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Abstract. Eigenfunction expansions associated with the Klein-Gordon equation, are
derived in the static external field case. By employing these, we develop spectral and
scattering theory. The results are almost as strong as those obtained in the Schrδdinger
case.

1. Introduction

We shall in this paper consider spectral and scattering theory for the
Klein-Gordon (K-G) equation

(• + 2iqo(x) dt - qo(x)2 + qs(x) + m2) u(x, ί) = 0 , (1.1)

where xeR3,teR and \Z\=d2 — Δ. The functions qo(x) and qs(x) are
static external potentials coupled like a zero'th component of a four-
vector and a scalar respectively.

Equations similar to (1.1) have been studied previously. Thoe [1]
developed spectral and scattering theory in the case m = 0, qo(x) = 0 and
qs(x)>0 by employing a method due to Lax and Phillips [2] (only
suited for the m = 0 case). Strauss [3] showed the existence and bounded-
ness of the scattering operator and its inverse when m > 0 and qo(x) = 0.
Veselic [4] considered some spectral properties of Eq. (1.1) in the case
m > 0, qs(x) = 0 under very restrictive conditions on qo(x) (excluding for
example the square well case).

We shall consider Eq. (1.1) when m > 0 and derive eigenfunction
expansions. These will enable us to develop the spectral theory of
Eq. (1.1) in detail and develop scattering theory to the same level as is
possible in the Schrδdinger case [5-8].

The main motivation for this investigation (from a physical point of
view) is the fact that once we have developed spectral and scattering
theory for Eq. (1.1) when considered as a classical field equation, the
associated quantum field theoretic problem can be completely solved
(and will be considered elsewhere).

In Section 2 we start by specifying the class of potentials we shall con-
sider. Furthermore, we write the K-G equation in the form ίdt Ψ = A Ψ
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and construct a Hubert space J f associated with it (by employing the
field-energy as norm). The operator A is then shown to be self-adjoint
and its essential spectrum σe(A) is determined (Section 3). Eigenfunction
expansions associated with A are derived and the absolutely continuous
spectrum σac(A) is determined (Section 4).

Finally, the existence and completeness of the wave-operators W±

are established and the explicit form of the S-matrix is given (Section 5).

2. The K-G Equation Written as idt Ψ = A Ψ and the Hubert Space 2tf
Associated with it

We shall consider Eq. (1.1) under the following conditions on the
potentials qo(x) and qs(x);

i) qo(x) and qs(x) are real-valued and locally Holder-continuous

except at a finite number of singularities

ii) qo(x)2 and qs(x) are square integrable;

iii) qo(x) and qs(x) behave as Θ(\x\~3~ε), ε > 0 for \x\ -• oo

iv) $dx(-qo(x)2 + qa{x))\f(x)\2^ -ot\dx{\Vf{x)\2 + m2\f{x)\2\ with
0 < α < l and f(x)eC$(R3).

Provided Eq. (1.1) together with {M(X,0), idtu(x,0)} = {/i(x),/2(x)}
defines a well-posed initial-value problem, it is well known that the field
energy (energy integral)

E(u, idtu) = \dx{\Vu\2 + (m2 -q> + qs) \u\2 + \dtu\2), (2.1)

is independent of t (if it is finite). Note that condition iv) on qo(x) and
qs(x) ensures the positivity of E(u, idtu).

Let us introduce the pair

Ψ(x9t) = {u{x,t)9idtu(x,t)}9 (2.2)

and the time evolution operator U(t); !P( , t)=U(t) Ψ(-90).
The operator U(t) is easily seen to be unitary in the Hubert space Jf

consisting of initial data / = {/i,/2} such that | | / | | 2 = E(fί,f2)< oo?

provided the initial-value problem is well-posed.

Definition 2. ί. Let Jf denote the Hubert space obtained by com-
pleting 3ι = C%(R3) x C$(R3) in the norm given by

\\f\\2 = $dx(\Vf1\
2 + (m2-q2 + qs)\f1\

2 + \f2\
2), (2.3)

and with the scalar product defined in the obvious way. Let furthermore
Jf0 denote J f when qo = qs = 0.
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Remark 2.2. The norms in J^o and Jf are equivalent (this follows from
condition ii) and iv) on the potentials), i.e. there exist constants cx and c2

such that
0 , (2.4)

where || | |0 denotes the norm in 3>f0.
The K-G equation (1.1) can be written

(2.5)
where

A=\ , L= -Δ+mz + q, q=-qo + qs, (2.6)

and with Ψ given by Eq. (2.2). One can easily check that A is symmetric
on 2 in Jf.

In the next section we shall prove that A is essentially self-adjoint
on 2 in Jf7 and furthermore determine the essential spectrum of its
closure (also denoted by A) in Jf.

3. Self-adjointness of Λ in ^ and the Essential Spectrum σe (/I)

In this section we show that A is essentially self-adjoint on 2 in Jf7

by using a well-known theorem of Kato and Rellich (generalized to the
case of two Hubert spaces by Thoe [1]). We furthermore determine the
essential spectrum of A(σe(A)) in Jtf, by a compactness argument.

The operator A can be split into two parts

A = A0+V, (3.1)
where

\ v=(° °
°/ W 2<?o

Let Hn denote the Sobolev space consisting of all functions, which
together with their derivatives up to order n, are square integrable.

We note that tf = jf0 - H 1 x H° = H1 x £ 2(# 3). Let us start with
the following well-known results (when m > 0).

Remark 3.1. Ao is essentially self-adjoint on 2 in J>f0 and its closure
(also denoted by Ao) has the domain D(A0) = H2 x H1.

Remark 3.2. The spectrum of Ao in J^o satisfies σ(A0) = σe(AΌ)
- ( 7 a.c(^o) = = (- °°> — wι]u[m, oo). Here αe" stands for essential and
"a.c." for absolutely continuous.

Remark 3.3. The unitary one-parameter group e~iAot maps 2 into S.
Remarks 3.1 and 3.2 are easily verified by Fourier transformation and

33 follows from the finite propagation velocity of solutions to Eq. (1.1)
in the free case.
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Theorem 3.4. The operator A is essentially self-adjoint on 3) in ffl
and its closure (also denoted by A) has the domain D(A) = D(A0) = H2 x H1.
The essential spectrum of A and Ao coincide, σe(A) = σe(A0).

Proof. We have seen that A = Ao + V is symmetric on ^ in J f and
that Ao is essentially self-adjoint on 3) in J^o. It then follows from a
theorem due to Thoe (see Appendix 1) that the condition

l |F/ | |o^i8Mo/llo + rll/llo? β<U fe®, (3.3)

ensures the essential self-adjointness of A on 3) in Jf7. We will in fact
show that β can be chosen arbitrarily small. It is sufficient for (3.3) to
hold that

where β' can be chosen arbitrarily small. The estimate (3.4) follows
from the following estimates1 (q(x) e L2{R% qo{x) e L4(K3))

and
Wqof2\\22^2{Lof2;f2)2 + δ2(ε2)\\f2\\2

29 (3.6)

where ε 1 ,ε 2 > 0 are arbitrary (see [9], p. 302 and p. 321). This finishes
the proof of the essential self-adjointness of A on 3) in Jf.

In order to ensure that σe(A) = σe(A0) it is sufficient to show that V
is a compact operator from D(A0) to J f0 (see [10], p. 18) or, equivalently
that q(q0) is a compact operator from H2^1) to H°. This, however
follows from conditions ii) and iii) on qo(x) and qs(x) (see [10], p. 104).

4. Eigenfunction Expansions Associated with A and the
Absolutely Continuous Spectrum σΛ.c. (A)

In this section we construct eigenfunctions and generalized eigen-
functions of A. These constitute a particular set of weak solutions to the
"eigenvalue equation"

= ωΦ, ωeσ(A). (4.1)

Equation (4.1) can be written

(ω2-2ωq0-L)u = 0, (4.2)

with Φ= {u,ωu}, and is of Schrodinger type. This means that we can
make use of the well-known properties of solutions to the time-
independent Schrodinger equation (see [5-8]).

Let us define
(4.3)

The lower index "2" denotes L2(R3).



Klein-Gordon Equation 247

Remark4.1. The Schrόdinger operator L(ω),ωeRis self-adjoint on
D(L(ω)) = H2 in L2(R3) with σe{L(ω)) = σa.c.(L(ω)) = [m2, oo), L[ω) has a
finite number of eigenvalues (see [10], p. 218) and L(0) is positive (follows
from condition iv) on the potentials).

Let un denote a square integrable solution of Eq. (4.2) with ω = ωne R.
Remark 4.1 implies that un e H2 and that |ωj < m.

Remark 4.2. The eigenfunctions Φn oiA have the form Φn — {un,ωnun},
i.e. AΦn = ωnΦn with Φn e D(A). We assume Φn to be normalized such that
(Φn,ΦJ= δnm.

Remark 4.2 and the fact that σe(A) = (— oo? — m]u[m, oo), implies
that the projection operator Pd given by

m

P(j = £ ( m ) - £ ( - m ) = f dE(λ) (4.4)
— m

/ oo \

with A = \ λ dE(λ) has the following representation

n n

i.e. every element in Pd J f can be expanded in terms o
Let us introduce

—m

P " = I d£(λ), P = P + + P " , (4.6)
— oo

and
3tf>±==P±3tf>^ A±=P±A. (4.7)

Our goal is to obtain a formula similar to (4.5) for P±f.
It is well-known that Eq. (4.2), under our conditions on the potentials,

has solutions which satisfy the following integral equation (Lippmann-
Schwinger equation) (see [5])

β

tt± (x, k) = eikx -^~]dy — — ( ± 2ω(k)qo{y) + q(y)) ̂ {y, k), (4.8)

where ω(k) = |//c2

Remark 4.3. A solution w±(x, fc) of Eq. (4.8) has the following pro-
perties; a) it is unique, b) it is bounded on R3 x X, c) w±(x, k) — eιkx is
uniformly continuous on R3 x K. Here K is a compact set in R3 — {0}.
(For the proof see [5].)

Remark 4.4. The operator A has as a generalized eigenfunction
Φ±(x J fe) = cfc{w±(x, k), ±ω(k)u±(x, k)}. This is easily seen to be a weak

solution of Eq. (4.1) with ω=± ω(k). We choose ck = —7= ΓTT .
y2(2πy/zω(k)
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Let ( , )N denote the scalar product in J f when the integration is only
carried out over a sphere of radius N in R3.

Theorem 4.5. The mapping F±;Jf^L2(R3) defined by

F± f(k) = lim (/, Φ± ( , k))N = f± (k), (4.9)
JV->oo

is isometric with initial domain J#p± and the whole of L2(R3) as range.
The adjoint F± * is given by

F±*g(x)= lim f dkΦ±(xΛ)g(k), (4.10)

where Kn C R3 is an increasing set of compacts such that UKn = R3.
The operator F± diagonalizes Λ±

A± = ±F±*Mω{.)F
±, (4.11)

where Mω{k) stands for the multiplication operator ω(k).
The singular spectrum of A fulfills σs(A) C ( — m, m), i.e. σa.c.(A) = σe(A).

Remark 4.6. The analog to formula (4.5) reads P ± / = F ± * F ± / .

Proof of Theorem 4.5. We shall start by showing that F± is isometric
with initial domain J f ± . Our proof is based on the following formula

I(λ,λ\f)=((E(λ)-E(λ'))f,f)

1 λ (412)
= lim — f dμ((R(μ + iε) -R(μ- iε)) /, / ) , l " J

eio 2πι \
where jR(z) = (A- z)~\ σs(A)n{λ\ λ) = φ, and fe@.

The right hand side of Eq. (4.12) will now be evaluated in a series of
lemmas and takes the form

I{λ,λ',f)= J dfclFVWI2, (4.13)
A'<ω(fc)<λ

where the ± sign is chosen when <λ'<λ< . The integral
— oo — m

I(λ,λ',f) turns out to be continuous as a function of λ and X in the
interval given above, which implies that σs(^4) C ( — m, m) and furthermore
that F± maps J f ± isometrically into L2CR3).

Lemma 4.6. L^ί fe@, then

Λ(z)/=-{l,z}G(z)(L/1+z/2)--{/1,0}, Imz + 0, (4.14)

- z 2 ) " 1 , (4.15)

is of the Carleman type in L2(R3) for Imz φ 0.
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Proof. The operator G(z) is easily seen to exist and to be bounded in
L2(RZ) for z sufficiently small (due to the positivity of L and the L-bound-
ednεss of qQ). Formula (4.14) can than be verified for small 2 by straight-
forward algebra and the analyticity of R{z) / in Jf7 can be employed
to extend the validity of Eq. (4.14) to all z such that Imz φ 0.

The first resolvant equation for G(z) has the form

G(z) = G0(z) - G(z) (2zq0 + q) G0(z), Imz Φ 0, (4.16)

where G0(z) = (Lo - z2)~ \ The operator G0(z) is of the Carleman type
and (2zq0 + q) Go (z) is compact in L2(R3) for Imz Φ 0; thus the boundedness
of G{z) in L2(R3) (which follows from Eq. (4.14)) and Eq. (4.16) implies
that G(z) is of the Carleman type for Imz φ 0 (for more details see [11]).
This finishes the proof of the lemma.

Remark 4.7. Let g e H2 x L2(R3) and hejur, then

(9, h) = (Lg1, hγ)2 + {g2, h2)2 . (4.17)

Lemma 4.8. The kernel G(x, y; z) of G{z) satisfies

μeσG(A)-{±m}. (4.18)+
For the proof see Ikebe [5].

The second resolvant equation for G(z) has the form

G(z) - G(z') = ( z - z') G(z) (z + z f - 2 q 0 ) G(zf), (4.19)

and by combining Eqs. (4.15), (4.17), (4.18) and (4.19) one gets

I(K λ',f) - lim ~- f dμ \\G(μ - iε)fμ\\l ? ( 4 2 0 )

w h e r ^ fμ = Lfx+μf2. The estimate (4.18) is used to show that the last
term in Eq. (4.19) does not survive in the limit εJ,0 (for details see [11]).

Lemma 4.9. A solution Eq. (4.8) is related to the kernel of G(z) by the
following formula

lim(|/c|2 + ( ± ω(k) + iε)2 + m2)$dy G{x, y; ± ω{k) + iε) eiky

εl° (4.21)
= u±(x9k) on R3xK.

Lemma 4.9 is proved in complete analogy with Lemma 9.2 in Ikebe [5].
Eq. (4.13) can now be verified by inserting Eq. (4.21) into Eq. (4.20),

using the Parseval equality and finally employing the following formal
identity

S i w s ? w τ w = - h δ { ω { k f ~μ2)' (422)
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(Remark 4.3 and the fact that fμ has compact support allows us to freely
interchange the order of integrations, and also to interchange the limit
with the integrations.)

It then remains to prove that F± maps onto L2(R3) and that Eqs. (4.10)
and (4.11) hold. Eq. (4.10) is easily verified by using the isometric character
of F * and the definition of the adjoint (F±f9g)2 = {f,F±*g), / e J f ,
gsL2(R3). Eq. (4.11) is proved as follows: Let f±=P±f with feD(A);
the spectral representation for A together with Eqs. (4.12) and (4.13)
then gives

= ±(Mωi.)F
±f,F±f)2=±{F±*Mωi.)F

±f9f).

The ontoness of F± is verified by showing that F± * has a trivial null-
space. We follow a similar proof, given in the Schrodinger case, by
Alsholm and Schmidt [8].

Lemma4.10. Let gι,g2eL2(R3) and let χt be characteristic functions
corresponding to sets {k; ω(/c)e/J, where Ix and I2 are disjoint intervals
onR+ then

± ± (4.24)

Proof. See Appendix 2.
Let us assume that F+ *g = 0. Lemma 4.10 and Eq. (4.10) then give

> = 0, m<λ'<λ, (4.25)

and
J dΩu+{x,\k\Ω)g{\k\Ω) = Q for a.e. |/c|>0. (4.25)

The Lippmann-Schwinger equation (4.8) finally gives

J dΩeWΩxg(\k\Ω) = 0, for a.e. |/c|>0. (4.26)

But this shows that g = 0, due to the Fourier inversion theorem. The
same conclusion holds of course for F*"*. The proof of Theorem 4.5
is thus completed.

5. Existence and Completeness of the Wave-Operators W+ and an
Explicit Representation of the S-Matrix

In scattering theory one is concerned with the asymptotic behaviour
of solutions to some evolution equation for large positive and negative
times.
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We shall in this section study the asymptotic behaviour of solutions
to the Klein-Gordon equation (1.1) or, equivalently Eq. (2.4) ίdt Ψ = AΨ,
with Ψ = {ujdtu}. We shall in fact show the existence of two wave-
operators W+ which have the property that

e-iΛtW±f^e-iΛotf, ί->±oo, fEJtr0. (5.1)

Our results are collected in the following theorem:

Theorem 5.1. a) The wave-operators W± defined by

W± = sΛimeiAte~iΛot

9 (5.2)
t-> ± oo

exist as isometric mappings of Jf0 into PJti? and they intertwine A and Ao,
AW±DW±A0.

b) One has _
P±W-=F±*F<ϊ9 W+f=W-f, (5.3)

i.e. W+ maps onto P*Jf'.

c) The scattering operator S defined by

S = W* W_ Po

+ + Wΐ W+ Pό , (5.4)

is unitary in Jf0 and commutes with Ao.

The following representation for 5* = F^ SF^ * holds

g(\\) = g(\k\Ω)-πi\k\$dΩ'T±(\k\,Ω,Ω')g(\k\Ω'), (5.5)
where

^ 0 W

with u+ (x, k) = u + (x, k) and u_(x,k) = u (x, — k).

Remark 5.2. T±(|fe|, Ω, Ω') is the phase factor appearing in the
asymptotic expansion of u±(x, k) for large |x|,

W ± ( x , / c ) ^ ^ + 2 π 2 T ± l\kl^-9-£-)*—— + Θ [ - \ . (5.7)

The proof of Theorem 5.1 will be divided into three parts. First we
show the existence of W± as defined in Eq. (5.2), then Eq. (5.3) is established,
and finally Eq. (5.6) is derived.

Proof of Theorem 5.1. a) By differentiating and integrating
W(t) = eίAte~ίAot we get

W(t)f = f+i\dteiAtVe-iΛotf, fe@CD(V), (5.8)
6

and thus

II WWII ^ 11/11 H-JdίllKe-'^/H, (5.9)
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which shows that it is sufficient for the existence of W±f that || Ve~iΛotf\\
is integrable on (0, ± oo).

We have

IIVe-^'fW2 = \\qf1(t)\\22+ \\2qof2(t)\\22 , (5.10)

where fit) = {fMfi®} = e'iAotf.
Let ΘN denote the characteristic function for a sphere of radius N

around the origin in R3.

Lemma 5.2. The following estimate holds

i = l , 2 , (5.11)

where the constant is independent of N.

For the proof see [11], Lemma 8.1, or [12] where a similar result
is proved in the Dirac case.

We are now in the position to estimate the right-hand side of Eq. (5.10).
The first term is estimated as follows (t — 4N);

\\qfi(t)\\2 ύ 11(1 - θN) qh{t)\\i + \\ΘNqfΛt)\\2

^IKi-β^ίLII/iWIIi + lkLllβiv/iWIL (5.12)

where we have used the fact that q(x) = (9(\x\~3 ~ε)5 |x|->oo, and Lemma 5.2.
We get a similar result for ||go/i(0ll2

This shows that \\VeίΛotf\\ is integrable and thus W+ exists on Q).
One can then easily verify that | |W±/| | = | | / | | 0 by observing that
II/ΊI2= ll/llo + te/iί/i)2 a n ( i using an estimate similar to (5.12).

The domain of W+ can now be extended by continuity to the whole
of J>f0 and we furthermore have PW± = W± and ΛW+D W+Ao (see Kato
[13], p. 346). This completes the proof of a) in Theorem 5.1.

b) In this part of the proof we use a different but equivalent definition
oϊW±.

Lemma 5.3. One has

W± = W±(J) = s- lim eiAtJe~iAot, (5.13)
ί-* ± oo

where J is defined by (Jf, g) = (/, g)o,f, g ε ^-

Proof. See Appendix 3.
We now show that P±PF_ = F ± * F 0

± . Put Wj(ή = eiΛtJe~ίΛot

9

= Ff*F+Wj(t), and choose / and g such that fe® and
e CQ(R.3 — {0}) [one can easily verify that this means that g e D(A)~].
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Let us consider (B(t)f, g)0. By differentiating and integrating it we get

\ * F + eiΛtVfe-iΛ^f9g)09 (5.14)
o

where V = AJ — JA0. The integrand can be rearranged as follows (we

f, VF*e-iωi')tFQg)0

k))

where we have used the definition of J and interchanged the order of
integrations, which is allowed due to the absolute convergence of the
integrals {H+ ( , k) = VΦ+ ( , k) e Jfo)

Equations (5.2) and (5.13) ensures the existence of the limit as ί-> — oo
of Eq. (5.14); thus we are allowed to take the Abelian limit and get

)og + (k)

)H+(k)) + (k)\ '

The Lippmann-Schwinger Equation (4.8) can be written
± ± ( ) ± ( ,/c)? (5.17)

where Φ^(-, k) e L™(R3) x Π°(R3) = (L00)2 and (Ro{±ω(k) + i0)V) is a
compact integral operator on (L00)2 (compare [5], p. 14).

By inserting Eq. (5.17) into Eq. (5.16) we finally get

FW_f,g)o = [dk{f,Φ{.,k))ogUk) = {Pof>g)o, (5-18)

which implies that
F0

+*F+W_=P0\ (5.19)
and thus

P+W_ = F+*FJ . (5.20)

In a similar way one shows that P~ W_=F~*FQ and it is furthermore
simple to verify that W+f=W_ f. This completes the proof of part b)
of Theorem 5.1.

c) Let fe D(A0) C D(V); we then get

W+f-W_f = ί J dteiAtVe-iAotf9 (5.21)
- oo

and by applying W? we get

W*W_f = f - ί ] dteiAotW+Ve~iAotf. (5.22)
— oo
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Let f,ge Jf0

+ be such that f0

+, g£ e C$(R3 - {0}), (/, g e D(A0)). By
inserting Eq. (5.22) into Eq. (5.4) we obtain

(Sf,g)0 = (f,g)0-i ] dt(eiA°'W+Ve-iA° f,g)0

(5.23)

= (/, g)0 - i J dt(Ve-iA°'f, W_ e-iA°'g).
— oo

In complete analogy with the Schrodinger case (see Ikebe [7]) we get

, g)0 = (/, g)0 ~ 2πί J dkdk'δ{ω{k') - ω(k))
(5.24)

when f,ge Jf0

+. In the case when f,geJ4?0 we obtain similarily

(Sf, g)0 = (/, g)0 - 2πί \ dkdk'δ(ω(k') - ω(k))

Ύ, (5.25)

Equation (5.5) follows directly from Eqs. (5.24) and (5.25), which
completes the proof of Theorem 5.1.

6. Summary and Conclusions

We have in this paper developed the spectral and scattering theory
for the Klein-Gordon equation with two static external potentials
(coupled like a zeroth component of a four-vector and a scalar, re-
spectively)

( • + 2iqo(x) dt - qo(x)2 + qa(x) + m2) u(x, ί) = 0 .

Our main results, which are contained in Theorems 4.5 and 5.1
are similar to those obtained in the Schrodinger case (see [8]). The main
difference is that we have to impose a limit of the strength oΐq0 and on the
negative part of qs (see condition iv), p. 244).

Theorem 4.5 can be employed to explicitly diagonalize the quantum-
field-theoretic Hamiltonian for a charged scalar field interacting with
two kinds of external static fields qo(x) and qs{x). Furthermore,
Theorem 5.1 can be used to prove that the S-matrix, defined in the LSZ-
sense, coincides with the classical ^-matrix [Eq. (5.5)] and that asymptotic
completeness holds (under our conditions on the potentials). All this
will be considered elsewhere.

Acknowledgements. I want to thank Professors L. Girding, J. Hamilton, L. Hormander,
I. Segal and R. F. Streater for stimulating discussions. Also, I am grateful for the hospitality
shown to me at Nordita.



Klein-Gordon Equation 255

Appendix 1

Theorem (Thoe [1], p. 373): Let Y be a complex linear vector space
which forms a Hilbert space with respect to each of two scalar products
(,) and (, ) 0 Suppose To and V are closed linear operators on the Hilbert
space Jf0 = {i^, (, )0}, possessing the following properties:

i) To is self-adjoint;
ii) D(V)DD(T0);

iii) ||7/||o^α||T0/||o + 6||/|lo,/or/eD(Γo)απdO<α<l;
iv) The operator T =T0 + V with domain D(T) = D(T0) is symmetric

in the Hilbert space 3#? = {ir

9(9)}.
Then T is self-adjoint in Jf.

Appendix 2

Proof of Lemma 4.10. Let us start with the following lemma;

Lemma A 2. Let hx and h2 be two functions in C^(R3\ such that the
compact sets S1 and S2, defined by

S^iteR lkesupphi with ω(k) = t}9

are disjoint and contained in R+ — {0}. Then

(F ± */ i 1 ,F ± */ι 2 ) = 0. (A 2.1)

We observe that Lemma 4.10 follows from Lemma A 2, since χxfx

and χ2f2 can be approximated in L2(R3) by sequences of CJ functions
having their support in {k;ω(k)elx} and {k;ω(k)εI2}, respectively.

Proof of Lemma A2. We start by showing that if geC£(R3) has
support in R3 — {0}, then F±*g eD(An) for each integer n, and

= F±*(P{±ω( ))g)9 (A 2.2)

for each real polynomial p. To this end we consider

= $dkΦ±(.9k)g(k).

It is easy [using Fubini's Theorem and our knowledge of Φ±{x9 fe)]
to see that

± (.)g), (A2.3)

weakly. Explicitly this means that

± ) (A 2.4)

for any fe 3) and thus for any fe D(A). Since A is self-adjoint, it follows
that F± *g lies in D(A) and (A 2.3) holds. By iterating this fact we get (A2.2).
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Equation (A 2.1) is now easily established. In fact, the self-adjointness
of p(A) gives

F±*h2) = {F±*hl9p{A)F±*h2)9 (A 2.5)

and thus, due to (A 3.4) we get

) ( ± ± { ) h 2 ) ) . (A2.6)

We can now choose a function ψ(t) in C^(R) such that ψ(t) = 1 for
teSί and ψ(t) = 0 for t e S2 We can approximate ψ uniformly on St u £ 2

by a sequence {pn} of polynomials and obtain (A 2.1) in the limit.

Appendix 3

Proof of Lemma 5.3. Let us start by observing that Jf — {L~ 1Lofί,f2}
when / e Q). Let / e ^ we then get

\\eiAt(J-l)e-ίAotf\\ = \\{J- l)e~ίAotf\\ (A 3.1)

= WC-1 (Co - Q e-M o7ll = WC-'Qe-^fW ,

where C= ( V Co= ( ° Y and β = ί~^ V Lemma4.7 and

(A 3.1) finally gives

= const \\qf1{t)\\l^09\t\^co9

where, in the last step, we have used Eq. (5.12).
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