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Abstract. We consider a new way of going to the infinite volume thermodynamic
limit for a finite density quantum system and apply it to the case of an ideal Boson gas.
We describe two procedures for calculating the particle density in the thermodynamic
limit, one local and one global, and show that they give different values for the density.
Further calculations show that this discrepancy is caused by lack of macroscopic translation
invariance of the system, which is not apparent at the microscopic level. We calculate
the limiting value of the expectation function of the Weyl operators both above and below
the critical density for Bose-Einstein condensation, and show that the condensate has
paradoxical properties of a similar type to those recently discovered for the rotating Boson
gas.

§ 1. Formulation of the Problem

We consider a system of spin-less particles, taking the single particle
space to be Jf = L2(lR3). We suppose the particles are confined by an
external scalar potential so that the single particle Hamiltonian is

HLf(x)=-$Δf(x)+V(L-lx)f(x). (1.1)

We take V to be non-negative with

lim F(x)-+oo (1.2)
||x||-> oo

so that the Hamiltonians are semi-bounded with discrete spectrum.
In the limit L—»αo the Hamiltonian converges at least formally to a
translation invariant free Hamiltonian. We denote the eigenvalues of
HL in increasing order by {£L,J)Γ=o and the corresponding normalised
eigenfunctions by {φLtn}™=o We let ̂  be the Boson Fock space over

oo n

&= Σ ®^ d 3)
n = 0 sym

and let σLz denote the trace class operator defined on ̂  for 0<z< 1
and β > 0 by

{<rL.;ψ}n = ocL,zz"e"βE^ 0 e~^H-ψn (1.4)
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n

where ψne (X) Jf and αL z is chosen so that tr[σL>2] = l; explicitly,
sym

[9, p. 199],

UL,Z= Π (l-zeβEL'Ό-βEL'n). (1.5)
n = 0

This is the thermodynamic state for the fugacity z and the inverse
temperature β [1,18]. We shall keep β constant throughout the paper, and
therefore do not indicate the dependence of the various thermodynamic
quantities on β.

We denote by N the number operator on Fock space and define the
global particle density function by

Σ Σ zmeβmEΣ"°-βmEl"n (1.6)
« = 0 m= 1

as may be seen by separate consideration of each mode [1,9, 12]. There
are also local particle number operators N(E) defined for each Borel set
£ SIR3 by

) = $a*(x)a(x)d3x (1.7)

according to the conventional notation of quantum field theory. We
define them rigorously by

where ψn e (X) J>f and PE is the projection in 3C given by
sym

(PEφ)(x) = χE(x)φ(x) (1.9)

for all φe^.lt is fairly easy to show [1] that the number of particles in E

QL,z(E) = trlσL,zN(E)-] (1.10)

is given by

„ f C Λ — V V 7mβmE^,0-βmEL,n\\pfk I I 2
QL,Z\^)— 2^ λj Z e \\rEΨL,n\\

which is a countably additive measure on IR3.
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We take the thermodynamic limit by calculating the asymptotic
forms of these expressions as L-^oo. We define the global particle
density

ρ = lim ρL>z (1.12)
Lι~* GO

and the local particle density

ρz(a}= lim ρLz(Ω + La) (1.13)

where a elR3 and Ω is any region of unit volume in 1R3. It turns out that
the second limit is independent of Ω but not of α, and that ρz φ ρz(0).
Section 2 is devoted to proving this fact and to finding its explanation
in terms of the lack of macroscopic translation invariance of the system.
In Section 3 we use the results to study the thermodynamic limit of the
expectation functions of the Weyl operators, and in particular to study
the Bose-Einstein condensate, which turns out to have rather singular
behaviour.

An interesting case of the general theory is when Fis homogeneous of
order α > 0, that is

λΛV(x) (1.14)

for all x e 1R3 and all λ ̂  0. It is then easy to show by change of scale that

£L ι Π = L-2«/(«+2)£ ι < w (U5)

and
φLJx) = L-*i2<*+2>φitn(L-Λ** + 2>x). (1.16)

The potential is determined by the region

Λ = { x E Ϊ R 3 : V ( x ) < l } (1.17)

through the formula

V(x) = mϊ{λa:λ-lxeΛ}. (1.18)

The standard problem of the thermodynamic limit for an ideal Boson gas
may be considered as the limiting case of a homogeneous potential of
order +00, so that

™=L° ΐ xeA <U9>[ + oo if xφΛ

The relevant boundary condition is then φ = 0 on dΛ. This problem has
been extensively studied [1,9]. It has also been shown, by the use of
difficult estimates from the theory of partial differential equations, that
the thermodynamic limit depends in an interesting manner not only on
the shape of the region A but also on the type of boundary conditions
used [12,17].
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We remark that for the potential

V(x) = ω2(x\ + x2

2 + xl)/2 (1.20)

which is homogeneous of order two, many of the estimates of the paper
are unnecessary, since the eigenvalues and eigenfunctions of the
Hamiltonian are well known [15], and e~tHL may be written down
explicitly as an integral operator [22].

We remark that several authors have discussed problems similar to
ours for systems of classical particles [7, 8, 14, 16].

The author should like to thank J. T. Lewis and J. Pule for providing
him with preliminary manuscripts of their papers [12, 13], and the
former particularly for outlining some results of his on the harmonic
oscillator case of this theory.

§ 2. Calculation of the Density Functions

We start by defining precisely the class of potentials we shall consider.
We suppose that V is a continuous non-negative function on IR3 such
that min{F(x):xelR 3 }-0 (2.1)
and

Hrn^ 7(x) | |x | |-*=+oo (2.2)

for some δ > 0. We define HL as the closure of the symmetric operator
defined on the domain Cg"(R3) of C00 functions of compact support in
R3 ̂  HLf(x)=-$Δf(x)+V(L-*x)f(x). (2.3)

Proposition 2.1. HL is essentially self-adjoint on Cg^IR3) and is non-
negative with purely discrete spectrum. If its eigenvalues in increasing
order, repeated according to multiplicity, are {ELfn}™=0 then

0<£L,0<£L ? 1^£L,2... (2.4)
and

lim EL o - 0 . (2.5)
L-"αo

The operator e~tHL is of trace class on ffl for all t > 0 and has a continuous
non-negative integral kernel

Proof. These are standard results from the theory of partial differ-
ential equations. A unified functional-analytical treatment well adapted
to our present needs may be found in [6]. See also [20, 21].

We define the function gσ by

gσ(z)= Σ n~"z" (2 6)
n= 1

whenever this series converges [9].
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Lemma 2.2. Let V be homogeneous of order α > 0. Then for alW<z<l

lim ρL>z = (2πΓ3 / 2μi|Γ(l + 3/α)Γ3<2 + α)/2^3<2 + Wz) (2.7)
L —» oo

Proof. We use Eq. (1.15) together with an asymptotic estimate on the
eigenvalues of Ht, [21, p. 174], that as A—»co

1/2
max{n:E l f l l^}~^-τ J {1- K(x)}3'2 fx. (2.8)

-^π {x :F(x)<A}

We choose spherical coordinates and for any unit vector u in IR3 let
φ(u) be the number determined by

V{φ(u)u} = l, (2.9)

that is φ(u) = K(M)- I / Λ. Then ifΛ = { x : V(x) < 1}

| Λ L | = f j r2drdS(wHi J φ(u)3dS(u) (2.10)
||«|| = 1 O£^φ(u) | |u | |=l

while

J μ-7(x)}3 / 2d3x= j J μ
F ( x ) < A | |M| | = 1 0 ^ r ^ φ ( w ) Λ 1 / α

= 13/2 J {l-ί}372

-3/α).

Therefore
max {n : Eί n g/l} ~ fcαA3/2 + 3/α = /cα/l3 ( 2 + α ) / 2 α (2.11)

where
feα - (2π)"3/2 |Λ| Γ(l + 3/α)/Γ(5/2 -f 3/α). (2.12)

Now letting

FT (x) — LΓ3 max {n\ Eτ „ — Eτ n < xjIΛ \ L.I, L,O_ / 2

-L- 3 max{n:£ l 5 n -E l 5 θ ^L 2 α / ( α + 2 ) x} ;

we see that
lim FL(x) = /cαx3(2 + α)/2α (2.14)

L-* oo

and also that for some fe independent of L and x

Now ~ ~
00

" = 0 ^ (2.16)

-L~3z(l-z)-1 + j βzeβx(eβx-zΓ2 F L ( x ) d x .
o
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By the Lebesgue dominated convergence theorem we see that if 0 < z < 1

lim
L-»co

= [3fcβ(2 + α)/2α] f z(eβx-zΓί

0

/2 + 3/α)

as required.
As a check we observe that as α -̂  oo this converges to the standard

expression for the particle density of an ideal Boson gas

\ Λ \ ( 2 π β Γ 3 / 2 g ι , 2 ( z ) (2.17)

However, the fact that the limit depends on the order of homogeneity of
the potential even though the Hamiltonian is translation invariant in the
limit L->oo, demands some explanation.

We may also calculate the limiting behaviour of the fugacity if the
density is kept fixed, as in [10, 12]. Given ρ>0 we define z(L) as the
solution of

QL,Z(L) = Q- (2 18)

Lemma 2.3. Let V be a potential which is homogeneous of degree α > 0
and let

α ) / 2 α(l). (2.19)

Then if 0<ρ<ρc and z(L) is defined by Eq. (2.18), z(L) converges to z
where

ρ = (2πΓ3l2\Λ\ Γ(l + 3/α) β~3(2 + x>'2^3(2 + cι)l2,(z) . (2.20)

On the other hand if ρc ̂  ρ < oo then z(L) converges to 1 and the rate of
convergence is given by

\irnL~* z(L){\-z(L)Γl = Q-Qc. (2.21)
L->oc

Proof. From Equation 1.6 we see that ρL z is a strictly monotonically
increasing continuous function on {z : 0 < z < 1} and that

limρL > z = 0; lim ρL> z = + oo . (2.22)

Therefore for every ρ > 0 there is a unique value of z(L) satisfying Eq. (2.18).
By Lemma 2.2 for each 0<z< 1 the function ρL z converges to a limit
ρz which is a continuous strictly monotonically increasing function on
{z O ^ z ^ l } with ρ^ — ρc. By well known properties of monotonic
functions the convergence is uniform in each interval {z : ε ̂  z ̂  1 — ε}
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and the Lemma quickly follows if 0<ρ<ρ c. It also follows by mono-
tonicity that if ρ ̂  ρc then z(L) converges to 1 as L->oo. Now examining
Equation 2. 16 it is seen that the second term on the right hand side
converges uniformly as L->oo for all O r g z ^ l . Therefore replacing
QL.Z by Q and z by z(L) and letting L-»oo we get

ρ = lim L~3z(L){l-z(L)Γl + ρcL-*oo

which completes the proof of the Lemma.
We leave the calculation of the global density function for a general

potential until later on, and turn now to finding the asymptotic form of the
local particle density function. We carry out this calculation for the
general potential immediately.

Theorem 2.4. Let V be a general potential. Then for each aeR3 and
0 < z < l

lim ρLz(a) = (2πβΓ*l2g3/2(e-βV(a)z). (2.23)
L-»αo

Proof. We denote by f/0 the self-adjoint, non-negative operator which
is the closure of -A/2 on the domain CgΌR3). It is immediate that

lim || HLφ - {H0 + 7(0) 1} v>|| = 0 (2.24)
L-> oo

for all ψ e CJ(1R3) so HL converges strongly to (HQ + 7(0) 1) in the gener-
alised sense [11, p. 429]. This implies, [5, 11], that for all ί >0

s— lim e-^L = e-t(H0+V(on)^ (2.25)
L->oc

We let P be the orthogonal projection of L2(ΪR3) onto L2(Ω) where Ω
is any fixed bounded region of unit volume and note that e~tH° is an
integral operator with kernel

/c(ί,x,j;)-(2πί)~3/2exp[-||x-};||2/2ί]. (2.26)
Since

5— lim pe-
tH^P = Pe-tHoP

L^oo

lim i
(2.27)

Using the notation and results of [6] we note that since 7> 0

Q<ζe-tHL^e-tH° (2.28)

for all t > 0 so
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and in consequence
/2 (2.29)

We now prove that for all t > 0

lim sup tr[Pe~ίHL] ̂  (2πί)"3/2 e~tV(0) . (2.30)
L-+ oo

Let a< 7(0) be any constant and let ||x|| <c imply V(x)>a. Let VFL

be the bounded potential defined by

H :̂
Then

(2.32)

for all xelR 3 , so

0 <! <ΓίHL <^ e-t(HQ+a-wL) (2.33)

for all ί > 0 and

0^tr[PέΓtH*]^tr[PέΓ'(H°+Λ-^] . (2.34)

The right hand side can be evaluated exactly, but to keep within the
spirit of this work, we estimate it by functional analytical methods.
Since WL is a bounded potential

e ° α L —e a + j e WLe s L ds (2.35)

by [11, p. 495] so

f "H S (2.36)

Now

x e β | | y | | > L c

which converges to zero as L -̂  oo uniformly in s for 0 ̂  s ̂  t. Therefore

lim HPέΓ^^-^llHs =||ί>e- f ( f fo+β) | |HS . (2.37)
L-*oc
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so Eq. (2.37) implies that

lim tr[_pe-*v*o + a-wLη = tr[pe-ί(Ho + α)] = e-
ta(2πtΓ3/2 . (2.38)

L-» oc

Combining this with Eq. (2.34) proves Eq. (2.30). Together with Eq. (2.27)
we obtain

lim tr[P^rHL]

This, together with Eq. (2,25), implies by [3] that

Hm \\Pe-tHLP-Pe-t(H° + V(0»P\\ir = Q (2.40)

which implies, in particular, operator norm convergence.
We finally observe that

QL,Z(U)= Σ zmeβmEL>°trlPe-βmHL']. (2.41)
ro = 1

If z < z 1 < l then since lim £L O = 0, the series is dominated by the
L->oo

convergent series

00 00

£ zΓtr[PέΓ'mlI<>] = £ zΐ(2πmβΓ312

m = l m = l

and the individual terms in the series converge as we have already
shown. Therefore

l imρ L z (0)= zm(2πmβ
L-*™ ' =

3/2 ~

which concludes the proof of the Theorem in case 0 = 0. The general
result may be obtained by solving the same problem for the translated
potential Va(x) = V(x + a).

We have now shown that ρz is not equal to ρz(0). The clue to the
explanation of this lies in the fact that ρz(a) depends on α, suggesting
that the mean particle density varies over distances which are very large
compared with the thermal wavelength. For homogeneous potentials the
situation is clarified by the following lemma.

Lemma 2.5. // V is a homogeneous potential of order α > 0 and 0 < z < 1
then

ρ 2 =jρ z (αM 3 α. (2.42)
IR3
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Proof. This is an explicit calculation carried out in polar coordinates.

$ρz(a)d3a = f (2πmβΓ3/2 zm f e~mβv(a}d?>a
IR3 m = l IR3

= £ (2πm/?Γ3 / 2zm J ] e-mίSr"V(u)r2drdS(u)
m= 1 \\u\\ = 1 r = 0

- (2πmβΓ3 / 2zm J J ^^
m = l ||u|| =1 s = 0

= £ (2πm jβ)"3 / 2zm(mj5)~3 / αα~1Γ(3/α) J F(wΓ3 / αdS(w)

by Eqs. (2.7) and (2. 10).
We now use this Lemma to prove the existence of the global density

function for a general potential.

Theorem 2.6. Let V be a general potential and let 0 < z < l . Then

ρz = limρL,, (2.43)
L-»oo

exists and is given by ^ = J Q^ £>a (2.44)
IR3

or explicitly

Qz = (2πβΓ3/2 f flf3/2(^"^(βV3fl. (2.45)
R3

Proof. We use the above Lemma together with the fact that a general
potential dominates some homogeneous potential.

Given 0 < z < l we choose γ > 0 such that z1 = zeβy<\ and then
using Equation 2.2 we choose ε > 0 small enough so that

V(x)^-y + ε\\x\\δ (2.46)

for all xelR 3 . We let ρLz denote the density function for the potential
K(x) = c| |x| | . We have the following inequalities, deduced immediately
from the definitions. Λ . . ^ .. ._,

Z ^ ^ L , Z I ? (2-47)

0^ρLJa)^ρL,Zί(a). (2.48)

Now for each finite value of L

(2.49)



Ideal Boson Gas 239

by the countable additivity of the measure

which we referred to earlier. Fatou's lemma immediately implies that

L z ^ J ρz(a)d3a.
L-+ 00

The same argument applied to the family of non-negative integrable
functions

fL(<l) = QL,zl(ά)-QL,z(a)
yields

liminf{ρ L 5 Z ι -ρ L > 2 }^ J (ρzι(a)- ρz(a)} d3a ,
L-+OO R3

The result now follows upon application of Lemma 2.5 to the potential V.
We can now prove an almost complete generalisation of Lemma 2.3.

Theorem 2.7. Let V be a general potential and let

-βv(a})d*a. (2.50)

Then if 0 < ρ < ρc and z(L) is defined by

QL,Z(L) = Q (2.51)

z(L) converges to z as L -> oo where

e-ev^)d3a. (2.52)

On £/ιe oί/xer hand if ρc^ρ <co then z(L) converges to 1 as L-+CO.

The proof follows the same lines as for Lemma 2.3. We have not been
able to obtain an estimate of the rate of convergence of z(L) to 1 for the
general potential, an unfortunate gap in the theory, which restricts the
scope of some of our results below.

§ 3. Expectation Functions of the Weyl Operators

We recall some fundamental results on expectation functions of the
Weyl operators in order to fix our notation [1]. The Weyl operator W(f)
is a unitary operator on ̂  defined for a l l f e J ^ f by

W(f) = exp [/{</*(/) + α(/)}/l/2] (3.1)

and satisfying the canonical commutation relations

y/2-}, (3.2)
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The expectation function of the Weyl operators is given by

, iBt ,(/,/)] (3.3)
where

(34)

Since we are interested in the form of the field at distances from the
origin which are very large compared with the thermal wavelength we try
to calculate

lim trlσL2W(hJ]
L->oo

where h e Q (1R3) and

hL(x) = h(x-La) (3.5)

for some αeIR 3 . A similar idea to this has already been used in [13].
The problem usually considered [1, 12] corresponds to the case α = 0.

Below the critical density for Bose-Einstein condensation the
asymptotic form for the Weyl expectation functions may be calculated
easily.

Theorem 3.1. Let 0 < ρ < ρc and let z(L) be the solution of ρLfZ(L) = ρ.
Then

UmBL.(L)(hL<hL)= £ zme~βmV(a)<(e-mβHoh,hy
L^" " w = 1 (3.6)

= J{z-VF^^»^2-l}-1 | ίi(x)|2d3x.
IR3

Proof. We first take the special case a = 0. If z is chosen to satisfy
Eq. (2.20), so that 0 < z < 1 and if zv is chosen so that z < zγ < 1 then

0<^£L'°z(L)^z1 (3.7)

for all large enough L. Therefore

Therefore the series is dominated absolutely by a convergent series
independent of L. Moreover by Equation 2.25 the individual terms of
the series converge. This is enough to prove the equality of the first
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two expressions of the Theorem. For the last term we use Equation 2.26 to
obtain a corresponding formula using Fourier transforms

<e~tH°f, f> = f £- r |W |2/2 I/Ml2 d3x (3.8)
IR3

for all /eL2(lR3). The general case, where αΦθ, can again be solved
from the special case by considering the translated potential
V a ( x ) = V ( x + a).

Above the critical density for Bose-Einstein condensation the ground
state makes a substantial contribution to the bilinear form B in the
thermodynamic limit. Following [10,12] we therefore decompose B into
two components S and N corresponding to the superfluid and normal
fluid respectively.

BL,z(Λ/) = SL>z(/,/) + NLfZ(/,/)
where

sL, z(/,/Hz(i-zΓ1 |<ΦL.o,/>l2

and

Σ Σ
n = l m = l

These two bilinear forms are then estimated separately.
As far as the normal fluid component is concerned we are only able to

solve the problem completely for homogeneous potentials. This is
because we need asymptotic estimates on ELl as L->oo which seem
difficult to obtain generally.

Theorem 3.2. Let V be a homogeneous potential of order α. Let
h e C J (ER3) and let hL(x) = h(x- La). Then

lim JVL.z(/ιL,/zL)= Σ zme-βmV(a\e'βmH°h,hy (3.10)
~

uniformly in z for O r g z r g l . // ρ > 0 and z(L) is determined by QL,Z(D — Q
then

lim NL.z(L)(hL,hL)= Σ zme'βmV(a\e-βmH°h,hy (3.11)
^ '

where z is determined by Eq. (2.52) if 0 < ρ < ρc and z = 1 // ρ ̂  ρc; ρc /s
determined by Eq. (2.50).

Proof. For the usual reasons we need only treat the case a = Q. We
first show that the individual terms of the series of Eq. (3.9) converge to
the individual terms of the series of Eq. (3.10). We have seen that (HL — EL 0)



242 E. B. Davies:

converges in the generalised sense to (H0 + F(0)). If/ is the function on IR
defined by

I xfo (112)

where t > 0 then / is bounded and continuous at every point except
x = 0, which is not in the point spectrum of (H0+ F(0)); indeed this
operator has no point spectrum. Therefore by [5]

L-»αo

andforany/ ieCJOR 3 )

L—» OO

= lim</(HL-EL > 0)M>
L~™ (3.14)

To prove the first part of the theorem we now have to prove that the
series is dominated absolutely by a convergent series independent of z
and L. Let Ω be a bounded region of volume |Ω| such that the support of h
is contained in Ω and let P be the projection of L2(IR3) onto L2(Ω). Using
the notation and results of [6], if f >0 then

so
\\Pe ' L | j g \\Pe ' L\\H^

1/2 - |Ω|1/2 (4πί)"3/4

by Equation 2.26. For arbitrary 0 < /I < 1/2 we find by spectral theory
that

)(e-(1-2A^
/ 2β- ( 1- 2 A ) ί £-- 1. (3.16)

Using Eq. (2.4) we choose λ small enough so that

( l-2λ)£ l f l >£ l f 0 (3.17)
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and observe from Eq. (1.15) that

(1-21)£L;1>£L>0 (3.18)

for all L. Therefore

g £ zm\\h\\2\Ω\(4πβmΓ3/2eVmEL °-(l-2λ>l>mE^ι (3.19)
m= 1

oo

^ X | fr | | 2 | r2 | (4πβmΓ 3 / 2 <oo.

This proves the first half of the Theorem. The second half is a consequence
of the uniformity of the convergence and Theorem 2.7.

We now turn to consideration of the bilinear form S. The basic
result is

Proposition 3.3. // 0 < ρ < ρc then

L-» oo

// ρ ̂  ρc and
lim ZΓ3z(L) {1 — z(L)}"1 =k (3.21)

L-»oo

(3.22)
-» oo

locally uniformly on 1R3, ί/z^^

lim SL>Z(L)(ΛL, /!L) = 2π/c |Λ(0)|2 |»ί(α)|2 . (3.23)
-

Proof. The first case is contained in the second for if 0 < ρ < ρc then
z(L)->z where 0 < z < 1, and Eq. (3.21) is satisfied with k = 0. Under the
conditions of the Proposition

L-^oo

= lim z(L) {1 — z(L)} ~1 \ f φL Q(x) h(x — La) d3x|2

L->oo jpfs

- lim L"3z(L) ί 1 ^M\-I

suppfz
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Since we have proved the validity of Eq. (3.21), at least for homogeneous
potentials [Eq. (2.21)], we turn now to the study of the asymptotic form
°f ΦL,O as £-">CQ In general this is a difficult problem and we content
ourselves with some results for spherically symmetric potentials.

Theorem 3.4. Let V be a spherically symmetric continuous potential
such that V(x) is a monotonically increasing function of \\x\\ with V(x) = 0
ifO^\\x\\^d, V(x) >0 if \\x\\ >d and

lim K(x)=+oo. (3.24)
llxll-* oo

Thenifd>0
lim L3/2φLQ(Lx) = η(x) (3.25)

L -» oo

locally uniformly on 1R3 where

if
0 if \ \ x \ \ Z d .

( '
If d = 0 then η(x) = Q if X Φ O with locally uniform convergence except
at the origin and η(Q} = oc.

Proof. We observe that φL > 0 is the unique solution in L2(IR3) of

HLφ = ELt0φ (3.27)

so φL < 0 is rotationally invariant. Moreover by elliptic regularity theory
[19] it is continuous. If we define

fL(\\x\\)= \\x\\ L3'2φLι0(x) (3.28)

then fL is continuous on [0, oc),/L(0) = 0 and fL is a weak, and hence
strong, solution of the ordinary differential equation

/i'(r) = 2L2(K(r)-£ tp0)/I.(r). (3.29)

Moreover fL is strictly non-negative on (0, oo) by [20] and

J f l Λ ( r ) | 2 d r = l . (3.30)
b

If rL is a solution of

nrJ = £L.0 (3-31)

then since V is continuous rL>d and rL-+d as L->oo. The theory of
ordinary differential equations [20] implies that /L is convex on [0, rL]
and concave on [rL, oo). Moreover /^(r)<0 if Γ^Γ L and /L(r)-^0 as
r -> ex: for each L.
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Now suppose d>0. In the interval [0, d], /L is given by

/L(r) = cLsinOlLr) (3.32)

where cL>0 and λl =2ELi0L
2. Since /L is strictly positive λL<π/d.

We obtain a lower bound for λL by comparison techniques. If ε>0
by explicit calculations there exist dγ > d and /c>0 such that the lowest
eigenvalue of

-~~ + W(r) (3.33)

with the boundary condition y (O) = 0 and

'! °S;S<i' (334,
if r>di

is greater than π2/d2 — ε. But

2L2V(r)^W(r) (3.35)

for all large enough L, independent of r, so the minimax principle
implies that for all large enough L, /2

L ^ π2/J2 — ε. Therefore

limλL = π/d. (3.36)
L->oc

We next show that CL converges as L— >oo. Let SL be the solution of

V(sL} = EL^ + n2/2L2, (3.37)

where n is arbitrary. Then 0<d<rL< SL and SL -xi as L -> oo . If 0 :g r ̂  d
then /L(r) = CL sin(/lLr). If d^r^sL then /L(r)^cLsin(ALrf) since /L is
monotonically decreasing for r ̂  J. If r ̂  5L then since V is monotonically
increasing

2L2(V(r)-EL^)^n2 (3.38)

which implies by [20, p. 165]

/L(r)^cLsin(ALd)exp[-n(r-sL)] . (3.39)

These estimates together with Eq. (3.30) imply

lim cL = (2/d)ί/2 (3.40)

so that /L converges in L2-norm as well as locally uniformly to η.
The case d = 0 is treated similarly.
For homogeneous spherically symmetric potentials we can combine

the previous two results to obtain a complete description of the bilinear
form S.
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Theorem 3.5. Let V(x) = c||x||α and let ρc be defined by Eq. (2.19).
IfQ ^ Qc let z(L) be defined by Eq. 2.20. // h e CgXlR3) teί hL(x) = h(x - La).

0 T 4=0
. (3.41)

We comment on the results of this section. It has been widely believed
that the ideal Boson gas has some pathological properties and that the
introduction of interactions removes these. Our results enable us to make
more precise the nature of these pathologies. Above the critical density ρc

all the extra particles go into the ground state of the Hamiltonian, the
phenomenon known as Bose-Einstein condensation [9]. The macroscopic
spatial distribution of these particles is determined by the ground state
wave function and in the limit L-+OO they concentrate exclusively at
the origin. This is in sharp distinction to the normal fluid which we have
seen in Lemma 2.5 is distributed with a density which varies throughout
macroscopic space in an entirely regular manner. In another sense our
conclusion fits in well with Lemma 2.5. We know that

ρί(a) = (2πβΓ3l2g,/2(e-βV(a)) (3.42)

and for a homogeneous potential

ρ ι(fl)<(2πjSΓ3 / 2 03/2U) (3-43)

for all a φ 0. Therefore the normal fluid is only saturated at the origin,
and this is the place where the superfluid is collected.

Nevertheless we have shown that for a homogeneous potential the
spatial distributions of the normal fluid and superfluid are relatively
singular in the limit L— >oo, a conclusion which has also been found for
the rotating Boson gas [13, 17]. For non-homogeneous potentials the
behaviour of the superfluid is in some ways even more peculiar, although
the normal fluid behaves in a completely regular manner again. We refer
to Theorem 3.4 where we showed that the superfluid is distributed in
macroscopic space throughout the region

{xeIR 3 : | | x | |^</}.

However within this class of potentials the constant d does not vary
continuously when the potential is perturbed by a small amount. That is
the spatial distribution of the superfluid depends in an unstable manner
on the potential.

It is perhaps worth mentioning here that for the ideal Boson gas there
is a difference between the thermodynamic limits for the canonical
ensemble and the grand canonical ensemble [10]. For an account of this
see [2, 12]. This difference is caused by the superfluid term and is again
unstable under small perturbations [4].
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