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Abstract. We use techniques which generalize the Lee-Yang circle theorem to
investigate the distribution of zeroes of the partition function for various classes of classical
lattice systems.

0. Introduction

The Lee-Yang circle theorem [12] remains one of the very few
effective tools which are at our disposal in the rigorous theory of phase
transitions. An important conceptual clarification of this theorem, as
well as an extension to quantum systems were given by Asano [2]. This
work was continued by Suzuki-Fisher [19]. A generalization of the Lee-
Yang theorem to noncircular regions by the present author [17] also
benefitted from Asano's ideas. Here some more facts concerning the
position of zeroes of the partition function Z for lattice systems are
presented. In particular, results due to Heilmann-Lieb [11], Heil-
mann [10], and Runnels-Hubbard [18] are recovered. Although there
is as yet no general method for locating the zeroes of Z, the techniques
known so far permit to say something in a fairly large number of cases.

The grand partition function Z for a lattice gas is a polynomial in
one complex variable z (the activity). To locate the zeroes of Z(z) it is
convenient, as Lee and Yang already remarked, to work with a polynomial
P in n variables such that

and to prove that P ( z l 5 . . . 5 z J Φ θ when the z{ are away from certain
regions of the complex plane. P(zί9..., zn) is the grand partition function
for a system having a different activity zt at each lattice site, it is a
polynomial of first degree in each argument separately.

Let A be a finite lattice subset and P the partition function for A
with some given interaction between sites. The arguments of P are the zx

with x e A and

XCΛ
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where U(X) is the energy corresponding to the occupation of the subset
X of A. Suppose that A' and A" are two lattice subsets and P\ P" the
corresponding partition functions with energy functions U' and U".
It will be convenient to denote by z'x the arguments of P' and by z"x the
arguments of P". We consider the partition function P for A'KJA" with
energy U' + V":

e

-βU'(XnΛ')-βU"(XnΛ") ΓT z

xeX

Asano remarked that P can be obtained from P' and P" by the following
rules.

(a) Take the product P'P".
(b) // x φ A'c\A" replace z'x or z"x in the product by zx.
(c) If xe A'r\A" contract z'x and z"x to zx: we start from a polynomial

of first degree separately with respect to z'x and zx, i.e., of the form

and contraction means replacing it by

a + dzx.

As it turns out the position of the zeroes of a contracted polynomial
is related to the position of the zeroes of the original polynomial, and
therefore knowledge of the position of the zeroes of P' and P" yields some
information on the zeroes of P. In Section 1 we shall present the relevant
theorems on polynomials. In Section 2 we shall consider some
applications. In Section 3 we shall look in more details at the situation
originally considered by Lee and Yang, where the zeroes of Z(z) lie on
the circle \z\= 1.

1. General Theorems

The results in this section are mostly not new, they are collected here
for convenience.

1.1. Theorem [17]. Let A\ A" be finite sets and P\ P" be polynomials
with complex coefficients. The variables of P' are zx, with XGA\ and

p = Σ c'χ Γ K
XCΛ' xeX

It is assumed that there exist closed subsets Mx of the complex plane such
that OφMx and P' φ 0 when

z'xφM'x for all xeA'.

Similar assumptions hold for P". Define

P = LJ CXCΛΛ'CXCΛΛ" I 1 Zx '
XcΛ'uΛ" xeX
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Then P Φ 0 when ί <MX for xeA'\A",

zx$\K for xeA"\A\

{—MXMX for xeA'nA".

To prove this theorem, one obtains P from P' P" by successive
contractions, applying the following fact

1.2. Lemma [17]. Let M\ M" be closed subsets of the complex plane,
not containing 0. Suppose that the polynomial

a + bz1 + cz"' + dz'z"

can vanish only when z' e M' or z!' e M", then

a + dz

can vanish only when ze —M'M".

By successive applications of 1.1 one gets information about the
zeroes of the polynomial PΛ for a "large" A from similar knowledge about
polynomials PΛι with "small" A v The following result yields a starting
point.

1.3. Theorem (Grace 2 ) . Let Q(z) be a polynomial of degree n with
complex coefficients and P(zί,...,zn) the only polynomial which is sym-
metric in its arguments, of degree 1 in each, and such that

If the roots of Q are all contained in a closed circular region M, and
zxφM, ...,znφM, then P(zι,..., zn)Φ0.

A circular region is the inside or outside of a circle, or a half plane.
We locate first the zeroes of Q in a trivial case.

1.4. Lemma. If a is real and \a\ g 1, then the zeroes of

have modulus 1. \l\z) = z +2,az+\

From this the Lee-Yang circle theorem follows :

1.5. Theorem (Lee-Yang [12] 3 ) . Given real numbers axy, for x, y e A
and x Φ y, such that \axy\ ^ 1,

(a) the polynomial

P= Σ f Π M Π Π«*> (i i)
XCΛ \xeX I xeX yeΛ\X

does not vanish when \zx\ < 1 for all x e A or when \zx\ > 1 for all x e A.
1 Notation: -M'M" = {-z'z": z'e M' and z" e M").
2 See Polya u. Szegδ [16] V, Exercise 145.
3 The conclusions of this theorem hold under more general assumptions, see [2, 19],

and Section 3 below.
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(b) the polynomial

z(z)= Σ ^ x ι U Π «,,
XCΛ xeX yeΛ\X

where \X\ is the number of points in X, has all its zeroes on the unit circle.

(a) is proved by applying Theorem 1.1 repeatedly to contract the
product of all polynomials

P{x,y)(zx> Zy) = ZxZy + axy(Zx + Zy) + 1

Because of 1.3, 1.4, one can take every set M to be the closed exterior of
the unit circle. Therefore P φ θ when \zx\ < 1 for all xeΛ. When \zx\ > 1
for all xeΛ, then \z~ι\ < 1 and the symmetry of the polynomial gives
again P Φ 0. (b) is an obvious consequence of (a).

We note a result similar to Theorem 1.3 for the polynomials P
satisfying the conclusions of the Lee-Yang circle theorem.

1.6. Proposition. Let P{zx, . ..,zn) be a complex polynomial which is
different from 0 when \zt\ < 1, all /, and when \zt\> 1, all i. Let

If the roots of Q are all contained in a closed circular region M, and

This result is essentially contained in [13]. It can be proved by using
the "double cone theorem" (see [3, 6]) and then performing the analytic
completion of the union of two polydiscs [9].

1.7. Example. Let | / | / 2 — 1 <a < ] / | / 2 + 1, then the polynomial

+ a2(z2 z3 z4 + z1 z3 z4 + Zί z2 z4 + Zl z2 z3)

+ a2(z1 z2 + z2z3 + z3z4 + z4zλ) + α4(Zi z3 + z 2z 4)

πoί vanish when R e z ^ O , R e z 2 ^ 0 , R e z 3 ^ 0 , R e z 4 g 0 .

If (2^1, P is of the type (1.1) and therefore, according to Propo-
sition 1.6, it suffices to show that the roots of

Q(z) = z4 + 4a2 z3 + (4a2 + 2a4)z2 + 4a2 z + 1

are contained in {z : Rez < 0}, but this is clear from the fact that

The case a ^ 1 is handled by noticing that

a~4z2 z4 P(zuz2 \ z3, z4

 x) - P(zuz2, z3, z4 a
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The following fact will prove useful.

1.8. Proposition. If the polynomials

and

have all their roots on the negative real axis, then the polynomial

anbnz"+( _ J f l ^ i ^ - i Z + + (

has all its roots on the negative real axis.

This is a direct consequence of a theorem of Szego4. We shall use it
to locate the zeroes of a polynomial Q of the type appearing in Theo-
rem 1.3.

1.9. Proposition. // α > 0 , all the roots of the polynomial

fc(fc-l)

are real and negative. k~

Clearly the polynomial

n \ - ~

has all its roots real and negative for small a > 0.
Using N times Proposition 1.8 we find that

1 hίb Λ\ \N
^

has all its roots real and negative for small α/W>0. It remains to let
N -^ oo to prove the proposition.

1.10. Example. The polynomial

P(z1 ,z2,z3,z4)=l + zί + z2 + z3 + z4 + z1z3 + z2 z 4

does not vanish when

zl9z2, z3,z4φM = {x + iy : y2 ^ x2 + 2x + ^ } .
4 See Polya and Szegό [16], V, Exercise 151.
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This result is due to Runnels and Hubbard [18] and is obtained by
noticing that P φ 0 if

zί z3) > 0 and Red + z2
z2 z4) > 0.

The idea of this proof is quite different from the earlier considerations
in this section, and might have other applications.

2. Applications to Statistical Mechanics

The use of the Lee-Yang circle theorem for ferromagnetic spin
systems is well-known [20, 12], and the application of Theorem 1.1 to
lattice gases has been described in [17, 18]. We indicate here some
further results.

2.1. Proposition. Let 2J be the interaction energy between a + and a —
spin at neighbouring sites in a 2-dimensional I sing model (interaction 0 for
-F + and pairs). For the square lattice the free energy is an analytic
function of the magnetic field H when

\ log(]/2 - 1) < 2βJ < \ logφ/2 + 1).

For the triangular lattice the free energy is an analytic function of H when

(notice that the exact critical temperature for H = 0 is known to be given
by 2β\J\ = log(|/2-b 1) for a square lattice and by 2βJ = j\og3 for a
triangular lattice).

Decomposing the square lattice into squares (see Fig. 1), we can
obtain the ϊsing partition function by contracting a product of poly-
nomials of the form (1.2) (we write a — e~2βJ, z — eβH). The proposition
follows then from Theorem 1.1 and Example 1.7. The triangular lattice
is similarly decomposed into triangles (Fig. 2). In view of Theorems 1.3
and 1.5, we

Fig. 1 Fig. 2
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only have to show that the zeroes of

<2(z) = z3 + 3z2 a2 + 3za2 + ί

are not in the angular region

2π

This is checked immediately, since

2.2. Theorem (Heilmann [10]). Let Z be a line graph, i.e. Z can be
decomposed into finite subgraphs Z{ and

(a) Z t consists of all line segments joining n{ vertices
(b) each vertex of Z belongs to only two different Z>.
Consider a lattice gas with repulsive interactions between nearest

neighbours on Z. We assume that the interaction energies are the same on
the bounds of the same subgraph Z t, they may otherwise be different.
Under these conditions the thermodynamic functions are analytic in the
activity z for z outside the negative real axis.

The following proof of Heilmann's theorem is based upon an idea of
Runnels and Hubbard [18]. Let Pi(zι,..., zn) be the grand partition
function for the subgraph Z,. By Theorem 1.3 and Proposition 1.9,
Pi(zί,..., zn) φ 0 when zi φ Mθ for all /, where

for some c>0 and — -— < θ < —-. Therefore, by Theorem 1.1, the grand

partition function for a subgraph of Z consisting of a finite union of
subgraphs Zt has no zero when argzx = 2Θ for all vertices x. Taking all
zx equal we find that the grand partition function vanishes only for z
real and negative.

2.3. Remarks, (a) The limit of nearest neighbour exclusion corre-
sponds to the monomer-dimer problem treated by Heilmann and

(b) If a line segment with attractive interaction is inserted between
every pair of subgraphs Zt which had originally a vertex in common,
the thermodynamic functions remain analytic in z for RezΞgO. This is
because the zeroes of the grand partition function of the attractive line
segments have negative real part. This applies for instance to the graph
of Fig. 3, where the heavy lines correspond to attractive interactions.
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Fig. 3

2.4. Proposition 5. Let 2J be the interaction energy between a + and
a — spin at neighbouring sites in the 2-dimensional square Ising model
(interaction 0 for + + and pairs). If H = 0, the free energy is an
analytic function of e~2βJ for all complex e~2βJ such that \e'2βJ\

/

With appropriate boundary conditions (all spins + on the boundary),
the partition function is a polynomial in z=e~2βJ, the coefficient of
zn being the number of closed polygons of length n on the dual lattice.
This polynomial can be obtained by contracting the product of poly-
nomials Px corresponding to the vertices of the dual lattice. Px is a
polynomial in the variables zt corresponding to the four bounds leading

P(zuz2, z3,z4) = Zl z2z3z4 + zxz2 + z2z3 + zzzA + z±zγ

By Theorem 1.3, Px is different from zero if zi φ M,..., z4 φ M, where M
is a closed circular region containing the roots of

i.e. ± i ( l / 2 ± 1). Therefore, by Theorem 1.1, the partition function is
different from 0 when \z\ <{]/l- I) 2 6.

2.5. Remarks, (a) It has been conjectured that the zeroes of the
partition function in the above proposition lie asymptotically on the
two circles \z± 1| = j/z. This conjecture (see Fisher [7]) is supported by
numerical evidence (see [1]). Notice that 2.4 follows from Onsager's
exact solution, but that extensions of the above proof to other lattices are
possible.

5 The idea of this proposition is due to Miracle-Sole [14].

6 We may also notice that 2P = (zt + 1) (z2 + 1) (z3 + 1) (z4 + l) + (z1 — 1) (z2 - 1) (z3 - 1)

• (z4 - 1) and therefore P Φ 0 when - — < arg [(zt - l)/(zt + ! ) ] < — for z = 1, 2, 3, 4. This

yields a slight extension of the region \z\ < (j/2 — I)2.
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(b) Consider a 2-dimensional square Ising antiferromagnet. For
large β and sufficiently small \H\9 there exist at least two different
equilibrium states (see Dobrushin [5] and also [8, 4]). It is now also
known that the grand partition function is free from zeroes in this region.
(Brascamp and Kunz, private communication).

(c) More generally, one would like to know if the zeroes of the grand
partition function tend to stay on lines which intersect the positive real
axis at a few points, as suggested by Lee and Yang [20], or if they behave
in other ways (filling 2-dimensional regions or clustering on the positive
real axis). One dimensional systems with finite range forces can be
handled (see for instance [15] and references quoted there) but are of
limited interest since they do not exhibit phase transitions.

3. Complements to the Lee-Yang Theorem

The main purpose of this section is to show that the conclusions of the
Lee-Yang circle theorem remain valid under small even (many-body)
perturbations of the interaction. For a precise statement see Proposi-
tion 3.8. We start with some general results closely related to the work
of Asano [2] and Suzuki-Fisher [19].

We shall use the notation

Let P be a complex polynomial in several variables which is of degree 1
with respect to each, i.e., A is a finite set and

P(zA)= Σ ex**
XCΛ

where zΛ — (zx)xeΛ, zx = γ[ zx. We introduce the condition
xeX

(A) // zΛeΌlΛ] and P(zΛ)= 0, then zΛ e(<3B)MI.

Let now P1" be defined by P^(zΛ) = £ c^xz
x where * denotes

XCΛ

complex conjugation. Notice that

r* 7*Λ\x _ 7*Λ f (-*- i\
CΛ\XZ — Z P \ZΛ )

XCΛ

For any complex ω such that |ω| = 1, the mapping P - ^ ω P 1 is involutory:
ω(ωP^Y = P. Having chosen ω we introduce the condition

(B) P =

In the applications to statistical mechanics, ω = 1 and the cx are
real so that (B) reduces to

CX — CΛ\X '
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3.1. Proposition. When IC A, define

xa

If P satisfies (A) and I + Λ, A(I) does not vanish on D | J | .

We have A(I)(zI) = P(zΛ) where zx = zx for xel and zx = 0 for xφl.
1 1 { { [ lI Λ x x x

When ZjeD1 1 1 we have zΛeΌ{Λ{, zΛφ{dΌ)[Λl and the lemma follows.

3.2. Proposition. Let I, K, {u} be pairwise disjoint, and

S(zKu{uί) C(zκ) + D(zκ)zu.
Define

P(Ziuκ»M) = A(zj) C(zκ) + B(zj) D(zκ)zu.

If R and S satisfy (A), then P satisfies (A).

Let z / υ K u { B ) e D | / | + | κ | + 1 and P ( z / ϋ K ϋ { l ( , ) = 0. If R,S satisfy (A)

we have
| β ( / K ) | £ l , \D(zκ)/C(zκ)\^\

with equality only if z7e(<3D)'71, 2 K e(3D) | K | . This is compatible with

B(zl}D(zκ)

= " ' A(Zj)C(zκ)

on\yitzIuKκj{ll)e(dlDf^W + ι.

3.3. Proposition. Let /, {«}, {v} be pairwise disjoint and

R(z^{u]κJiv}) = A(zI) + B(zI)zu + C(zI)zυ + D(zI)zuzv.

Define

P(zIuίίl]) = A(z,) + D(zI)zu.

If R satisfies (A), then P satisfies (A).

Let z ^ i ^ D 1 ' 1 " 1 and P(z / u { l ί }) = 0. If tf satisfies (A), the two roots
of the equation

A(zs) + [β(Z /) + C(zx)] z + D(z7)z2 = 0

are ^ 1 in absolute value. Therefore

and the inequality is strict unless ZjeίcD)1'1. This is compatible with

A(z,)
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3.4. Proposition. Let Λ. = J U { M } ; P satisfies (B) if and only if one
can write nί v λ, ^ , A + , λ / α ^λ

P(zΛ) = A(zj) + ωAr(zj)zu. (3.2)
Let ax~cx and bx = cXκj{u} for XcL (B) is equivalent to cXu{u)

= ^ 4 ( X υ ^ 0 Γ t O CIu{«) = ^C*\X O Γ t 0 bX = ωCl*\X' O Γ t 0 ( 3 ' 2 )

3.5. Corollary, ί/, in Proposition 3.2, R and S satisfy (B) with para-
meters ωλ, ω 2 then P satisfies (B) with parameter ω 1 ω 2 . // w Proposi-
tion 33, R satisfies (B) wίί/i parameter ω, P satisfies (B) w/ί/i ίte same
parameter ω.

3.6. Proposition. Lei P satisfy (B) a?W wπίe

(A) is equivalent to.
(c) For all ue A, Au does not vanish on '.

The implication (A)=>(c) follows from Proposition 3.1. If (c) holds,
then fu—— ωAl/Au is analytic on D | y i | ~ ι and therefore reaches its
maximum on (SD)1^1"1. But, for zΛχ{u]e(dΌ)lΛ[~\ (3.1) yields

\f(7 \\- ω AuyzΛ\{μ)i _ t

Therefore if P(zA) = 0 and zΛeΌ]Λ[ we have

so that zu e δD, proving (A).

3.7. Corollary. Tte set of polynomials satisfying (A), (B) is open in
the set of polynomials satisfying (B).

If P satisfies (A), (B), there exists ε > 0 such that |^4u(^Uw})| > ε for all u
and z ^ e D 1 4 ' " 1 (by compactness of D ^ 1 " 1 ) . Therefore (c) remains
true for polynomials close to P.

3.8. Proposition. Consider a spin system on the lattice TΠ, and let Φ,

Ψ be two translation invariant interactions. The energy of a configuration
σ — (σjc)χeyi °f sPins σχ == ± 1 ί#n t n e finite region A C Έv is given by

{xι,...,xk}CΛ

We assume that Φ and Ψ satisfy the following conditions
(a) The only components of Φ which do not vanish are Φ{xuX2)(σXι,σX2)

==φ(χ2~-χι)x(l~σχi

σx2)' Also, φ^O, i.e., Φ is a ferromagnetic pair
interaction. Furthermore £ φ(x) < -f oo, and the lattice Ί7 is connected

xΦO

by the bonds xi—x2 such that φ(x2 — x1)>0 (this means that for any
x,yeΈv there is a chain x = x θ 5 x x , . . . , x n — y such that φ(xm — xm-1)>0
for m—\,...,n).
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(b) Ψ has finite range (i.e. there is a finite set A C 7LV such that

xu...,xk)(σx^ '-'>σxk)
 = Q unless xi — x1eA for i = 29...,k and

(the last property expresses that the interaction Ψ is even).

Under these conditions, one can construct V differing from Uφ + λΨ

by a boundary term (without effect in the thermodynamic limit) and choose

ε>0 (for given β>0) so that the zeroes of the partition function

* L σ * + 1 ) o~βViσ)

have absolute value 1 when \λ\ < ε.

We want to prove that ZΛ can be obtained by contraction of a
product of polynomials Pt satisfying conditions (A) and (B). Given
xeZMet γ

k {x, X2, ...,xk}Cx + A

Then, apart from boundary terms, Uψ{σ) is equal to

xeΛ

Let now Γ be a finite subset of Έ containing A and which is connected
by bonds xγ — x2 such that φ(x2 — x j > 0. If N is the number of points
of Γ, let {

N {Xι,X2}cχ + r

then, apart from boundary terms Uφ(σ) is equal to

X AφJσ)+W(σ)
xeΛ

where the energy function W is derived from a ferromagnetic pair
interaction. Up to boundary terms, Uφ + λΨ is thus equal to

V = Σ {Aφ x + λBΨ J+W.
xeΛ

The partition function Px for the region x + Γ, constructed with the
energy Aφ x + λBΨ x satisfies (B) with ω = l . So does the partition
function P' constructed with the energy W. By Proposition 3.2 and
Proposition 3.3, when λ = 0, Px satisfies (A). By Corollary 3.7 there is thus
ε > 0 such that Px satisfies (A) when \λ\ < ε. On the other hand P' is a
limit of partition functions satisfying (A). Since ZΛ is obtained by contrac-
tion from the product of P' and the Px, it is (by 3.2 and 3.3) a limit of
partition functions satisfying (A), and therefore ZΛ{z) = 0 implies \z\= 1.
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