

£ \K(B)\. (1.7)
Be®
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1.6. We proceed with a discussion of the structure introduced in
the preceding section. For α, β e 3P( ££) we define

α, βκ><α, )8> is a bicharacter of &(3ft\ i.e. when one of the arguments is
fixed it defines a character. It is non-degenerate in the sense that <α, /?> = 1
for all α e ̂ (̂ ) implies that /? is zero.

Lemma. Let for a subgroup G of &(&}

G1 - {α e &(@) : <α, β> - 1 for all βeG}.

Then Γ = Jf±andJf = Γ1.

For a proof we remark first that

For /? = {5} this follows directly from the definitions of 7 and <,>, and
then for general β from the fact that when X is fixed both sides of the
equality define a character of ^(^S\ It follows from this formula that
Jf = Γ1. For, <j8, γ(X)y = l,_all X e #, is equivalent to σ^(X) - 1, all X,
and this implies that the set β is empty.

That Γ = JΓ1 follows from jf = Γ1 and the nondegenerateness of < , >
by the duality theory of finite abelian groups, or, if the language of vector-
spaces over Έ2 is introduced, by the reflexivity of the orthogonality
relation for subspaces, with respect to non-degenerate symmetric form.

1.7. We will later need information on the change of JΓ when & is
enlarged by adding elements of^.

Suppose that Al9...9Ane0S and put &' = &u{Al9 ...,An}9 tf' the
kernel of &>(&') ^>&>(Λ). Let α 1 ? ..., αB e^(^) be such that ά—Af and
denote: ^ = atu {At} . Then tf' is generated by JΓu{aι, ...,a^}.

For )8ejr' let {Aίί9...,Air}=βn{Ai9...9An}. Then jS + a^ +
— ha; vejf and β = (β + afiί-\ ----- hα^ + ία^H ----- hα^) is the needed
decomposition.

1.8. Systems for which JΓ has only one element: the empty subset
of Jf, will be called here trivial.

Let B0 be a finite subset of Έv, let /I be a parallelepiped and let & be
the set of all the translates of B0 that are contained in A. We will show now
that the system so defined is trivial.

Let us introduce in Έv the lexicographic order, i.e. a < b if the first
nonzero component of b — a is positive. For B e ̂  we denote by b(B)
the earliest point of B: if B^B2 then b(Bl) Φ b(B2). If β= [BΪ9 ..., £„}
e^(J*) then the earliest point in {b(B^9 ...9b(Bn)} belongs to only one
element of β9 and therefore belongs also to β. This shows the triviality
of jr.
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1.9. Returning to infinite systems we let A to be a finite subset of the
lattice and we identify J* of Section 1.5 with the set 3SA of bonds contained
in A. We will now show that limp°, denoted further by p°, and called:
reduced pressure, exists and Λ

° ( K ) ; (1.8)

here J*0 is any fundamental family of bonds.
From (1.5)

Σ K(B) can be computed by summing first over the translates of a
Be@Λ

fixed element B0 of 36^ and then performing the summation over <3$0.
It is not hard to see that first sum differs from \A\ K(B0) by no more than
K(B0) \dΛ\ (diameter of B0). Hence

^TTΓ Σ K(B)= Σ K(B).
Λ \Λ\ Be@Λ Be@0

To prove that lim— -log|5^| =0 we remark first that enlarging ofΛ \A\
St leads to smaller SfA as &>A = {Xe9CA: σB(X) = 1, all Be @Λ}. Therefore

it is enough to show that lim- — r log 1̂ 1 =0 for systems whose bonds
Λ \A\

are all translates of one. For such systems 3CA are trivial (Section 1.8)
and therefore (Lemma 1.6) ΓA = dP(SSA). Hence 5 ,̂ being the kernel of a
homomorphism of 9£A onto 2P(β ̂  has the number of elements equal
to \SrA\/0>(&A), i.e. l λ .1 A" ^ A" \c/> I = 2\Λ\~\®Λ\
and hence

As was remarked in discussing lim-—- £ K(B), \ \A\ — \3SA\ \ is
Ml Be@Λ

majorized by \dΛ\ - (diameter of B). This shows that -- log \ZfA\ ->0 and
finishes the proof of (1.8). \Λ\

2.6. Analyticity and Uniqueness

2.1. Let P be a complex polynomial in several variables, which is of
degree 1 with respect to each. That is there is a finite set & and

P(zΛ)= Σ CβJ
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where
% = {zB}Be® and zβ=[\zB.

Beβ

Let &= (J&t be a finite covering of 2% and let Pf(zΛι)= £ c^z^
ί /ϊc^i

be a family of polynomials. We say that P(z@) is the Asano contraction
of {P ( z ) } if

We will say that the variable ZB is undergoing contraction if B belongs to
more than one of

Theorem. (Ruelle [11]). Let P(z@) be the Asano contraction of
and let for each Be^ta subset Rt B of the complex plane be given which is
closed and does not contain 0 if ZB is undergoing contraction.

Suppose that Pι(zm) is nonzero if zBφRiB, all Be 36^ Then P(z@)
does not vanish when zBφ — Π(~~^ϊ,β) for a^ ^e^, here for a finite

family {Λf}?=1 of subsets ofC:

(In [1 1] it is assumed that all Rt B are closed and do not contain zero but
an examination of the proof shows that the theorem holds also in this
form.)

2.2. We now place ourself in the situation of Section 1.5. We define

a polynomial M by M(z,)=Σ^; (2.2)
0eΓ

M(z^) is determined by the family £% of sets unambiguously.
For a finite covering {̂ } of ̂  we consider the corresponding groups

Γf, ̂  defined by 38 { and we introduce the polynomials M(z@). Obviously,

eΓ and jff =

Proposition. M(z^) is the Asano contraction of {M(z<%)} if and only if
the subgroup of &(&} generated by (j JΓf coincides with JΓ (we write:
r

By (2.1) and (2.2) it has to be proved that the implication:

jSn^eΓf, all i=>βeΓ

is equivalent to: Jf = M JfJ. This equivalence follows from Lemma 1.6.
1 t \

For if Jf φ ( I JΓ; then there is an element of 2P(&\ say β, which is
IV 'J

<,>-orthogonal to \(J tfλ and not orthogonal to JΓ.
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Then βn^i e Γh all z, by Lemma 1.6 as </?n^, α> = </?, α> for α C ̂ ,
and β φ Γ, again by Lemma 1.6. If, on the other hand, jf = \\J jf.] then

the fact that βr\ 38i e Γt for all z, i.e. (Lemma 1.6) orthogonality of
to Jf), implies orthogonality of β to Jf and therefore (Lemma 1.6) β e Γ.

2.3. We consider the effect of an enlargement of&S on the zeros of M,
as in Section 1.7. We refer to that section for the notation.

Let us assume that Ai φ <%, all z, and that αt are minimal, i.e. no proper
subset of αf yields At.

If M(zgg) φ 0 when \ZB\ <rB, B e (J αt , and ZB φ RB for B e ̂ \(J αt
i i

for any η e [0, 1] M(z@,) does not vanish when \ZA — i\<
\ l +n

for βel jα; and zBφRB for BG$\[jai. Here nB is the
i ί

number of α/s containing the bond B.

By Section 1.7, and Proposition 2.4 M(z@>) is the Asano contraction
of (M(z^), M(zα)}. By Theorem 2.1 it is enough to show that M(zα.) φ 0

Ja i l

if \zAι — 11 < I , \ZB\ < η, all B e α f . We omit the index z at αf in the

following.
By the minimality of α, Jf (α') consists of only two elements: the empty

subset of a' and α'. It follows from Lemma 1.6 that Γ(α') is the family of
all even subsets of α'. Hence

M(V)= Σ z".
|/3| even

The right-hand side is equal to

i [ Π d + Zβ) + B Π(i-2
L

Therefore if ZA Φ - 1 and ZB Φ 1, 5 e α, M(zα,) = 0 implies

1 1 -i 4 I

< θ. On the other hand, if |zβ| <yy,If |z^-l|<0, O ^ θ ^ l , then
1+z

all β e α, then π >(- ί-l . Hence M(zα,)φO if \ZA-

\ZB\ < η, B e α, and 1 > θ. Putting θ = I finishes the proof.

2.4. Let Λn-+ oo in the sense of Van Hove. Let δ be a positive number,
and let $n C 0*(Λn) be a modification of 3$Λn in the (5-layer around the
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boundary dΛn of An

 4. That is, the subset &n>δ of the elements that are
distant from dΛn by more than δ is the same for &n and <2$Λn.

Let for B e &n\3$n>δ, rn(B) be a positive number, and let Mn(z@n ό) be
the polynomial obtained from M(z^J by substitution rn(B) for zβ,

n δ. We will say that {Mn(z@ δ)} is a boundary modification of
"

Σ |logrB(B)| =0.
Bed8n\an.Λ J

Theorem. Lei /or BE&, rB be a positive number and let rB, = rB if B'
is congruent with B. Suppose that Λn-* oo in the sense of Van Hove and
that there exists a boundary modification Mn(z@n ό) of M(z@Λ ) such that

for \zB\<rB.

a) there exists a function f of {zB}Be@0 analytic for \ZB\ < rB such that

f(ZB)\ZB = e-^ = P°(K),

b) if e~2K(B} < rB then for each AE&, ρ(σA) has the same value for
all ρ e Δκ, and ρ(σA) extends to an analytic function of {zB}Be<%0 as in a).

We will show that a stronger version of a) holds, in which the regions
\ZB\ < ΓB are replaced by open simply connected domains DB that inter-
sect 1R+ and DB, = DB if B1 is a translate of B. We follow the proof of
the analyticity of the pressure with respect to external magnetic field
in [8], p. 111.

Let Mn(z@o) be the polynomial in variables {zB}Be<%0 obtained from
Mn(z@n ό) by substitution zβ, #e^0, for each variable zβ<, B' e &n >δ, for
which B' is congruent with B. By assumption, the domain

D*0= Π DB

is free of zeros of M". We first show that if r(B\ B<E$O, are positive
numbers, then \

lim -— log M "(r(Λ0)) = P°(K) (2.3)
n \Λn\

where Mn(r(£%0)) = Mn(z<%o)\ZB = rB and K is the translation invariant
interaction with ̂  as the set of bonds and such that

Let Kn be the interaction in Λn with bonds 3Sn and

for B e i

f o r £ e <
4 For a subset A of TLV its boundary dΛ is the set of points in A that have nearest

neighbors in ΈV\A. A(δ) = {x e A : dist(x, dΛ) ̂  δ}.
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and let p°(Kn) be the corresponding reduced pressure. Then

-*-logM"(r(^0)) = p°(Kn).

By (1.6)

\P°An(K) - p°(Kn)\ ^ -i- (log I 9>Λn\ - log I

;' (2.4)

4- V
I Λ I £-*

It was proved in Section 1.9 that lim —— log| £fA | =0, and it is not
" IΛI

hard to see that | 5 |̂ is majorized by | ^Λn(ό)\ multiplied by the number
of subsets of An\Λn(δ). Therefore

Kl
This shows that the first term on the right-hand side of (2.4) tends to
zero as Λa-* oo. On the other hand

-̂ - Σ I^W-^β)!^^ Σ 1̂ (5)1
K1/!! BcΛn \/Ln\ Be3SΛn\28n,ό

+ ̂ τ Σ IK.WM
l^nl Be^n\^n(d)

The first term on the right-hand side tends to zero since it is majorized

by 2

the second term tends to zero by the definition of boundary modification.
Thus (2.3) is proved.

i 1
The functions Mπ(z^0)

 |ylnl and — — logMn(z^0) are analytic in D^o?

and
if |zB|<r(B). (2.5)

Here and in the rest of the proof by log and zr-»zα we mean those
branches of these functions that are assuming positive values for real
argument greater than 1. In particular logzα = αlogz.

(2.5) and the convergence of——- logM"(r(^0)) show that the func-
ί i i IΛI

tions JM"(z^o)
|y4nl L are uniformly bounded on every compact subset

of DΛo. The same convergence and the fact that each component of D@o
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contains an interval of 1R+ allow for a use of the Vitali theorem to finish
the proof of a).

If A E $, we may assume that A e ̂ 0, then b) follows directly from a)
and Proposition 1.4: the analytic function of b) is equal to

i-2zA--f(zΛί). (2.6)

Let now A e $, A φ 28, and let α be a minimal element of ̂  ( &} that
yields A. We define:

here AX = A + x, and the elements of αv are the translates by x of the
bonds of α. &'n\&'ntδ = &n\3Sntδ,

 anc^ tne polynomials M'n(z#n ) obtained
from M(z^) by substitution for ZB, Be&'n\&'n>δ, the same numbers as
previously form a boundary modification of {M(z^J}. Applying
Lemma 2.3 to M(z^) we conclude that for each 77 e [0, 1] M'n(z@>n J =t= 0

|α|_
when |zβ| <ηnrB for £e |J αx and |z^x— l| < - - for all x; nB of

x \ 1 ' Ά I

Lemma 2.3 is replaced here by a natural number n independent of B
since, by translation invariance, there exists ή such that each Be$
belongs to no more than n of {oc x} x e Zv.

The strengthened version of a) proved above yields now a function
ffaa;) analytic for

and such that

By Proposition 1.4, b) holds with the analytic function given for

Letting here η -+ 1 we finish the proof of b) and of the theorem.

Remark. The theorem modified suitably still holds if the regions
|zβ| < rB are replaced by domains each component of which is simply
connected and intersects ,1R+. This follows from the following property
of the polynomials M(zα') of Section 2.3: there exists a function 5κ>ε((5)
such that ε(<5)->0 when δ->0, and M(zα,)Φθ if |z^-l|<ό | α | and
\ZB+ 1| =ε(^) (ε can be taken proportional to δ).
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2.5. In the next sections we prove that the assumptions of Theo-
rem 2.4 are satisfied for the following systems:

a) Systems with even bonds and such that J* contains the Ising
bonds, Sections 3.1-3.2.

b) Trivial systems, Section 3.5.
c) Regular and essentially regular systems, Sections 4.1 to 4.7.
d) Systems with general two-body, finite range interactions, Sec-

tion 4.9.

The rB's of Theorem 2.4 are in general small and therefore we obtain
analyticity and uniqueness of Q(σA\ Ae^, for ferromagnetic interactions
and low temperatures:

J(B)>0 and β large.

2.6 Proposition. For ferromagnetic systems to which Theorem 2.4
applies (hence for the systems of Section 2.5) the entropy is the same for
all the translation invariant equilibrium states at low enough temperatures,
and tends to zero with temperature.

From (1.2) and (1.8)

By Theorem 2.4 ρ(σB) has the same value for all QtΔκ at low tem-
peratures. This proves the first part of Proposition.

Making explicit the dependence on the temperature, we get

From formula (2.6):

Since / is analytic in a neighborhood of the origin and J(B) > 0 for all
£e^0 this shows that β[l— ρ(σ5)] tends to zero (exponentially) as
β-»oo. It remains to discuss the behavior of p°(βJ).

and

τu , /(%„)= lίm

Therefore ^n-°o

lim p°(βJ) = lira — |- logM"(0)
β^x Λn \Λn

M"(0) can be thought as the reduced partition function for a system
in Λ^Λn(δ) with bonds ^n\^n a and interaction Kn(B)= -%\ogrn(B).
By (1.7)

£ K(B) .
B θ ^5n\^δn< (5
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and \Λn\Λn(δ)\^δ \dΛn\ this shows that

logM"(0)-»0. Thus s(ρ)a-+ 0.
& V ' V t ί '3->00

3.4. Generalized Ising Models and Trivial Systems

3.1. An Ising interaction in Έv has ,/0 = {{0, e^}^ ^ as a fundamental
set of bonds. The set of bonds of an Ising interaction will be denoted by J.

The group 3CΛ for an Ising interaction in a parallelepiped A is
generated by all the translates of

that are contained in A this is not a minimal family of generators.

For v=i the groups are trivial (Section 1.8).
We may assume that Λ = A(a) (= {x e Έ\ 0 g xf ^ αj). Let

and let β' be the set of all the bonds of β that are contained in the hyper-
plane xΐ = aγ. For B = {x, y} e β' let βB = {{x, y}9 {x, x-ej, {y9 y-ej,
{x — e^y — e^ ββ belongs to our
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family of generators, and β+ Σ ββ has no bonds on the hyperplane
Beβ'

xi=aί. It follows that it has also no bonds of the type: {x, x — ̂ },
x1=aί, and therefore it is contained in Λ(a± — I,α2, ...,αv}. Repeating
this construction aί -times, we arrive at a system on the v — 1-dimensional
hyperplane xί = 0. This shows that our statement can be proved by
induction with respect to v.

3.2 Theorem. Let $ be the set of bonds of a ferromagnetic inter-
action J. Suppose that the bonds are even and that {ffl^J*. Then at low
enough temperatures the even order correlation functions (of translation
invariant equilibrium states) are unique and have the analyticity properties
of Theorem 2.4.

For a parallelepiped Λ the subgroup $Λ of 2P(Λ) generated by $A

consists of all the even subsets of Λ: for a two-point subset {x, y} suitable
element of έP(&Λ) is obtained by taking bonds lying on any path joining x
with y that is contained in Λ. General even subset can be decomposed
into a sum of two-point subsets.

Therefore, for a finite even subset A of Έv there exists OLA e £Pf(J>}
such that ΰA = A and <x,A is contained in any parallelepiped containing A.
Let us choose such αβ for each B e Jf\/ in a translation invariant way.

According to Section 1.7, for any parallelepiped Λ the group 3CA is
generated by the translates of βtj and by {αβu{#}}βe^XJZr. Therefore
(Proposition 2.2) M(z@Λ) is the Asano contraction of the polynomials
corresponding to the translates of βtj and of {M(zαBU{B}}βe«^\^. The
number of variables of these polynomials has a bound independent of Λ:

max {4, max |αJ + 1}.
Be@o

Each of these polynomials has the free term equal to 1. Therefore there
exists r' > 0 such that the polynomials do not vanish when the modulus
of their arguments is majorized by r'. Since there is a bound inde-
pendent of A on the number of the polynomials containing given variable
there exists r > 0 such that

M(zΛJΦθ if |zβ |<r, all Be@Λ.

Thus Theorem 2.4 applies (without boundary modifications) and yields
the required analyticity. Since the interaction is ferromagnetic it yields
also the uniqueness properties at low temperature.

3.3 Corollary. The systems of Theorem 2.3 admit at most two ergodic
equilibrium states at low temperatures.

This is a special case of a theorem of [13] but we give here a more
direct proof.
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If all the odd order correlation functions vanish, there is only one
ergodic equilibrium state. Suppose therefore that ρ is an ergodic element
of A and that ρ(σ^)φO, |yϊ|-odd. Let ρ be another ergodic element of A
and let A be an odd subset of Έv. Then A τx(A) e ̂  and therefore

Passing to the limit α->oo in the equality:

and taking into account the ergodicity of ρ and ρ, we get

The corollary follows.

3.4. We now give a variation of the preceding theorem and corollary
which covers the situation when the non-Ising part of the interaction is
not necessarily ferromagnetic.

We choose aB for B e &\J> as in Section 3.2, and we let |αB|f, 1 ̂  i ̂  v,
to denote the number of the translates of the bond {0, ej that are
contained in aB. We denote J(0, et}) by Jf.

If Jt- Σ ω 1 (̂5)1 >0, a l i i , (3.1)

then for low enough temperatures there are only two ergodic equilibrium
states. Some analyticity properties can be also deduced.

In the polynomials M(zαflU{β}) the variable ZB appears only in
product with variables ZA, AeaB. Therefore they are not zero if \ZAZB\
is small enough for all A e aB. This includes low temperature region if
JA — \JB\ > 0. The stronger condition (3.1) ensures that the free of zeros
region of the polynomial obtained by contractions also includes low
temperature domain. To finish the proof, it is enough to apply an
obvious modification of Theorem 2.4.

When only two-body interaction is present and α{x >)} is the set of
Ising bonds lying on a shortest broken line joining x with y the con-
dition (3.1) is stronger than the corresponding condition of [1]: in [1]
before the sum appears factor -Jr.

3.5. We will say about a system that it is trivial if the groups J(ΓΛ

are trivial.
If A is a finite subset of the lattice then by Proposition 2.2 M(z@Λ)

is the Asano contraction of (M(za)} for any covering {̂ } of {&Λ}.
Choosing the covering by the one-element subsets of 38 A we get

M(zΛΛ)= Π (!+**)• (3-2)
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This follows from the fact that for disjoint covering no variable is
contracted and from:

M(z(B})=i+zB.

Let M|yl|(z^0) be the polynomial in variables {zB}Beί%0 obtained from
M(z^J by substitution zβ, Bε&0 for z^,, Bf e &Λ if B' is a translate
of B. Then for ZB φ 1, B e ̂ 0

In fact for trivial systems J*0 can have no more than one element:
by Section 1.9 |5 1̂| = 2 | j i |~1^1 and since |J |̂ differs from |J>0I Ml by
a number of order |<3/L|, Λ->ao, | J*0| > 1 would imply \£fΛ\<l for yd
large enough which is impossible.

Formula (3.2) implies, by Theorem 2.4, that the correlation functions
ρ(σA\ Ae&, are unique for ferromagnetic interactions at all tempera-
tures. It is not hard to see that the same holds for antiferromagnetic
interaction. We showed that for trivial ferromagnetic systems the
translation invariant equilibrium state is unique at all temperatures.

In some cases we proved that the equilibrium state, not necessarily
translation invariant is unique. This holds presumably for all trivial
systems.

4. Regular and Essentially Regular Systems

4.1. The theorems on 3CΛ proved in the next sections show that the
assumptions of Theorem 2.4 are satisfied for a large family of systems.
We now give the argument for regular systems.

By Theorem 4.4 for each regular system there exists a parallelepiped
ΛQ such that

where {At} are the translates of Λ0 contained in the parallelepiped Λ.
By Proposition 2.2, this implies that M(z@J is the Asano contraction
of {M(zΛJ}. Since

^ ^Λt' L*t
0eΓ t

and z0 = l, M(z^)Φθ if all the arguments are small enough, say
\ZB\ <ro- On the other hand, each BE& is contained in no more than
\Λ0\ of {&Ai}. Therefore, by Theorem 2.1,

M(zΛJΦθ if |zβ |<rMo1, a l l t feJ^ .

This allows to apply Theorem 2.4 and gives a rough estimation of the
analyticity domain.
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4.2. A μ-plane, or simply a plane, in Έv is a set of the type

{xeZv:Xi = ai9 i e / } , / C { l , . . . , v } , \I\ = v-μ.

A μ-plane is determined by the set / and the function a from / to TL\
it is denoted by P(a) or P(/, a). We also write P(i, a) instead of P(J, α) if
I = {i}9 andP(J) if ̂  = 0.

μ-plane is identified with Έμ by the mapping
μ

(xl9 ...,χμ)^> Σ Xί^H- ΣΛί*i
i = 1 i e /

H e r e Λ < ••• <7μ, (A, ••• Jμ} = {1, ••-, v}\/, and e, = (<^ι, 7= 1, ..., v
are the canonical generators of Έv. We note the transitivity of our
identification of planes with Έμ's.

For α, b e Zv we put

^,1=1,...^}, Λ(a;b) = {x : a^x^b^ ,

^{xeZ^W^r} for r e Z .

Then yl(α) = Λ(0; a\ Λ(a + x\b + x) = τxΛ(a\b) and Ar = ΛT where
F=(r, ...,r).

4.3 Definition. The subsets of Zv that are obtained from {Λ(a;b)}a>be^
by substraction v — 1 -planes will be called regular. A family
is regular if each element of & is regular.

For a family Si of subsets of Zv and a plane P we define

If P D Q then #(P) (Q) - <#(β). If Jf is regular so is
For v — 1 -plane P = P(i,a) we introduce the halfspaces

P±= (jτ±ne,P
n^O

The main reason for dealing with regular systems is that they enjoy the
following extension property:

Let $ be a translation invariant family of regular subsets of Έv and
let P be a v— 1 -plane. Then for each Ae^(P) there exist A+ and A_
in 9S such that ^+CP+, ^ _ C P _ , ^+nP = ̂ _nP = ̂ , and both A +
and A_ projected on P yield A. A+ and ^_ will be called the extensions
of A to P+ and P_, respectively.

We define: |α| = max lαj, for αeZ v ; diam(^)= sup |α — &|, for a

finite subset A of Zv; for a family β of subsets of Έv the support

Beβ

For a,beΈv: max(α, b)f = max(αf, bf), and α ̂  fc if αt ̂  bt.
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If J* is a translation invariant family of bonds with a finite funda-
mental family we put d^ = max diam(£)

Be ^S

and for 1 ̂ μ^v inductively:

dμ = max max min diam (supp β)

β = A

do^dί^ ••• ^dv, and all dμ are finite numbers as follows by an easy
induction with respect to μ.

4.4 Theorem. Let $ be translation invariant, regular and with a finite
fundamental family. Then there exists a parallelepiped A0 such that for
each large enough parallelepiped A

3CA —

where At are the translates of A0 that are contained in A.

4.5 Lemma. Let Q be a μ-plane, and let Aeέ$(Q), AcAa(Q). Then

there exists α C &(Q) such that oί = A and supp (α) C Anaχ(α,dμ_ o (β)

We add to the lemma the following:
(*) If β is a μ-plane and a^"dμ_^,ai>dμ_l then there exists α C ̂ (β)

such that supp(α)C Aa(Q) and A 3cΛ ( α i t... fβί-ι,...fβv)(6), and prove both
statements simultaneously by induction with respect to μ.

Assuming (*) holds for μ— 1-planes, we prove that the lemma is
also true for dimβ = μ — 1. In case a ̂  dμ_2 existence of such α follows
from the definition of dμ_1. The general case can be reduced to this one.
For, if some of α^'s, 1 ̂  i ̂  μ — 1 are larger than dμ_ 2, we can by repeated
use of (*) (for dimβ = μ— 1) prove the existence of α'C^(β) such that
A α' C Adμ_ 1 (β) and supp(α') C Amax(ajμ_2} (β).

Assuming now the Lemma for μ — 1 we prove (*) in dimension μ.
We identify β with Έμ as in Section 4.2 and we write J>, Λα instead of

#(β), Λα(Q\ The lemma applied to ΛnP(i9α^ Aα1,... l S <-ι.«ι+ι....,«μ)
•(P(z,flt.)) yields the existence of βe^(P(ί,αi)) such that β = AnP(i,αi)
and supp (β)CA(αι βι _ l § βί f . . . f βμ) (P(i, α^

By the extension property oif Section 4.3, there exists an extension α'
of β to P(ί,«;)_. Moreover, supp(α') C P(ί)+ n /tα. Repeating the same for
AnP(i, -αt) we arrive at α"C J* such that ar/nP(i, -af) = ̂ 4nP(i, -at)
and with support in P(i)_nylα.

It is now easy to see that α = α' + α" satisfies the conditions of (*).
It remains to show that (*) holds if dimβ = 1. This can be done by

repeating the construction of the preceding paragraph.

4.6 Proposition. // an element A of $ is contained in a parallel-
epiped A with edges not shorter than 2dv then there exists α C $Λ sucn

that ΰ = A.
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For such a parallelepiped A there exists x eΈv such that τx(Λ) D Λdv.
Therefore the proposition can be proved by applying Lemma 4.5 to
τx(A), τx(Λ) and by translating thus obtained α back to Λ.

We turn to the proof of Theorem 4.3. We denote 2dv + 1 by d and,
for notational convenience, we assume that Λ = Λ(l). "Large enough"
of the theorem means that lt ̂  d.

Let β e tfA and let α be the part of β that is contained in

Then α is contained in the slice A(d — dQιd)xA(l2, ..., /v) as α = /?\α
and elements of /?\α are contained in Λ(d-dQ; lί)xA(l2, ..., /v); for
v = 2 the situation is shown on the picture below.

By Proposition 4.6, there exists y with support in Λ(i d) x Λ(12, . . . , ίv)
such that α + 7 = 0. If we define j80 = α + y, j8'0 = (j8\α) + y then supp(β0) CΛ09

If /! — 1 > d we repeat the construction with β'0, Λ(i /J x yt(/2, . . . , /v)
replacing β,Λ. Repeating it l^—d times we get the decomposition:

h-d

β= Σ A.
i = 0

Decomposing in the same way each of jSf's in direction of ^2 we obtain :

J = l

Repeating it again we arrive at the decomposition:

β= Σ A i . - ί v . βh.....

This proves the theorem with AQ = ΛJ.
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4.7. A translation invariant subfamily & of g?f(Zv) will be called
essentially regular if there exists a finite set of regular elements of ,̂
say j/o, such that the translates of elements of s/0 generate .̂

We can assume that the elements of j/0

 are pairwise non-congruent,
and we let stf denote the set of all translates of the elements of j/0.

A system with fundamental bonds of the shape

is essentially regular but not regular. A system with & = 0>

f(Έv) is
essentially regular: {{x}}, xeZ v, may serve as J3/0. Similarly a system
with & containing all finite even subsets of Έv is always essentially regular.

We fix for what follows j/, j/0, and for each Aestf we choose
βAe^f(Έv) such that ~βA = A\ we make this choice in a translation
invariant way. We fix a natural number δ such that ^upp(βA)CτΛδ(A)
for all A and we define

as Λ-» oo @ί'A is a boundary modification of ̂  With this notation, we
have the following version of Theorem 4.4.

There exists r e TL such that for all large enough a e Έv

Λ(a)

where [A^ are the translates of Λr contained in Λ(a\ tfΛ = tf(β'ώ and

(Thus, for essentially regular systems, the assumptions of Theorem 2.4
are satisfied.)

It follows from the proof of Theorem 4.4 that there exists δ such
that for each j8 e ̂

where (Λ'j) are the translates of As that are contained in A. This is_because
α of the beginning of the proof of Theorem_4.4 being in 3S'Λ is by
Proposition 4.6, for A large enough, also in jtfΛ. We now define βi by
substracting from jS these A's that are in AΛ(S) and adding βA in place
of them. Clearly, fte Jf^ and supp(βi)CτΛό(Ai)(^A. It follows that we
can put r = s + δ.
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4.8 Remark. One obtains a slight extension of the preceding theorems
if the notion of regularity, and essential regularity, with respect to a
basis of Έv is introduced. The modifications are obvious and omitted
here. In the next section, regularity of a system means that there exists
a basis with respect to which the system is essentially regular.

4.9. In this section, we show that Theorem_ 2.4 applies to essentially
two-body systems, i.e. to systems for which ^ is generated by its two-
body part. This includes all systems with purely two-body (finite range)
interaction. We consider first the decomposition into connected parts5.

Given <2S, translation invariant but not necessarily regular or finite
range, we will say that x e Έv is connected by & with y e TLV if there exists
a finite subfamily of ,̂ say (#1?...,#n), such that x e J f l 5 ye# n and
Btr^Bi + i =t=0. "x is connected by <% with y" is obviously an equivalence
relation. Elements of the corresponding partition

will be called the ^-components of Έv.
Because of the translation invariance of & a translate of a ^-com-

ponent is again a ^-component. Since Έv acts on {BLJ in a transitive
way the isotropy subgroup, i.e. {x e Έv : τ^JLf =JLJ, is the same for all lLf.
It coincides with the J^-component containing 0 and will be denoted
by 1L. We note that &=\J &i9 where 3%{

By a theorem on subgroups of Έv (c.f. [17]) 1L is isomorphic to
Zμ, 1 ̂  μ ̂  v and there exists a family { f f}]L j of generators of Zv and
integers nί9...,nμ such that {^-/J^ A generate 1L. If {Λ°}^= i is a sequence
of subsets of IL tending to oo in the sense of Van Hove, then

Λ= U
0 ^mt ^/if, i= 1,. . .,μ

0^m t <«, ί = μ + l , . . . ,

has the same property. From this and from the factorization:

where Λ™ = Λ® + Σmifi, follows that if the connected subsystems are
i

essentially regular, then Theorem 2.4 applies.
That essentially two-body systems are essentially regular on the

connected components follows from the following:

// ̂  is connected and purely two-body then & is the family of all the
even finite subsets of Έv.

Most of the content of this Section I owe to suggestions of D. Ruelle.
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For a proof of the last statement it is enough to show that all the
two-element sets are in &. To prove that this holds we will show that
if (B1 , . . . , Bn) is a family of bond connecting x with y, x Φ y, then there
exists a subfamily (Btl, . . . , Bin) such that Bt l . . . Bim = {x, y}.

We define z\ as the last element of (l,...,n) for which xe&h. Let
St^ = {x, Xi}; if Xi = y the proof is finished If not, we remark that, as
follows from the definition of il9 xl is connected by (Bil+1, ..., Bn) with y.
Now z 2 ? •••> zm are defined inductively in the same way as ilt

4.10. Remarks, a) No attempt was made here to determine exactly
the domains in which the methods of this paper give analyticity and
uniqueness. We remark however that any information about absence of
zeros of polynomials M yields statements on the uniqueness and ana-
lyticity of the correlation functions. For example, calculations of [12]
allow to conclude that in the v-dimensional Ising model there are at
most two ergodic equilibrium states for

b) To enlarge the domain of analyticity, or to treat partially anti-
ferromagnetic interactions, one can substitute the variables ZB for only

Let j/C^ and suppose that #CΛ/. Then for each βeΓ(sί) there
is only one element h(β) of Γ(&] such that h(β)ns/ = β; we set

β' = h(β)\β, cβ= U e~2K(B}

Beβ'

Suppose now that ̂  = (J ̂ . and that J^ C ̂  where ̂  = j/n % Then
i

Jf G«0 = [U JfWi)l and Σ K(B) = Σ X K(B)
[ i J Beβ' i Beβ{

imply that £ c^z^ is the Asano contraction of

In the case of the Ising model in an external field, one can choose
for j/ the family of one-point bonds and^ of the type {{x}, {y}, {x, y}}.
This leads to the usual treatment that yields uniqueness of the trans-
lation invariant equilibrium state at all temperatures.

c) Section 3.4 generalizes in an obvious way to systems for which
the interaction is dominated by its ferromagnetic part in the sense that
suitable modification of the condition (3.1) in which </ is replaced by
j/C&, such that ^C jtf, holds.

d) One can get the analyticity and uniqueness also for infinite range
interactions. Rough estimation based on Section 2.3 needs faster than
exponential decrease of J.

e) The notions used in this paper seem to be well suited also for
a discussion of the spontaneous magnetization. For instance, the proof
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of Theorem 5.3.1 of [8] generalizes in a natural way to many body
interactions satisfying (3.1).
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