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Abstract. The problem of the independence of the thermodynamic limit on the bound-
ary conditions is considered in the framework of functional integration. For every domain
and every boundary condition in a sufficiently large class a functional measure is con-
structed and the Feynman-Kac-like formula for the statistical operator written down.
Making use of some volume-independent estimates for the Green function of the heat
equation, the thermodynamic limit along convex domains for general boundary con-
ditions is proved to exist and to be equal to that for Dirichlet conditions.

§ 1. Introduction

Essentially two methods have been used in quantum statistical me-
chanics for including the boundary conditions in the definition of local
hamiltonians. One of them employs the connection between semi-
bounded sesquilinear forms over a Hubert space and semibounded self-
adjoint operators [1, 2]. The other makes use of functional integration
to write Feynman-Kac formulae for the semigroup of statistical oper-
ators exp(— βH\ /? ̂  0. Initially devised to accomodate Dirichlet bound-
ary conditions [3], this method was extended by Novikov [4], who
considered the functional measure associated to the Wiener process in
a parallelepipedic box with elastic reflecting walls and has thus been
able to handle the case of Neumann boundary conditions for such
domains

This paper is concerned with extending the second method for a
larger class of domains and boundary conditions. In Section 2, functional
measures suited for a class of boundary conditions are constructed, fol-
lowing the standard way [5] and using the appropriate Green function
of the heat equation. Different properties of these measures, which follow
from local estimates of the Green function, and the relation with the
measures used by Ginibre [3] and Novikov [4] is established. In Sec-
tion 3, the Feynman-Kac formula is written down and the equality of
the thermodynamical limits for the whole class of boundary conditions
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is proved. The infinite volume limit is to be taken along sequences of
convex domains with smooth boundaries. These conditions can probably
be relaxed, but the proofs would become rather involved. The necessary
estimates of the Green function are proved in an Appendix.

§ 2. Construction of the Functional Measures

Let us consider a bounded domain ylClRv, whose boundary dA
consists of a finite number of connected components which are (v — 1)-
dimensional surfaces of class C3. We are concerned with the Green
function of the heat equation

-£(t,x)=—Axu(t,x); ί>0, xeΛ, (2.1)

with boundary condition :

w(f,x) = 0; f>0, xedΛ (2.2a)
or:

) = σ(x)w(f,x); ί>0, xεdΛ, (2.2 b), ,
dnx

where d/dnx denotes the derivative along the inner normal, and σ is a
non-negative C3-function on dA. Both boundary conditions will be con-
sidered together putting formally σ = oo when (2.2 a) is to be understood.

The following two theorems summarize the information needed
about the Green function.

Theorem 1 [6]. (i) There is one and only one function, G^(t,xιtf,xr),
(named the Green function of (2.1), (2.2)), defined for x^x' e A and t>t'
(depending in fact only on t — t') , continuous on Ax A for every fixed
t>t' and having the following property:

For every continuous /: Λ-»IR,

u(t, x)= J Gσ(ί, x; t', x')f(x') dx'
A

is the unique solution of Eqs. (2.1), (2.2) satisfying the initial condition:

lim u(t, x) = f(x) uniformly in A .
ί^ί'

(ii) G σ (f,x;f ' ,x ')^0; *>*', x,x'eΛ,

(iii) J Gσ(t, xm,τ,y) Gσ(τ, y\ t\ xf) dy = Gσ(t, x; t', x')

t>τ>tf, x,xΈΛ,

(iv) \Gσ(t,x\t',xf)dx^l\ t>t', xΈA.
A

σ(x) = 0 implies equality.
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Let us denote

(2.3)

the Green function for the whole space, and define the compensating
Green function for (2.1), (2.2), Zσ, by:

Gσ (ί, x ί x') = G° (ί, x f, x') - Zσ (ί, x ί', x') . (2.4)

Theorem 2 [7]. For every T> 0, f/iere are constants C, c', c" > 0, swc/ι
ίfcaί, for allO<t~-t'^T and x, x' 6 A

(2.5)

where lx, is the distance from x' to dA.

The estimate (2.5) is sufficient for the purpose of this section. It will
become however important later to know that constants C, c' and c" can
be chosen independent of the domain A and to give some more informa-
tion on the behaviour of C for T-> oo. A result of this kind will be proved
in the Appendix.

We shall now outline the construction of the functional measures
related to the Green functions for A, using the (by now) classical
approach presented in the Appendix of [5].

The trajectory space will be:

ΩΛ>β = Y[ At where At = A for all t.

ΩΛ>β is a compact space in the Tychonoff topology. The Banach algebra
of all continuous real functions on ΩΛtβ with the uniform norm will be
denoted ^(ΩΛjβ). The set of all the functions φ : Ω^-^IR, such that there
exist 0 < t1 < - - <tn<β and a continuous function F: An ->IR for which:

will be denoted ^fίn(Ω^^)? and is a dense subalgebra of ^(ΩΛtβ). For
every x, y e A, a linear functional on ^fin(ΩΛtβ) will be defined through:

Pσ

xf(φ) = J dx, Gσ(tl9 x, 0, x) f dx2Gσ(t29 x2; tl9 x,) ••• x
A A (17)

x J dxnGσ(tn, κn\ tn-\, xn-ι) Gff(β, y\ £„, xj F(XI, • ••, xj

where φ and F are related by (2.6).
The consistency of this definition follows from the semigroup prop-

erty of Gσ (Theorem 1, (iii)). Clearly, φ^O implies P^(φ)^0, because
of the non-negativity of Gσ (Theorem 1, (ii)). By a standard argument,
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this implies the boundedness of P%f, which can thus be extended by
continuity to ^(ΩΛtβ). The Riesz theorem [8] asserts the existence of a
unique regular positive measure, P£/( )> defined on all Borel subsets of
ΩΛtβ9 such that:

Pσ

x'y

β(φ)= j Pϊ y

β(dω)φ(ω), φe%(ΩΛ,β). (2.8)

Remarks

1°. We shall denote GN(t, x; ί', x') the Green function for Neumann
boundary conditions (σ(x) = 0 in (2.2 b)). In view of Theorem 1, (iv),
GN(t, x; ί', x') dx are probability measures on A for all t > t', x' e Λ, and
can be interpreted as the transition probabilities of a stochastic process.
Then, the unconditional measure P% can be defined as well.

2°. The standard way of writing the solution of the heat equation
with non-homogeneous boundary conditions in terms of the Green
function [6] allows a proof of the following ordering of the Green
functions:

σx(x)^σ2(x) for all xedA implies,

Gσι(ί, x; ί', x') ̂  Gσ2(ί, x; ί', x') for all x, x' e A.

In particular, G^ is dominated by and GN dominates all Gσ in the con-
sidered class. This implies that the same ordering remains true for the
functional measures, in particular:

P%β(A) ^ Pσ

xf(A) ^ P»>β(A) A a Borel set in ΩAιβ (2.9)

3°. All measures P£'y
β are concentrated on the set of α-Holder con-

tinuous trajectories for every 0 < α < 1/2, which start from x at t = 0 and
finish in y at t = β. In view of Remark 2° above, it is sufficient to prove
that the complementary set is P^-negligible. Because of Remark 1° and
Theorem 2, this proof can be taken over without essential modifications
from [5, 9].

Let P^y'
β be the conditional Wiener measure and

(2.10)
0 otherwise

As aΛ is a P^y'^-measurable function, uΛ(ω) P^y'
β(dω) is a measure on

ΩA β. By the same argument, aΛ(ω) P°'y
β(dω) are measures on ΩΛtβ.

Our main result concerning the family of measures constructed above
is the following:
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Proposition 1. For every Borel subset A C ΩΛ tβ:

j P , y'(dω) Mω) = J P%'(dω) MCO) . (2.11)
A A

Proof. We shall first consider the case A = ΩΛfβ. Let KncA be an
increasing sequence of compact sets whose union is Λ. Let:

ίl if ω(t)εKn for all te[0,β]
α* ( ω>=\0 otherwise.

Because every continuous trajectory which does not touch dA has com-
pact image in A, we shall have:

lim ttKn(ω) = oίA(ω), P%'f - and P%β - a.e.

In view of the Lebesgue dominated convergence theorem [8], it will be
sufficient to show that:

f Pϊ y

β(dω)*κ(ω) = f P%'(dω)*κ(ω)

with KcA an arbitrary compact. Let d = dist(K,dA). Let rc^l, and

— If — 0 1 V} I 1 T pi"7, — . /v — vy. JL. .. .. ii IT J-. j_/t/ik n + 1

ίl if ω(ίk)e K for all fc = 0,1, ...,n+ 1, ,
α«(ω)= 0 otherwise.

We have lim απ(ω) = α^(ω). Now:π

J

where x0 = x, xN + 1 = 3;, and we shall show that limRn = 0.
M

The general term in Rn has the form:

± J dxj . . .rfx n[.. .G 0G°...G°Z ( 7G 0 . . .G 0Z ( TZ ( 7G 0 . . .]
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with /c+ 1 factors Z and n — k factors G°. Taking moduli, extending to
1RV all integrals which do not involve Z-factors and using the semigroup
property of G°, this will be majorized by an integral containing k +1
factors |Z| and at most k + 2 factors G°. With the inequality (2.5), lXk^d
and

G°(ί, x; f, x') ̂  c'~v/2 G° (—, x; —, x 'I (0 < c' ^ 1)\ c' c'

one obtains, after extending again the integrals to 1RV:

n (γ. \ Λ \ f

^ /"/, i 1 M r*» 7Λ I

2β

If Λ c Ω^^ is an arbitrary Borel set, there is a sequence of functions
in #f in(ΩΛj/5) converging to its characteristic function, and it will be
sufficient to prove :

J Pϊf(dω)*A(co)f (<*>)= I P?>β(dω)aA(ω)f(ω), fe«tln(ΩΛtβ) ,
Ωyl,/3 ΩRV,/Ϊ

But this follows at once from the first part of the proof and from :

j Pϊy

β(dω)aA(ω)f(ω)= J dxί ... dxnF(xί, ..., xπ)
βyl,^ ^1Π

• J ^(dωjα^ίωj... J ^-

where / and F are related by (2.6), and the similar equality for the Wiener
measure. This finishes the proof.

As expected, for the appropriate particular cases we reobtain the
measures considered by Ginibre [3] and Novikov [4].

Corollary. For every Borel subset A C ΩAtβ and x, y e A
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Proof. In view of Proposition 1, one has only to show that the P™y'
β-

measure of the set B of trajectories inside A which do touch dΛ for at
least one ί e [0, β~] is zero. But this is a consequence of:

P%β(A) ^ A^β(A) for every measurable A C ΩA>β (2.12)

which follows from a corresponding inequality for Green functions,
and of:

which is a well known result on conditional Wiener measure [9].

Remark

4°. This latter property of the Wiener measure is shared also by all
the measures considered here, provided the smooth surface to be touched
but not crossed is required to be a compact subset of A. It is sufficient
to consider P^/, where, using Remark 1°, essentially the same proof as
for conditional Wiener measure applies.

Let L > 0, and ε : lR-> - — \ — defined by:

x-2nL if (2rc-i)Lίgx^(2tt + i)L, n = 0,±l,...

(2n+l)L-x if (2π + ' l ' }

\ L L
The Green function for Neumann boundary conditions on — — , —

Gw(ί,x;t',x') = Σ G°(ί,x;ί',u). (2.15)
u e ε 1(x')

If ε' : Ω p β ->β[_ £ £1 «is defined by [ε'(ω)] (ί) = e(ω(ί)), then:
F ί 2 ' 2Γ

Pβ

xy(A)= Σ P^^ε'-1^)), Λ measurable (2.16)

is the measure employed by Novikov [4].

Proposition 2. For every Borel subset A C Ω\_L;£]iβ and x,yeA,

Proof. If A = Ω _£ £L, this is just (2.15). We shall now prove:

j PSίf(dω)f(ω) = j Pβ

xy(dω)f(ω) (2.17)
L L Ω\ L L]

1-τ τH
for all /(ω) = Fίω^),..., ω(tn)) e «Γm(Ω[-ί,±},
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ί L L\
For every continuous function h : \ ——, —| ->R and z eIR

ί dvG0(t, v; ί', z) h(ε(v)) = f dwGN(t, w; tf, ε(z)) Λ(w) . (2.18)

Now, using (2.16), (2.15), and (2.18), one obtains

Pβ

xy(f)= Σ $dvi...dvnG
0(t^viiQ,x)G

M e ε 1 (y) IR"

= ί dϋl...dvnG
0(tί,v1;0,x)G0(t2,v2,tί,v1)...

=ίf_£ £l^wι ••- dw»M*ι> wι °> )̂ GN(^? w2; ί l9
2 ' 2 J

which finishes the proof.

Remark

5°. lϊ Λ is a parallelepiped, periodic boundary conditions can be
imposed for Eq. (2.1), as well. The Green function can be written in terms
of G° as follows :

Gper(ί,x;ί',x'H Σ G°(t,xιt',u), (2.19)

where η:W-^A is defined in the following way: Divide the whole Rv

into translates of A η restricted to one such translate means the inverse
translation. Theorem 1 is still true in this case and also the estimate in_
Theorem 2, if |x — x'\ is replaced by the distance between x and x' in A
considered as a torus. Therefore, Gper defines a measure P^ίβ on ΩΛtβ9

which now will be concentrated on the set of continuous trajectories in
A with the torus topology. In the same way as in Proposition 2, one can
see that this measure is given by:

PS? "(A)= Σ P?ΰβ(n'-l(A)} for AcΩΛ>β. (2.20)
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§ 3. The Thermodynamic Pressure

Suppose that the system consists of n identical particles, obeying
Boltzmann or Bose statistics1, enclosed in the bounded domain A and
interacting via a two-body potential Φ :1RV-»1R satisfying the following
conditions2.

(A) Φ(x) is an even function of x, bounded from below: Φ(x)^ - b,
and continuous outside a closed set of Newtonian capacity zero. If the
potential has a hard-core: Φ(x)=+oo for |x|^α, α>0, continuity
outside the core will be required. Below, both cases will be treated
together, taking a = 0 for potentials without hard-core.

(B) The interaction is stable, i.e. there exists B ̂  0 such that for any
finite family of points x l5 . . . , xm e 1RV

We shall in fact need the following much stronger condition:
(BJ There exists a £§;0, such that, for any finite family of points

x0, x1? . . . , xm 6 1RV with \xt -Xj\^ a, i

Note that if a = 0, then (B^ implies the positivity of Φ.
(C) There exists R > 0, such that Φ(x) ^ 0 for |x| ̂  JR.
Let ΩΛntβ be defined as in Section 2, and:

ίl if \ωί(t)-ωj(t)\>a

α(ω) - α(αΛ . . . ,ω") - j for all 1 6 [0, j8] , i Φ ./ - 1, . . . , n (3.1)

10 otherwise .

As usually, we consider the following integral:

W'(x,y)= J ^(dω)α(ω)exp[-fdίl/(ω(ί))], (3.2)
ΩΛ",β I 0 J

whereat*1 ...,x"), y = (/9 ...,/) eJ";ί/(ω(ί)) = Σ Φ(ωl'(ί) - ω^(ί));
R i<7

and Pσ

Xy
β(dω) = f] P^dω1) with P£φ defined in Section 2.

i = l

We shall denote:

5 α -{xGJ" | | x l ' -x^ |>α,V/Φ7-l ,2, . . . ,n} (3.3)

and § = L2 (Λn n Sβ) the Hubert space of the system.
1 It seems that the functional integral approach is not suited to handle easily Fermi

statistics [9].
2 We list here all conditions to be used below. It should be remarked however that

only condition (A) is used for writing the Feynman-Kac formula. Besides, condition (C)
can be relaxed for the purposes of this paper.
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In view of (A) and the definition (3.1), the integrand in (3.2) is defined
a.e. on Sa x Sa with respect to P*'y

β and the integral converges.
The following facts can be proved in the same way as in [3] :
W β ( x 9 y ) is a continuous function of (x, y)eSaxSa. The kernel

Wβ(x, y) defines a bounded selfadjoint positive trace-class operator of §.
Wβ(x9 y) has the semigroup property:

f dz Wβ(x, z) Wβ'(z, y) = Wβ+β'(x, y), x,yεSa (3.4)

and ^ - (3.5)

Moreover, Wβ

9 β ̂  0 is a strongly continuous semigroup and its infini-
tesimal generator H restricted to functions of C2 class of compact
support in An n Sa is given by — \ A + U.

Using (3.2), integral representations of the grandcanonical partition
function can be written down [3, 9]. We shall consider only the case of
Bose statistics, because the case of Maxwell-Boltzmann statistics is
simpler. Then:

00 1 oo 00

5*..<*.0= Σ -TΓ Σ - Σ , ,
1 jn=l Jl Jn Λ

(3.6)
x J άun\ Pσ

u±
β(dώn) exp \_-ύ(ώ^ ..., ώj] ,

A

where ώt are closed loops of time interval jtβ, obtained by putting together
the elementary trajectories ωik : [0, β]-*Λ9 k=l, ...,./i, i= 1, ..., n and:

β
u(ώl5 . . . , ωπ) = f dί U(ωl 1 (ί), . . . , ω1Λ (ί), . . . , ωnl (ί), . . . , ωπjn(ί)) .

o
The finite-volume pressure is:

PΛ'a(Z' β} = lθg ΞΛ'σ(Z' ̂  (17)

For Dirichlet boundary conditions, the thermodynamic limit is
known to exist under conditions (A), (B), (C) on Φ [9]. The existence of
the thermodynamical limit for other boundary conditions and its equality
to the limit for Dirichlet conditions results from the following:

Proposition 3. Let Λn be a sequence of convex bounded domains in
1RV, Λ.n-»oo (Fisher), whose boundaries dΛn are C3 -surfaces with uniformly
bounded mean curvature. Let σn : 3/lπ->lR+, a sequence of functions of
class C3. Then, for interactions satisfying (A), (Bx), (C), and for Q<z<e~ 2Bβ.

lim [pΛntσΛ(z, β) - pΛn, „ (z, /?)] = 0 . (3.8)
n

Proof. The ordering (2.9) implies, for z > 0,

PΛΛ. oo (z> P) ̂  PΛn,an(
z> β) ̂  PΛΛ,N(Z> β)
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Then, splitting the functional integrals in (3.6) into the sum of the inte-
grals over the trajectories which do and which do not touch dΛn, using
Proposition 1, condition (BJ and rearranging the terms, one obtains:

ί du f W(dω) [1 -αu
J Λn ΩΛn,j

Now

J P^jβ(dώ) [1 - Quπ(ώ)] - Z^OΆ M; 0, u) - ZN(/A w; 0, w)
ίMn,.,/j

— Z^dβ, u; 0, M) + \ZN(jβ, u\ 0, M)|
therefore

1 °° (ze2Bβ)j

Λn (3.10)

d u \ Z N ( j β , u ; Q , u ) \ .

Denoting Sn(d) the area of the surface {xeΛn\dist(x,dΛn) = d} and
Sn= area(δΛπ), the convexity of Λn implies

Sn(d)^Sn. (3.11)

Using Proposition A l and (3.11), one obtains:

J du Z^(jβ, u; 0, u) £ e^2 ί Sn

Λn V-l

2(2πjβ) 2

wherefrom the first series in (3.10) is majorized by:

ev/2

C m(] (ZP
2Bβ\'\ 9 v-i \ze ) -

2(2πβ) 2

The second series in (3.10) can be majorized in the same way, using
Proposition A.2 but the resulting series converges only up to e~

(2B+λ)β.
This shows that, for z<e'(2B+λ)β, pAn,N~PAn,^ vanishes for n-+co as

Sn

V(Λn) '
The equality of thermodynamic pressures can also be proved for

.z<e~2Bβ, making use of Proposition A. 3 as well. Namely,



26 N. Angelescu and G. Nenciu:

one truncates the second series in (3.10) at jn, and uses (A.4) for; ^jn and
(A. 13) for />;„, to obtain:

°° 2Bβ

S du\ZMu;0,u)\
An

M(R\ Γ7p
2Bβ~[Jn + ί

. , M W LZ<? J

c /J

which tends to zero for n-> oo, if JM-> oo in such a way that:

Appendix

In this appendix we shall give a proof of the estimates of the Green
function needed in Section 3.

We consider first the case of the Dirichlet boundary condition, which
is a simple application of the maximum principle.

_Uι
Proposition A 1. O^Z^f, x O, x')^*v/2(2πί)~v/2 e 2ί

Proo/. Z^ (ί, x; 0, xr) is the solution of the heat Eq. (2.1), with vanishing
initial condition and with boundary condition :

, ί>0, x'eΛ. (A.I)

If /J ̂  ίv, we shall use for estimation the maximum principle:

_^ι
Z^ x CU')^ sup G° (τ, 3; 0, x') ̂  sup (2πτΓv/2 e 2τ .

0<τ^t 0<τ^t
yedΛ

This is an increasing function of τ for /J Ξ> τv, and then:

12,

Z^^x O^O^ίίπίΓ^e""37. (A. 2)

If I2, < ίv, the positivity of G^ and Z^ will be used, wherefrom:

O^Z0 0(ί,x;0,x /)^G°(ί,x;0,x /)^(2πίΓv / 2

(A. 3)
__^

^^v / 2(2πί)"v / 2e 2 ί .

Proposition A 2. Lei # > 0. Then, there are constants λ ̂  0, C > 0,
c > 0, such that, for every bounded convex domain Λ C 1RV, whose boundary



Thermodynamic Limit 27

dΛ is a C3 surface of mean curvature less than l/R, the following inequality
holds :

(A.4)ZN(t, x; 0, x') ̂  Ceλt Γ^ exp - c

Proof. For simplicity, we shall consider only the v = 3 case.

From the integral equation for ZN [10], one obtains the following
Neumann series solution:

ZN(t, x; 0, x') = - 2 J dσ J dSηG°(t, x; σ, η) — G°(σ, η; 0, x')

-2Σ SdσSdSMdτS
k=l 0 dΛ (σ dΛ

where:

0 dΛ

t

°n

M1(τ,ξ;σ,^)--2^G0(τ^;σ,^)
onξ

(A. 5)

(A.6)
dΛ

Estimates for ZN will be obtained by term by term majorizations of the
series (A.5)3. The proposition will follow from the inequality:

Fγ(τ-σ)2~2exphl^ (A.7)

which will be proved below. It should be emphasized that the constants
C1? h do not depend on A.

First, \ξ-η\
I Mi (τ, ξ;σ,η)\ = 2 cos (m, £77) G° (τ, ξ',σ,η)

τ — σ
, (A.8)

s-^00"'4^1*-
where the last inequality for the cosine of the angle between the inner
normal to dA,nξ, and the vector ξη comes from the boundedness of the
curvature, which implies the existence of a sphere of radius R, tangent
to dΛ in ξ and contained in A. Using:

flα - Sτ(l-Λ
sup —77̂ - e

t '
t>0

e(l-h)

α/2

α>0, (A.9)

3 As the series (A. 5) is alternating, this majorization is very drastic, and is responsible
alone for the factor eλt appearing in (A. 4).
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one can replace (A.8) by:

IMiίτ^ σ^JI^-^ίτ-σΓ^expj-Λ^i] (A.10)

where C0 depends only on h and R.
In order to obtain the estimates (A. 7) for the iterated kernels, we shall

use an induction argument and, at every step, majorize the integral over
dΛ by an integral over 1R2, and make use of the following identity, which
holds for every α, β e (— oo, 2):

(A. 11)

-£«:-**-«<-. ?~"*[-%=%\

This will be done by applying parts of dΛ on parts of planes containing
the segment ξη, in such a way that the surface element be not essentially
diminished and \ξ-Q, \ζ — η\ become smaller for the image of ζ. Let us
describe this process in more detail:

a) One takes a coordinate system with the first axis along ξη and
consider:

where α f(C) is the projection of nζ on the ι'-th axis. Clearly, Sj u S2 u 53 = 3ΛL
b) For f = 2, 3, both connected components of St will be orthogonally

projected on the coordinate plane perpendicular on the i-th axis. The
surface element becomes at most 21/3 times smaller and distances

V i -

decrease, therefore the integral over S2uS3 will be majorized by 8|/3
times an integral over 1R2.

c) Let S* be the connected components of S1 with ± αA (ζ) ^ |/|. We
shall consider Si1". Sf can be treated in the same way. Because of the
convexity of Λ, Sf lies entirely outside the circular cone with apex ξ :

Let π be a plane whose angle with ξη is π/4; D l 9 D2 the half-lines along
which π intersects dΉ and δ the intersection of π with the 2, 3-coordinate

plane. Let dl9 d2 be the orthogonal projections of Dl9 D2 on the



Thermodynamic Limit 29

2,3-coordinate plane and γ= ^(W1?d2). Let Sf(π) be that piece of Sf
which is contained between the half-planes (dl9 DJ and (d2, D2). A rigid
rotation of S^(π) of angle π/2 around δ will be performed, in which
distances between ζ and ξ are unaltered and distances between ζ and η
decrease. Then the rotated surface is orthogonally projected on the
(c), ξη)-plane, in which distances decrease and the surface element is
diminished by at most a factor j/f. The integral over S? (π) can then be
replaced as above by j/f times an integral over IR2. But Sf can be covered

O Ί

by at most h 1 Sj"(π)'s. Therefore the integral over S{ is majorized

by2 | / y

y J
2π

-h 1 times the integral over IR2

Collecting the estimates and making use of (A. 11), one obtains (A. 7).
One more step is necessary to derive (A. 4) from (A. 7), because x and

x' are interior points. Let x0, xό e dΛ be the nearest points to x, x'. The
triangle inequality implies /2 + |x0 — ξ\2 ^9|x — ξ\2 for ξedΛ, and the
similar inequality for x'. This reduces the integrals over ξ, τ in (A. 5) to
the form considered above, and the same majorization will apply.

-G°(σ,fj;0,x/)

(A. 12)

16Cn Ml
18σ

exp - h
|f/-;

2σ

and the integral over η, σ can be majorized as above. If lx,<R/4, the
integration over η e dΛ will be divided into two parts. An integral over

R
and one over £9 = The

integral over S2 can be majorized making use of (A. 12). The integral over
Si is treated by projecting on the tangent plane in XQ, extending the
integral to IR2 and explicitely performing the integrations. Note that in
this last step the use of (A. 9) is a too rough approximation.

Proposition A 3. For ί0 > 0, there is a constant M(ί0) > 0 depending
only on ί0, such that, for all t^t0 and all Λ satisfying the condition of
Proposition A2:

|ZN(ί,x;0,x')|^M(ί0). (A. 13)

Proof. From (A. 4), it results that, for ί = t0:

(A. 14)
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We shall prove, using a known argument [11], that

sup GN(t, x; 0, x') is a decreasing function of t . (A. 15)
x,x' eΛ

Indeed:

= k ί [GN(ί, x; 0, x')]2*'1 ^Gjvίί, x; 0, x') rfx
yl

= - k(2k - 1) J [GN(ί, x; 0, x')]2*-2 [gradx GN(t, x; 0, x')]2 dx

therefore :

and (A. 15) follows by letting /c-» oo. From (A. 14) and (A. 15) one obtains
(A. 13) with:
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