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Abstract. The class depends on one harmonic function and two additional arbitrary
constants. It refers to sources with spin and electric or magnetic charge, and includes some
space-times which are flat at spatial infinity. However, it does not include a solution for
a spinning particle with monopole charge and mass.

§ 1. Introduction

Among the known electrostatic solutions of Einstein-Maxwell theory
are those of Papapetrou-Majumdar (PM) [1,2] and those of Weyl [3].
Members of the PM class need have no spatial symmetry but every
source is such that, in relativistic units,

m = \e\, (1.1)

m and e being the mass and charge. WeyΓs solutions have axial symmetry
but the sources are less specialised and satisfy

m = ke, (1.2)

fc being a constant, the same for all. Thus the two classes are different,
but have some common members.

Recently the PM solution has been generalised to what are called
PIW solutions [4, 5]. These are stationary, need have no spatial symmetry,
and arise from sources satisfying

m= e\, h= ±μ, (1.3)

A, μ being angular momentum and magnetic moment. It is a natural step
to seek that class of axially symmetric solutions which is related to the
PIW class in a way similar to that in which the Weyl class is related to
the PM class. The solutions would depend on two harmonic functions
(like PIW) and would have

m = ke, h = k'μ. (1.4)
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In the course of an unsuccessful search for such solutions I found a
more restricted class, satisfying (1.2) but different from WeyΓs class.
These will be described in this paper. They depend on one harmonic
function and refer to electric sources with spin, with an accompanying
magnetic field. By choice of the harmonic function one can make the
metric Minkowskian at spatial infinity. However, the class contains no
realistic solution for massive sources, and in this respect resembles the
rotating solutions of Papapetrou [6].

The field equations used in this work are

Rμv=-8πEμv, (1.5)

4πEΪ=-F»«Fvoc + ±δϊF«βFaβ, (1.6)

Fμvίσ + Fvσιμ + Fσμ.v = 09 (1.7)

F^',v = JH = Q, (1.8)

where Eμ is the electromagnetic energy tensor, Fμv the electromagnetic
field tensor, and Jμ the four-current which vanishes because we consider
only the exterior field. Greek indices range from 1-4, and Roman indices
from 1-3. A semi-colon denotes covariant differentiation with respect to
the metric of space time, and a comma denotes partial differentiation.

§ 2. The Solution

We start with the stationary axially symmetric metric in the form

(2.1)

where /, λ and w are functions of z and r. The main problem is to find /
and w, since, given these, λ can be determined by integration. The
electromagnetic field Fμv arises from two scalar potentials φ and ψ as
follows [4, 5]

Fmn = fy-±εmnpψ>p, (2.3)

y being the determinant of the three dimensional metric in the curly
bracket of (2.1), namely

and εmnp being the permutation symbol with values ± 1 and 0.
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The Maxwell equations (1.7), (1.8) and the Einstein-Maxwell (EM)
equations (1.5), (1.6) then give

(2.4)

(2.5)

-ψ2φ1), (2.6)

, (2.7)

where suffices 1 and 2 mean differentiation with respect to z and r
respectively, and V2 is the Laplacian in cylindrical polar coordinates. The
EM equations also determine λ up to an additive constant by means of

2)-r-
1f2

WlW2, (2.8)

2-φ2 + ψ2-ψ2)

+ - w 2 .

These equations satisfy λί2 = λ2ι if (2.4)-(2.7) are satisfied, and they are
consistent with the remaining non-trivial field equation

The Eqs. (2.4)-(2.7) have been put into a compact form by Ernst [7], but
for my purposes it is more convenient to leave them as they are. Other
workers who have studied them are Neugebauer and Kramer [8], and
Harrison [9].

To derive the new solution we suppose that ψ and / are both func-
tions of φ, and that w is related to φ as follows :

ψ = ψ(φ), f = f(Φ), wί=rh(φ)φ2, w2=-rh(φ)φl,(2Λi)

(2.12)

and that none of the functions ψ, f or h is a constant.
The condition w 1 2 = w 2 i requires that φ satisfy

where ' means d/dφ. Eq. (2.6) is now satisfied identically and (2.4), (2.5)
and (2.7) give respectively

f
J i J " \ ί JL2 i JL2\ C\ /2 \ 3)

(2.14)

(2J5)
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These three equations must all be the same as (2.12). From (2.13) and
(2.14) we find

) = V, (2.16)

and from (2.12) and (2.14),

fh\p' + f-lf' + h-*h' = 0. (2.17)

Eqs. (2. 16) and (2. 17) give

1+t// 2 f h

which may be integrated to yield

- = 0, (2.19)

k being an arbitrary constant. Substituting for fh from (2.19) into (2.16)
we obtain an equation for ψ :

φ"-/c(l+φ'2) f = 0. (2.20)

We now introduce a new variable v(φ) by means of

V/ = tanι;, (2.21)

and so obtain from (2.20)

— — = k SQCV (2.22)
dφ

whence, on integration

φ = k~ίsmυ + φ0, (2.23)

φ0 being an arbitrary constant. Further, (2.19) gives

fh=-ksecv, (2.24)

and, using (2.22) in (2.21) and integrating, we have

ψ = — k~ 1 cost; + ιp0 (2.25)

ψQ being another constant. Equating (2.14) and (2.15), substituting for ψf

and fh from (2.21) and (2.24), we get a second order differential equation
for / of which the solution is

b cos v) , (2.26)

a and b being further arbitrary constants. From this and (2.24) we obtain

*=-- _ - . (2.27)
2 + a smi; + b cost;
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From (2.12) it follows that the function χ(φ) given by

χ = $hdφ (2.28)

is harmonic, i.e. satisfies

P2χ = 0, (2.29)

and we find from (2.27), (2.28) and (2.22) that

χ= —k2\(2 + a sin v + b cos v)~γ dv . (2.30)

There are different cases of this integral, which are discussed in the next
section. Here we collect together the formulae which constitute our
solution:

φ — /c"1 sinu + φ0 ,

ψ= — k~1 cosi; + ιp0 ,

/ = k~ 2(2 + a sini; + b cosι;),
(2.31)

v is a function of r, z given in terms of a harmonic function χ by (2.30), λ1

and λ2 are obtained from (2.8) and (2.9), the electromagnetic field from
(2.2) and (2.3), and the metric from (2.1). The solution therefore depends
on one harmonic function and five arbitrary constants, of which only
two have physical importance, as we shall see.

§ 3. Physical Interpretation

There are three different cases of the integral in (2.30) according as
a2 + b2 § 4. If a2 + b2 = 4 my solution is a special case of PIW and one
can then choose φ0 and ψ0 in (2.31) so that

f = φ2 + ψ2. (3.1)

If a2 + b2 φ 4 one has

/ = const + φ2 + φ2 > (const φ 0). (3.2)

I shall examine in detail only the case a2 + b2 < 4: the others are not
physically very different. The integral on the right hand side of (2.30) is

2k2

-tan" const,
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and absorbing multiplicative and additive constants into the harmonic
function χ we may write

Now put
tanit; - (2 - b)~ 1 [ - a + (4 - a2 - b2)^ tanχ] . (3.3)

(3.4)

where c is a constant and θ a harmonic function; then by choosing c
so that

tanc = a(4 — a—b) 2 (3.5)
we obtain

tan! υ = (2 + b) [(4 - α2 - fo2)^ - α tan θ~\ ~l tan θ . (3.6)

Let us now examine the solution at infinity, where θ is assumed to
vanish at least like jR" 1 (R2 = z2 + r2). Then (3.6) gives for sufficiently

G(3./

As #-> oo we wish / in (2.31) to tend to unity so we choose

(since in the case under consideration b2 rg 4, this implies k2 ^ 4). We can
now write down the asymptotic form for large R of the solution (2.31).
We put φ0 zero and ψQ equal to k"1, we absorb a factor 2(2 + b)^
(4 - a2 - b2)~* into θ, and then obtain

(3.8)

Wi ~ — ]

θ being a harmonic function which tends to zero at infinity at least like
R~ί, but is otherwise arbitrary. This shows how the solution depends
on two physically significant arbitrary constants a and k, in addition to θ.

If we choose θ = e/R to obtain the electric field of a point charge,
(3.8) gives w ~ const + ekz/R and we obtain an unrealistic source of
angular momentum. (Actually it is a semi-infinite massless line source
along the z axis as in the NUT solution [10].)

We next try a dipole potential θ = μz/R3, and obtain for the asymptotic
form of the quantities in (3.8):

w - 2hr2/R3

(3.9)
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where we have put 2h = fcμ, 2d = — aμ/k. This solution refers to a point
source of angular momentum h, with electric dipole moment μ. It has
no mass, and unless d is put zero it carries a mass dipole. The electric
dipole apparently does not rotate, otherwise there would be a magnetic
quadrupole field, which is absent. The leading term in the magnetic
potential does nevertheless arise from the interaction of the electric
dipole and angular momentum terms. It is of order R~4 and does not
occur in Maxwell's theory.

§ 4. Conclusion

The Eqs. (2.4)-(2.7) are invariant under a duality rotation, that is,
if (φ,ψ) are a solution with given (/, w, λ) so are [φcosβ — ψsinβ,
φsinβ + ψ cosβ] where β is a constant. Hence the solution of § 3 can at
once be applied to a magnetic instead of an electric source (by putting
β — π/2), or to a linear combination of the two.

Physically the solutions are of limited value because a realistic
spinning source can be obtained only by ruling out a monopole mass
source. Perhaps the most interesting feature is the unexpected magnetic
potential, visible in (3.9), which arises from the spin-electric field inter-
action.
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