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Abstract. The one to one correspondence between the existence of a unique equilibrium
state and the differentiability of the free energy density with respect to the external field
previously shown for Ising ferromagnets is extendend to higher valued spin systems as well
as to continuum systems satisfying the Fortuin, Kasteleyn and Ginibre inequalities.
In particular this is shown to hold for a mixture of A — B particles in which there is no
interaction between like particles and a repulsion between unlike particles. Where the
derivative of the free energy is discontinuous there are at least two equilibrium states.

1. Introduction

In a previous paper [1] we considered lattice spin systems with
Hamiltonians

H=- Σ J(ί,j) SiSj - Σ rOV/) sfsj - Σ Λ(0 Si - Σ MO s? (U)
i<j i<j ί i

where the summation is over all sites of the lattice Zv with spacing δ,
contained in a region A C Rv, and Si9 the spin variable at the zth site can
take on the integer values p,p — 2,..., — p + 2, —p. For such a system
it was shown that the FKG inequalities [2] hold whenever

J(ίJ) ^ (2p - 2)2 \y(ίj)\, for all ίj e A (1.2)
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i.e., if /(Sίl? ... Sir) and g(Sjί ... Sjn) are both either non-decreasing or
non-increasing functions of their arguments then they are positively
correlated,

0 (1.3)

where the brackets denote the usual thermal average taken with the
measure Z"1 exp [-£//]. It follows directly from (1.3) that if / is a

r\ / f\

non-decreasing function then -τ-r-— = </£;> - </> <S*> ̂ 0 since S, is
dh(ι)

an increasing function.

In the present note as in [1] we are particularly interested in the
case p = 2, St — 2, 0, — 2. Such a system is isomorphic to a two component
lattice gas, A — B system, with St = 2( — 2) corresponding to the presence
of an A(B) particle at the ίth site and Si = Q to the site being empty.
This lattice gas system can go over to a continuum A — B system when
the lattice spacing δ -»0 and the interactions appearing in (1.1) are related
to continuum functions,

= J(rt - rj) , γ(ί,j) = γ(rt - r,-) ,

h(ί) = h(rύ , exp [βμ(ΐί] = δ* exp \βμ(rj]

where rt and rj are the position vectors of the ίth and th lattice sites and
J(r), y(r), h(r\ and μ(r) are defined for r e Rv (independent of δ). The
lattice inequalities remain valid for the continuum as was shown in [1].
We shall here use these inequalities to establish some results about the
existence and uniqueness of the correlation functions for the continuum
systems.

The paper is arranged in the following way. In Section 2 we show
(in analogy with the results of Lebowitz and Martin-Lof [3] for a ferro-
magnetic spin one system, p = 1) that when (1.2) is satisfied the existence
of a unique equilibrium state is determined entirely by the differentiability
of the thermodynamic free energy with respect to the external magnetic
field h. In Section 3 we show how to carry over the results for the lattice
to the continuum.

2. Lattice Systems

Using lattice gas language we can describe our system in terms of
occupation numbers ρί = |(5f

ί + p) = 0,1, ...,p. Since each ρt is an in-
creasing function of St and is non-negative any product of the ρf's i.e.
Π feί)Mί> nί a Positiye integer, is also an increasing function. It is also
ίeω
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easy to verify that for any set ω g A the function

where n{ is a positive integer is also an increasing function.
Using the above increasing functions we can transcribe all the

results of [3] for ferromagnetic Ising spin systems, p = 1, which depended
only on the validity of the FKG inequalities, i.e. J(ί,y)^0, to the more
general class of systems whose interactions satisfy (1.2). In particular
we consider the thermodynamic limit Λ->oo9 for a system in which
J(ίJ) and y(ίj) are translation invariant and h(ί) = h + hb(ί), μ(ΐ) = μ
+ μb(i), with hb(ί) and μb(ι) being due to the specification of the values
of the S/s or ρ/s for j e Λ, the complement of A in Έv. Thus

μb(i)= Σ y(i>/)5? (2.2)
j e Λ j e Λ

where we have placed a bar on the spins in Λ. We shall assume here that
y(ί,j) and J(i,j) are of a finite range and designate by <//ft, μ, b, Λ>
the expectation value of/ for a given ft, μ, Λ and boundary condition b.
We let b=+( — ) denote the boundary conditions corresponding to
ρ^ = p(0) for all j e A, (the arguments ft and μ will be left out when they
are not necessary).

We observe that by letting ft(ΐ)-> + oo( — oo) we can assure that
Si = p( — p). Hence we clearly have as in the case p = l that for any
increasing function /

'> for ACA (2.3)

i.e. / is a monotonically non-decreasing (non-increasing) function of the
size of the system when we have — ( + ) boundary conditions. This
proves the existence of the thermodynamic limit of all correlation functions
for ± boundaries,

lim / Π (QtΓ I ± ,Λ\ = / Π (QiΓ I ±\ (2.4)
Λ-+CC ieω

Furthermore for any increasing bounded function / one can show
(see appendix A)

!->£ lim </| fc,/l>^</| + > (2.5)

Therefore using the increasing functions Y[ (ρί)
Wί and ]Γ ρf = Y[ (Qt/p)ni

we have l ίeω ίeω

( Π (Qi)nί\ -) ^ (Π (Qi)ni I b\ ^ /Π (βί)"1 1 +\
\ ieeo / \ t e ω / \ieω I

and

-/Π te<)"Ί-\ ̂ ίΠ (pΓ) Σ [<
\ ίeω / \ i e ω / ίeω

(2.7)
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Thus as in [3] <ρ^ | + > = <ρf | — > implies that all correlation functions
are the same for all boundary conditions, i.e. the system has a unique
equilibrium state.

A transcription of the arguments developed in [3] further shows
that when (1.2) holds

,+>= liin
*'-** (2.8)

,μ,->= Mm
h

for / a non-decreasing function, and that calling Ψ(h9 μ) the thermo-
dynamic limit of the free energy/site (which is independent of boundary
conditions) then

<Sί|M,+>= lim , <Sί|^,->= lim
h'-+h + Oh h'-+h- O

Hence <ρf \h,μ, +y = (Qί\h,μ, — > and the state is unique if and only
if the derivative of the free energy with respect to the external field h
exists, i.e. if the magnetization is continuous.

We note here that the results of the section will also hold if we set

h = h/p

and then let p-»oo obtaining a continuous Ising spin system with
Sj 6 [!,-!]. The condition (1.2) for the F.K.G. inequalities is now
simply

3. Continuum Systems — Thermodynamic Limit

We now consider the special continuum analog of the lattice system
when p = 2, S = 2, 0, — 2. As stated in the introduction we shall define
an A particle as being present in the site i when St — 2, and a B particle
when Si = — 2. If the site i is occupied by an A particle we put QA (ί) = 1
and if i is not occupied by an A particle we put QA(I) = 0. Similarly we
define ρB(ΐ) and we get:

M ( n4 (0 = T Qi(Qi ~ 1) =
L o
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In the continuum limit of [1], discussed in the introduction, the
system goes over into a two component A, B system with activities

= exp[4/ι(r)-2λ(ι )]

and with pair interaction :

VAA(r) = VBB(r) = -4J(r) - 16y(r)

VAB(r)=VBA(r) = 4J(r)-16γ(r)

The two functions J(r) and y(ι ) cannot be arbitrary: they will be
restricted so that (3.3) defines a stable interaction [4]; we shall require
also (1.2). The stability requirement constrains us to consider only models
for which VAA = VBB = 0 and VAB ̂  0. A simple example of such an
interaction is the Widom-Rowlinson model [5] obtained by choosing
J(r) = — 4γ (r) = + oo if \r\^a and J(r) = γ(r) = 0 otherwise (i.e.
VAA = VBB = 09 VAB=+ao if |r|<;α, VAB = 0 if |r|^α). This model is
particularly interesting since it has been shown to have a phase transition
[6].

The correlation functions of the lattice gas go over into these of the
continuum system via the transcription

h9μ9b9A
= 0 \ieco,- / p=l \ieω£ / /

f A A Γ A A (3 4)j dxι...dxh } dy1...dyl2
α>ι x (02 ω j j ω'ι x ω'2 - x α>/2

•Wiι,ι2(*ι •• *ϊι,3?ι > yι2\h9μ,b9Λ)

where ω ί 5ω}ClRv are disjoint open regions and

nZl,/2(*ι, ...,*ι;3>ι ... J/2 |/ί,μ,b,^)

is the joint distribution function for / j ^4-particles at xί9 ...9xtί and /2

5-particles at yί9..., yh. The arguments h9μ refer now to the continuum
functions in (3.1) and b has to be interpreted as a boundary condition
corresponding to an arbitrary specification of A and B particles in A.

In the remainder of this section we shall discuss the thermodynamic
limit for the functions nlltlz(x1 ... jc 2 l ;y { ... yι2\h,μ, b, Ay using the
FKG inequalities.

It is convenient to introduce the following functions defined on the
configurations X of A — B particles
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and Γ(X9B,ω) is defined symmetrically; here ω is an arbitrary open
region contained in IRV and (3.5) makes sense both in the discrete and
continuum case.

We have:

# U-particles in ω) = £ Γ(X, A, ω) . (3.6)
n = l

Furthermore the function defined on the lattice A — B configurations

F(ΠI ...nllιmί ...mhιωi ...ω^ ωi ...ωJ2)

is increasing. This implies using the results of § 2

, + ,Λ> (3.8)
and

, ±,Λ'> if Λ C Λ ' . (3.9)

The inequalities (3.8) and (3.9) obviously go over unchanged to the
continuum limit.

Therefore, for continuum systems, the limits lim <F|ft,μ, ±,Λ>

exist, and are monotonically attained. Hence the limits:

/ /i h

lim ( Yl Ini(X, A, ωt) γ[ Imj(X, B, <
\ i = l j = l

\In*(X9A9ωάY[Im>(X9B9ω'J)\h9μ9

exist for all integers w l 5 rc2 ... nlί9 ml9 w2,... ml2 (but are not monotonically
reached, at least in principle, unless ^ or 12 are zero).

To deduce the existence of the thermodynamic limit for the correlation
functions nlίj2 we use (3.6) and the following a priori estimates:

αi)
Π Ini(X,A,ωύ Π Γ"*(X9B9ω'ύ\h9κb9Λ} < Π ξn Π ξm11 v 7 7 t 7 ! ! v 7 7 J 7 ' 7 ' 7 7 / — 1 1 '"i _± 1 ""j

where

ξ (y (NzJ*\ z,|ωi| ^ = ( y '̂̂  ) ^BK i (3J

' Ik-., fc! / ' U = m, fc! /

for the proof see appendix B and C.
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We need as well the Mayer Montroll equations valid when the points
xl9 ...9xll;yί yl2 are further than the range of VAB from dλ (see
appendix D)

nllj2(x1 ...xh\yι ...yh\h,μ,b,Λ)

h h
-Σ Σ

i = l 7 = 1
(3.13)

L L
w = 0 «=o

where

f dξί...dξn dη{ ...dηm
J —) —\ w«,mlsι ••• Cπ >9ι •••

f i - . - W

- Σ VAB(xi-ηj)

jn

1 ... xh\ηί ...

K(xί...xll\ηί...ηm)=

and equations (3.13) make sense because of (3.11).
From (3.12) and (3.6) we deduce:

lim J dxl ...dx^dyi ... dyh nllj2(xί ...x^y^ ... yl2\h,μ,±9Λ)
... Xωί ι

= lim X Σ ( Π F>(X> A> ω'ϊ ΓΊ ιmi(χ> B> ωj) \h,μ,±,
Λ~^co m . . . π ι 1 mι.. mι2\ i = l 7=1

= Σ Σ
7=!

(3.14)

The existence of the limit (3.14) for disjoint regions ω^ ... ω/1? ωi ...... ωj2,
together with the bound (3.11), implies the existence of the limit

lim
Λ-+ oo

! ...x^yi ...yι2)nlίj2(xι ...x^y^ ...yl2\h,μ, ±,Λ>

dx1 ...dxhdy1 ...dyh

for all feL^dXi ...... dκl^dyl ... dyl2)\ hence using (3.15) with
f = K(Xί ... xh\η, ... ηm) K(yι ... yl2\ξ, ... ξn) and Eq.(3.13) and (3.11)
we deduce that:

lim —-
Λ-+CC

h9μ9 ±,Λ)

nllj2(x1 ...xlί,y1 ...yh\h,μ, ±)
(3.15)

exp
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exist and define n^j^x^ ... xtl,yi ... yι2\h,μ, ±> which are continues
functions "outside" the hard cores and discontinuity points of

4. Continous Case Differentiability in h and Boundary Condition
Independence

In this section we extend to the continuum case the result, already
remarked in the discrete case, that the infinite volume correlation
functions are boundary condition independent if and only if the free
energy Ψ(h, μ) is differentiable with respect to h. This, in turn, will be
shown to happen if and only if n1>0(x/hι μ, + ) = nίt0(x,h,μ, — ).

Notice first that the correlation functions in the right hand side of
(3.16) are translation invariant as a consequence of the translation
invariance of the limit lim (T7 1 ft, μ, ± , Ay (see sec. 3 for the definition

Λ-+ oo

of F), which, in turn, follows by standard arguments [3] from (3.9).
Hence nlt0(x/h9μ9 ±) is x-independent. The condition nlt0(x/h,μ9 +)
= w1 > 0(jc/ft,μ, — ) could also be written: w 0 f l(x/ft ?μ, + ) = «0>1(Λ:/ft,μ, — )
as will appear in what follows.

The proof of the quoted results proceeds much along the same lines
as in sec. 2 and [3].

First notice that

, ± > = lim <Flft',μ, ±> (4.1)
'

which is proven as (2.7) and implies, using (3.14) and (3.13)

"i^fri •••*/!> J>ι ...y/JM, +)= lim n ί l f / 2(*ι ...^ ^ ...yh\h',μ, +)
π — »«*

(4.2)

at the continuity points of nh / 2.
Hence it follows as in [3] and as in sec. 2:

] I =nltQ(x/h9μ9±)-nQΛ(x/h9μ9±) (4.3)

which shows that differentiability of ^ implies nlt0(x/h9μ9+)
-nQtl(x/h9μ9+) = nltQ(x/h9μ9-)-n0tl(x/h9μ9-) and, together with
nlt0(x/h9 μ, +) ̂  nlt0(x/h9 μ, -) and n0tl(x/h9 μ, +) ̂  n0tl(x/h9 μ, -),
implies (and is implied since Ψ(h,μ) is convex in ft):

n1>0(*/ft,μ, +) = n l f 0(JC/ft,μ, -)
and
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Clearly if the infinite volume correlation functions are boundary
condition independent we must have, in particular, w 1 0 ( + ) = π 1 0 ( —).

Viceversa, assuming n1 ,o( + ) = wι,o( —) and no,ι( + ) = no,ι( —) we
shall show that in this case:

<F I ft, μ, + > = <F I ft, μ, — > (4.4)

which, together with the results of the preceding sections (see in
particular (3.8), will imply that

lim π. l (x1 ... xί2yι ... yh\h,μ,b,A) = nl l(xl ... xt 9 y ^ ...yl2\h9μ9 + )
Λ-* oo ' '

(4.5)
for all the continuity points xί ... xlί9 y^ ... yh.

Notice that ni>0(jc/ft,μ, +) = π1)0(x/ft,μ, -) implies

</M(Z, A9 ω) I ft, μ, + > = </π(-X", ̂ , ω) | ft, μ, - >

and a similar relation with B in place of 4; consider next the function:

n m

X Γ(X, A, ω,) + Σ (1 - /m^, β, ω;.))

(4.6)
n m v y

- Π ^nί(^ >4, G>i) Π (! ~ jmj(^ £>ω}))

which is increasing. Hence, proceeding as in sec. 2 (see (2.6)):

m
Mί(X A r ) "I ΓT ίl —

(l-/^(X,£,ω})|ft,μ, -)

(4.7)

^ Σ «/nι(^? A9 ωt I ft, μ, + > - </Πί(X, A, ωf) | ft, μ, - »
i = l

- £ «/^(X, B, ω} I ft, μ, + > - <Imj(X, B, ω'j \ ft, μ, -))
j=ι

which concludes our proof.

5. Concluding Remarks

The results obtained in the previous sections both for lattice and
continuum systems rely mainly on monotonicity properties of the
thermal averages of suitably chosen functions of the configurations.

One may wonder about the different choice of increasing functions
that we have made in the lattice and in the continuum case. It is certainly
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possible to get an unified treatment of binary mixtures in terms of the /"
by simply shrinking the ω's to points on the lattice for the discrete case;
but in dealing with higher spin systems the procedure to construct
monotonic functions becomes rather involved.

On the other hand, if we insist in using the ρ '̂s, a mere transcription
from the discrete to the continuum case works only for the homogeneous
distributions (i.e. for the nl>0 and noj). A possible way out would be to
consider the conditional expectations of £ ρA(ΐ) given that ρB(j) = i

t e ω

for some / φ ω; for the realization of this program it is important to note
that relations of the following type hold:

V o (ί\\b Λ\

ut* 4)
(5.1)

from which it is not hard to get the thermodynamic limit of the mixed
distribution functions. In this context it is not, however, clear how to
recover the analog of equation (4.8) and, therefore, of the theorem on the
boundary conditions independence.

The number of signatures under the titre of this paper requires some
explanations.

Initially J.M. in collaboration with J.L.L. obtained most of the
results presented in this paper: a gap however remained in the proof of
the relationship between the boundary condition independence and
the differentiability of the free energy. They were using the method
described above.

Independently M.C. obtained many of their results using the /
functions technique and this enabled J.M. and J.L.L. to complete their
proof.

The continuity properties of the correlation functions are due to G.G.

Appendix A — Proof of (2.5)

Consider an arbitrary boundary condition b for a system enclosed
in a box A and consider a system enclosed in a box Λ' C A whose boundary
lies at a distance / from the boundary dΛ. We assume that / exceeds the
range of the potentials J(i,j) and 7(1,7).

Let / be an arbitrary increasing function and let all the sites in
Λ\Λ' be occupied either by a maximal spin or by a minimal spin; then
we find, respectively:

> and </|-,Λ'> ̂ </|M> (A.I)
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Therefore in the limit A and Λ'-*oo :

>^</! + > (A.2)

In the special case of an A - B system (p = 2) one could get stronger
results (see (A. 3) below) even in the case in which the range of the potential
is not finite.

In fact let us examine this case and use the A - B particle language.
From (1.1) we see that — £ΛjS/ — £^5? can be written as

(ί) - Σ (4μt - 2/j;) ρB(ί) .
i i

Now, given an increasing function /, we consider an ^4-type of boundary
condition, i.e. we set 4μt + 2/zf = + oo and 4μt - 2ht = - oo on the
boundary sites. Afterwards we lower 4μ, -h 2hf on some selected boundary
sites while keeping 4μi — 2hi constant. In this process </> decreases
because of the inequality

When 4μi + 2hi=—co we are in a situation in which the considered
boundary sites are all empty; then we start increasing 4μi — 2ht keeping,
now, hμϊ + 2ht = — oo constant. Since

the value </> decreases further and when 4μi — 2hi — -f oo we reach a
situation in which the boundary sites involved in the transformation are
occupied by B-particles.

Clearly the above arguments imply:

_ ΔAΔE
== Z'

,Λ> (A.3)

Appendix B — Proof of (2.11)

By definition:

fϊ2(^ι> ^yι - yι2) (B.i)

f dtll ' d1n dζ1...dζm] - -j -- j - exp l-U(xί...xll,ξ1...ξm9yί... yh, ηί..

°v „ n[dηι...dηn dξ,...\ ~τn —ΐi t II in * i
^ A B J „ i

m,n '*" ml
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where
m n

u(ξ1...ξm,η1...ηn)= Σ Σ VA.
=ι j=ι

and therefore:

... *,,, JΊ ... yh)+ U(ξί ... |

Hence: r i, /2

"h.ιΛ'1 - *«„ JΊ - Λ2)^442exp - Σ Σ ^B(^-Λ) ^42 (B.2)
L i = i j = i

Appendix C — Proof of (3.12)

We treat only the simple case (In(X9 A, ω)>. The general case can
be treated along the same lines.

The probability for finding inside ω exactly p ^4-particles is given,
in terms of the w / l t / 2 , by

P(p,ω)= f j np+mι0(Xl ...Xp,X[... Xm) (- 1)- dXί - d*> dX'1 •"***
m = 0 ω P m*

m+p Mpz^ (C.I)

the first equality in (C.I) has an obvious probabilistic meaning [7].
Hence it follows that:

/"(X, A, ω)> = Σ P(p, ω) ̂
P f

Appendix D — Proof of (3.13)

This proof follows the usual steps (see for instance [8]). Using the
definitions (B.I) and (B.2) we find:

h h

- V V V (x iLi LJ yAB\Λi '" J

li -<dηn

*-*"-* m]
m,n '""

«p-Σ Σ K<s(*,-ίj)-1 Σ
ί = l j = l i = l j = l
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Define next

K(Xl ... xtl I fh ... ηp) = Π ίexP ί - Σ VAB(*I ~ J - l) P 2)
j = l \ L i=l \ I

and notice

lι n h m

exp -Σ Σ VAa(Xl-^- Σ
«=U=ι < = U=ι

=Σ Σ x(*ι-*/,!?«,-vϋ Σ Σ
s (iι...ί s) ί (/i. ./t)

Combining this identity with (D.I) and properly interchanging sums
and integrations one finds: (3.13).
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