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Abstract. This paper investigates mathematical properties of a finite-dimensional real
algebra of linear operators which are generated by an orthomodular lattice of filters in the
sense of Mielnik [4]. Properties of filter decomposability and a representation theorem
for the vector space underlying the algebra mentioned are derived.

I. Introduction

The physical background and the motivation of the subsequent
mathematical investigations are the papers by Ludwig [3] whose axiom
system was, together with the most important mathematical conse-
quences, restated in [2] in a way more adapt to our mathematical
considerations. So, referring to [2] for detailed mathematical notes, we
will here only sketch basic mathematical concepts in a contemporary
language.

A comprehensive and careful analysis of all current attempts of an
axiomatic foundation of physical theories has been given by Mielnik [4]
who has subordinated the lattice-representing operators T, of [2] to the
physical concept of filters.

11. Preliminaries

We start from a dual pair (B, B') of two real topological vector spaces.
As in [2] B (and hence B’) are supposed to be finite-dimensional, say
dimB=dimB = N.

1. B has an order base K which is convex and closed. The elements
of K are denoted by V, the elements of B in general by X.

2. In B there exists a proper positive generating cone B, generated

by K, i.e.
y B=B.-B, B,= |J /K.
/eR
3. B'is partially ordered by

Y SY, =V, Y,)S(V,Y,) forevery VekK.

* This paper leans on a report presented to and supported by the Deutsche Forschungs-
gemeinschaft.
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4. B’ has an order unit 1 with L:={Y|0<Y<1}. L is convex and
closed. Its elements are denoted by F. {V, 1) =1 for every Ve K. (In [2]
L was denoted by L.)

5. B’ is generated by a proper positive cone B’, generated by L, i.c.
B'=B,—-B,,B.= ] iL.
ieR+

6. The canonical bilinear functional (-, -> over B x B’ is the extension

of the (physical motivated) function u over K x L restricted by
o<u(V,F)<1 forall (V,F)eKxL

separates points in K and L respectively.

7. Bis a real Banach space by

| X|:=sup{lu(X,F)||FeL} foreach XeB.

B’ is the dual Banach space by

[Y]:=sup{lu(X,Y)|XeB and |X| =1} foreach YeB'.

8. The extreme points E of L form an orthomodular lattice G with 0
and 1 as zero and unit element, respectively. For every E € G the ortho-
complement E* of E is defined by E*=1—E.

A(G) denotes the set of all atoms P of G, A(W) the set of all atoms of W
(see 10.).

9. With the notations

K,():={VIKV,Fy=i forall Fel}, i=0;1 andany I[SL,

Li(k)y:={F|<V,Fy=i forall Vek}, i=0;1 andany kCK
there exists a lattice isomorphism between G and U:= {L,(k)|k S K}
and a dual lattice isomorphism between G and W:= {K,())|/C L}.

10. W is the set of all extremal sets of K and equals the set of all
facets of K ([2], Theorem 2 and corollaries).

11. Throughout this paper N, denotes the interval [1;n]nN for
any ne N.

III. Further Properties of the Operators T

As in [2] #(B') denotes the R-algebra of all linear (bounded) operators

over B'.
I :={T|Te#(B) and T[B,]CB,}

is a proper positive cone in #(B’) ([2]). There we defined
T(G):={T;|Tze7 and EeG}
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with T uniquely determined by (V, T, F) =<V, F) for all Ve K,(E).
T, was proved to be idempotent and .7 (G) was shown to be an ortho-
modular lattice isomorphic to G.

This section is mainly devoted to the answer of two open questions
at the end of [2] (questions 4 and 5). Results similar to those concerning
perpendicular projectors on Hilbert space will be obtained.

Theorem L. Forall Ty, Ty, e 7(G): Ty, , g, = Ty, Ty, iff Ty, T, = Ty, Ty,
Proof. (i) If Ty, ,p,=Tg Tp,, then Ty Tp =T, T, because of

Ty, e, = Te, -

(ii) Suppose Ty, Ty, =T, Ty, Since Ty (i=1;2) are idempotent,
so is Ty, Ty,. According to the isomorphism Theorem 16 from [2] there
holds Ty, , g, = Tg, A Tg,; thus, on the one hand, <V, Ty, ,p, F> =<V, F)
for all Ve K,(E; NE,)=K(E{)nK,(E,) and, on the other hand,
VT, Ty, F) =V, Ty, Tg F) for all Ve K. So there holds especially:
V. Ty, Ty, Fy =V, Ty, Fy forall Ve K (E,) and (V, Ty, Ty F) =V, Ty F)
for all Ve K,(E,).

Therefore (V, Ty, Ty, F) =<V, F) holds for all VeK,(E, NE,),
ie. (V, Ty Tp, F)=(V, Ty, g, F) for all VeK,(E, AE,). This is, ac-
cording to Theorem 9 in [2], sufficient for T, Ty F=Tg 5 F for all
FeL because of T, T,,F <E, AE, by hypothesis. Hence we obtain
Ty, Ty, =Ty, i,

Corollary. Let © be any finite subset of 7(G): \ Ty=[]|T; iff ©
consists of pairwise commuting elements. ’ i

Proof. By induction. |

In [2] we considered the Sasaki-projection @, defined by @,(g)
=eA(gVet) for all g of an orthomodular lattice and any e therein.
This projection @, was compared with the projector T,. With the
compatibility relation “e,€e, iff e; =(e; Ae,) V(e; Ae3)” there holds
due to Nakamura [5] in any orthomodular lattice “e, @e, iff @, @,,
=¢,P,"

Concerning T}, the validity of this equivalence was the open question 4
in [2]. The next theorem answers this question in the affirmative.

Theorem 2. For all E\,E,e G:E\CE, iff Ty Ty,=Tg, Ty,

Proof. (i) Given E,, E, € G such that E, ¥ E, is valid, ie. E,
=(E, NE))V(E, NEy).  Then T, F=Tg,, s+ e F SEANE,
+ E, NEj. hence Ty, T, F<E, NE, for all FeL. Since Ty, ,p, Ty, Ty,
=Ty, ,5,» we conclude from the definition of the Tg-operator
Vo Ty, g, T, Tg Fy =V, Ty, Ty Fy =<V, Ty, 5, F) =V, F) for all
Ve K,(E; AN E,)and any F € L. Then Theorem 9 of [2] gives, because of
Ty, Ty FSE NE) Ty, , g, F =Ty, T Fforall Fe L, thus Ty, Ty, = Ty, Ty,
by Theorem 1.
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(i) Supposing Ty, Ty, = Ty, Ty, we obtain Ty Ty, =Ty 5, by
Theorem 1. Since E; A E, < E;, orthomodularity of G implies
E, =(E; NEy))V(E; AE; ANEy)*). To prove the assertion means to
prove E; A(E; NE,)* =E,; ANE3. This will have been verified when
E,AN(E{ANEy)*<E, NE; has been verified because E, A(E, A E,)*
> E, A E; holds always. To this end we observe that Ty Ty, =Ty, , p,
implies Ty, Ty, T, , ,» =0. This means <V, Ty, Ty T, , g, F> =0 for all
Ve K and any Fe L; thus, in particular (V, Ty, Ty, T, gy D
=<V, Tg, Ty, g,y F) =0 for all Ve K,(E,) and any F e L. This implies
Ty, T, o,y F € LoK (E,) = Lo Ky (E3) for all Fe L, hence Ty, T, 5, F
<Ejforall FeL.

Consequently there holds especially Ty, Tig, , 5, By A (E; A Ey)*
=E, AN(E, AN Ey)* <E3. This yields E, A(E, ANE,)'<E, AE35 and so
E,\¢E,. 1

Definition 1 ([6]). (i) Two idempotents I, I, € Z(B’) are said to be
orthogonal iff I, I, =1,1, =0.

(ii) An idempotent I € Z(B') is called primitive, irreducible or minimal
iff it cannot be decomposed into a sum of two orthogonal idempotents
of #(B).

Next it will be shown that the orthogonality relation from the
preceding definition if restricted to .7 (G) is equivalent with the lattice-
theoretical one defined in Theorem 16 of [2].

Theorem 3. For all Ty, Ty, € 7 (G): T, < (T )" iff Ty, Tg, = T, T, = 0.

Proof. (i) Suppose Ty, <(Tg,)" = Ty, ie. Ty, =Ty, Ty, = Ty, Ty, By
Corollary 1 to Theorem 13 in [2] Ty Ty =0 for all E e G. Therefore
Ty, Ty, =Ty, Ty, Ty, =0 and Ty, T, = Ty, Ty, Tp, = 0.

(i1) Supposing Ty, Ty, =Ty, Ty, =0, we have Ty Ty, E, =T, E, =0,
ie. (V, Ty E))=<(V,E,>=0 for all Ve K(E,), thus K,(E;)CKy(E,)
= K,(E3), hence E, <E3. Then the isomorphism Theorem 16 of [2]
yields Ty, <(T,)" 1

Theorem 17 in [2] expresses that Ty < Ty, implies Ty, < Ty,. The

M T (G)
converse of this theorem was formulated as an open question in [2]
(question 5) the answer of which shall now be given.

Lemma 1. For all Tz 7(G): if Ty is orthoadditively decomposable
into Ty =Ty, + Ty,, then Ty=Tg 4,.

Proof. As a consequence of Ey LE, Ty Ty g, =(Tp, + Tg,) Ty, i,
=Ty Ty, op, + T, T, w5, = T, + Ty = Ty, thus Ty < Ty, Besides,
T(E, +E))=T; (E, + E;)+ T, (E, + E;)=E, + E, £ E, thus Tg, ,p,
=Ty |



The Algebra Generated by Physical Filters 113

Theorem 4. For all E;, E, e G: “Ty, STy, =Ty § T.,, iff G is
Boolean. 7 7 (6)

Proof. The implication “Ty, f Ty, = TEI TE "holds by Theorem 17

2

of [2] in any orthomodular lamce G. Therefore the converse must be
shown.
(i) Let G be Boolean. T, =< T, implies E;, <E, and so
JT(G)

E,=E,V(E, NE}). G being Boolean, Theorem 18 of [2] gives
TE1+(E2/\EJ1) = TI‘E1 + TEz/\EJI = TEZ’ thuS TEZ - TE1 = TE2/\E41 ;0, le TEz ; TE;'

(i) Let TE T ,=> Ty, 5 Ty, be valid (for all E; < E,). Since E<1
for all EeG, so T1 TE 0 and then 0< T, — TE Tl This implies

(T,—Ty)FelL for all F eL, because of VAT, - TE)F> =0 for all
Ve K (E), (T, — Tg) Fe Ly K,(E)= L, K,(E*). Hence (T, — Tp) F < E* for
all F e L. Consequently, each F € L is reduced by any E € G and from the
proof of Theorem 18 in [2] there follows that G is Boolean. |}

Theorem 5. If T; e .7 (G) is orthodecomposable, then the segment
G(0, E,) is a reducible lattice.

Proof. G(0, Eg)is orthomodular with E, A E* as the orthocomplement
for any E < E,. By hypothesis, T, = T + Tj;,. Lemma 1 implies E, = E;
+ E,=E, + E, N Ey. Then, according to Theorem 4, each Fe Ly is
reduced by E, and E, A Ef, which, therefore, belong to the center of
G(0, E) thus being reducible. §

Corollary. If G is irreducible, then there exists no proper ortho-
decomposition of Ty.

Remark 1. Given the hypothesis of Theorem 5, there holds for every
E e G(0, Ey):

E=(ENE)V(EANE,ANEY=(ENE,)Y (EAEY,

which means that also in G EZE, holds for all E € G(0, E,). Now we wish
to investigate when all segments G(0, E) of the orthomodular lattice G
are irreducible, i.e. when no T, € .7 (G) is orthodecomposable. We first

illustrate this situation by the example of Hilbert space from Remark 4
in [2] thereby correcting it:

Let »# be a finite-dimensional real Hilbert space and G the lattice
of all perpendicular projectors on . L is then the set of all self-adjoint
operators F with 0O F<1. T is given by T,F =EFE for any E€G
and all Fe L. G is modular and we suppose it to be irreducible. Assume
the existence of E€ G such that EFE=(E, + E))F(E, + E,)=E,FE,
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+E,FE, with E; L E, E,FE, being positive, we obtain E,FE,
=E,FE,=0. Every FeL has a decomposition F= ) AfP’ with

1

ieNp,
_ F
pairwise orthogonal atoms P/ and AT eR%. Let E, = Y P!, E,= ) P}
JENm keN;
be atomic orthodecompositions. Then ) P' Y AfPF ) P}=0 im-
jeNm ieN, keN;

plies, again by positivity, P! P,P? =0forallie N,,je N,,, ke N,. G being
irreducible, the last equation cannot be valid for all F e L: let us consider
x;eImP}, y, eImP?, z;e Im P} Since P;P, =0, 50 x; Ly,. P, P. P, h=0
for all he # implies {x;|z;> {z;|y> {y|hy=0 for all he #, hence
{(x;lz;» =0 or {z;]y,» =0. This contradicts the fact that in the 2-dimen-
sional subspace generated by x;, y, not all vectors z are orthogonal to x;
and y,, respectively. This statement should be inferred from our general
frame.

Theorem 6. If G is modular and irreducible, no Tye T (G) is non-
trivially orthodecomposable in 7 (G).

Proof. Assume the existence of T+ T, with T,=T; +T;, and
T, LT, By Lemma 1, T, =T, ., holds First, we assert the existence
of Pe A(G) such that P<E,+E, and PXE, for each ieN,;
ie. PAE;=0. Let P, and P, be atoms of E,; and E,, respectively. E; LE,
implies P; V P, =P, + P,. G being irreducible and modular, there exists
Pe A(G) with P< P, + P, and P % P, for each i€ N,. Orthomodularity
of G insures the existence of Q € A(G)suchthatQ L Pand P+ Q =P, + P,.

P£E, or Q£ E, for each ie N, shall now be shown:

(i) P £E, leads to the dichotomy

1. Q £ E,, which implies P, =P + Q — P, € B'(E;)n B'(E,), a contra-
diction to B'(E)= B'(E,)® B'(E,).

2. Q £ E,, which implies, because of the uniqueness of the representa-
tion of P + Q by components of B'(E,), the contradiction P=P,;, Q =P,.

So 1. and 2. have the consequence: P<E,=Q<E,.

(ii) P<E, admits only Q <E,; by similar arguments as in (i). The
discussion for Q < E, for each ie N, is in a completely analogous way

so that finally
P<E, or Q=<E, foreach ieN,.

Without loss of generality let us suppose P E; for each ie N,; ie.
PAE;=0.Since P<E, +E,, so Ty, P+ Ty, P=T; ., P=P and thus
T, P<P for each ie N,. From this there follows T, P= PAE;=0,
hence T P =0 with the contradiction P=0. |

We can sharpen Theorem 6 by

Theorem 7. If G is irreducible and modular, then no Tye 7 (G) is
non-trivially orthodecomposable by idempotents of T C B(B’).
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Proof. Assume the existence of T+ T, with T,=T,+T,, T\ T,
=T,T,=0, T*=T,€ 7 and T,#+0 for each ie N,.

These assumptions have the immediate consequence T, F < E for all
F e L and each ie N,. Moreover, T, E < E since, otherwise, T, E = E for
instance would imply T, E=0.

Then, because of 0 T, FZE for all Fe L, T} =T, implies T, F =0
for all F € L, hence T, =0 contrary to T; = 0 for each i € N,. An analogous
argument excludes T, E=E. From T, E < E for each i € N,, there follows
Ko(E)C Ky(T;E). Determining E; e G for each ie N, by K (T, E) = Ky (E,)
(see [3]), we get E;<E. T,ESE;<E has the consequence T,E<TE,
< T.E, hence T,E,=T,E. To show T.E,=E,, T,E, < E, must be excluded,
for Ty E; < E; holds by construction of E;. Assume T, E; < E;: then, by
Lemma 7in [ 2], there exists V; € K, (E;)suchthat {V,, T,E;> <<V, ,E>=1.
Therefore, K, (T, E;)C K{(E;), and orthomodularity of W gives K,(E))
= K(T.E) V(K (E) N Ko(TE)) = K ((T.E) V (K (E) A Ko(E)), whence
the contradiction K, (E;) A K(E,) % .

So T.E;=E; foreachie N, holds and thus E=E, + E, and T;; L T},.
Any F;eImT, satisfies F,<E, ie. F=T,F,<T.E=T,E,=E;<E. Con-
sequently, F; € Lo Ky(E;)CImT,, which implies T, T,=T,. Since
Ii=T+T,, so Tp=T; Tp=T; T, +T; T,. In particular, T =T,
+ Ty, T, and Ty, =T, T, + T,. Multiplying these equations by T, and
Ty, respectively, and using Ty, L Ty, give Ty, Ty = Ty T, = 0. So finally,
T, =T for eachie N, and thus T, = Ty, + T, contrary to Theorem 6. ||

We conclude this section by a statement on chains in .7 (G).

Theorem 8. Any chain in 7 (G) is linearly independent.

Proof. 1t suffices to consider only proper chains in 7 (G). They are
finite, since B’ is finite-dimensional. Let (Tg ).y, be an ascending finite
chain with ne N and suppose Y f;T; =0, ;e R. Orthomodularity

ieN,
of 7(G) implies Ty =T,  V Ty ., whence, by the chain property,
T, LT, 5  forallieN,_,. Applying Theorem 13 and its Corollary 1
of [2], we obtain
TE"/\EJ,,» 1 Z Bi TEI =B TEH/\E;h T, =P, I e, =0.
ieNy,

From (7} );.n, being a proper chain there follows f,=0. The same
procedure applied to Ty | verifies the assertionby recursion. |

IV. The Algebra #(B’)

Remark 2. Theorem 21 in [2] is incorrectly formulated. Its correct
version is: “If G is irreducible, then .«7(G) = #(B')". This means that, if G
is irreducible, there exist no invariant subspaces of B" except (0) and B’
for the R-algebra «/(G) generated by .7 (G) (see [2]). In this case .«7(G) is
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called strictly irreducible [ 6]. The correction consists in only substituting
/(G) for o/ in the Theorems 20 and 21 of [2]. However since we had
only outlined the proof of Theorem 21, a complete proof is thought to be
necessary. The proof of Theorem 20 shows that the commutant .7 (GY
of .«/(G) is isomorphic with the reals R, which is a sharpening of Schur’s
lemma.

Definition 2 [6]. (i) An algebra .« of linear operators over a vector
space ¥ is said to be k- fold transitive on 4 iff for any k linearly independent
x;€Z(ieN,) and k y;e & there exists Te .o/ such that Tx;=y,; holds.

(i1) .o 1s called strictly dense on & iff o/ is k-fold transitive for any
keN.

Remark 3. (i) 1-fold transitivity is equivalent to irreducibility.

(ii) If o7 is 2-fold transitive, then <7 is already strictly dense ([6],
Lemma (2.4.3)).

Definition 3 [ 1]. Let M be an .«/-module.

(i) M is said to be faithful iff aM # (0) for every a e ./ \{0}.

(i) M is said to be irreducible iff M and (0) are the only .«/-sub-
modules and /M =] ) a;m, | a;e./ and m e M, neN}#(O) holds.

ieN,

Definition 4 [1]. A ring </ is said to be primitive iff there exists a
faithful irreducible .«/-module M.

So we are prepared for the formulation of Jacobson’s density theo-
rem [1]: If «/" = Hom (M, M) is the centralizer of a faithful irreducible
«/-module M, then .7 is strictly dense in Hom_,. (M, M). (<7’ is, by Schur’s
lemma, a field!)

Remark 4. Concerning B” we observe that

1. B as &Z/(G)-module is faithful for .«7(G) < #(B).

2. G irreducible implies B’ is irreducible for .«/(G), which is, since
dim B’ = N < ¢, equivalent to the strict irreducibility of B for .7 (G).

3. /(G) is isomorphic to R, thus .&/(G)" = %(B’'). We have only to
prove Z(G)=.</(G)" and Theorem 21 in [2] will then be verified in
detail:

By the above density theorem .«Z(G) is strictly dense in .7 (G)" = #(B’).
For any Te %(B') and any basis {Y;|ie Ny} of B’ we define TY,=Y,
for each ie Ny. Since ./(G) is dense, there exists A € .#/(G) such that
AY,= Y, Therefore T and A coincide on the basis choosen, hence T = 4.
This proves #(B') € .«/(G) and completes the proof of Theorem 21 in [2].

Remark 5. Using Mielnik’s terminology [4], we see that the set of all
physical filters Ty determines the R-algebra of all linear operators of B’
which is generated by the set of all physical decision effects E.

Let (&) and Z(¥) denote the left and right annihilator, respectively,
for any & C #(B’). Being the algebra of all linear operators over B,
A (B') satisfies
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1. L(Y=94B)1,, 2. #S)=1%B(B)
for all & C #(B') and I, I, idempotents of Z(B’).

1. and 2. are the defining properties of a Baer-ring. By Remark 5 .«7(G)
is such a ring and there even holds that #(B’), being a Banach algebra,
is an annihilator algebra, which can be inferred from a theorem by
Rickart [6]:

1. #(Z) being an annihilator Banach algebra is equivalent with the
Banach space 2 being reflexive. From the textbook [6] we need 4 other
theorems:

2. For each minimal right ideal # of an algebra ./ with %2+ {0}
there exists an idempotent e € .o/ such that Z=e.«/ and e</¢ is a field
with unit element e (this e is minimal !).

3. For each minimal idempotent e €.¢/ ¢ </ is a minimal right ideal,
/e a minimal left ideal.

4. For each minimal idempotent of a Banach algebra there holds

(i) e.Ze is isomorphic either to the reals or the complexes or the
quaternions.
(i) If .«Z is complex, e.’7e =e.

5. In a semisimple annihilator algebra is (0) the only right ideal
which contains no minimal right ideals.

Consequence. By Theorem 20 in [2] «/(G)= #(B’) is simple, hence
minimal idempotents exist and 2.—5. give a biunivocal correspondence
between the minimal idempotents and the minimal right (and left) ideals
(respectively).

We are now prepared for an investigation of all minimal idempotents
(and hence all minimal right ideals) in 4(B’): Reflexity of B and B’ implies
the canonical isomorphisms: B’ ®gB = %(B); BQgB =Z%(B’). So we
may define the following linear operators over B and B', respectively:

(YRX)X=<(X,Y>X forall XeB andany YeB,XeB;
(XQY)Y=<(X,Y>Y forall YeB andany XeB, YeB.

Let X®Y be positive, ie. (X®Y)[B,]SB,, then (X®Y)YeB, for
all Ye B',. There are two cases to be distinguished:

(i) Ye —B, implies <(X.Y)><o forall YeB., thus Xe —B,.
(i) YeB, implies <(X,Y>>0 forall YeB, thus XeB,.
Summerizing we can state

Theorem 9. 7,:={X®Y|XeB, and YeB'} is the set of all
positive operators of rank 1 in %(B’).
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Lemma 2. Every idempotent I € (B’) with rank 1 is minimal.

Proof. Assume I=1I, +1I, such that I, I, =L I, =0 and [+ 0 for
each ie N,. Then we have ImI=ImI @Iml,, hence dimIml
=dim Im/; +dim Iml, = 2, contrary to dim ImI = 1.

Theorem 10. Every positive minimal idempotent 1€ A(B') has the
representation

X®Y with {(X,Y)=1, XeB, and YeB,.

Proof. According to [6], p. 65, a right ideal of #(B’) is minimal iff
it consists of elements of rank 1. From Theorem 9 and Lemma 2 there
follows for such an idempotent I that I=X®Y, XeB,, Ye B, and
idempotence of I requires

(XQYPY=(X. V)X, DDY=(X.DXR®Y)T=X®Y)Y

for all Ye B'. This is satisfied iff (X, Y>=1. J

2. and 5. of Section II admit the representations: every X € B, can
be written as X =aV, e R, and Ve K; every Ye B', can be written as
Y=/fF, feR, and F e L. Therefore, any I from Theorem 10 can be
represented as I =affV®F with f{(V,F>=1. If Y=fF then f§ can be
choosen so that K, (F) % @ because K is compact. This leads us to

Theorem 11. Every positive minimal idempotent I € #(B') can be
represented by I =V QF with f{V,F) =1 and K(F)+0.

Corollary. V®F is a minimal idempotent iff Ve K(F). As an im-
portant consequence of Theorem 11 we may verify

Theorem 12. Every atom T,e 7 (G) (i.e. Toe AT (G)) is a positive
minimal idempotent satisfying

T,=Ve®@P, P A(G) and {Vp}=K,(P).

Proof. Per definitionem of .7 (G) T, is idempotent and operates by
reason of the preface to Theorem 20 in [2] as T, Y =(V,, Y) P for all
Ye B, thus T,=V,QP. |}

From 4. of the quoted theorems in Rickart’s textbook [6] there
follows in particular that each Tp,e A.7 (G) satisfies T, #(B') T, =RT,
= TpR. Of course, we would have been able to calculate this equality
directly, ignoring, however, its connexion with irreducibility of idem-
potents in #(B’).

The next step leads to a linear order isomorphism between B, B’ and
minimal ideals of #(B’). To this purpose we show
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Theorem 13. For arbitrary but fixed P e A(G) the sets
Rp:={X®P|XeB} and %Lp:={Vp®Y|YeB}
are minimal right and left ideals, respectively, satisfying
Rp="Tp B(B'), Lp=H(B)Tp.

Proof. The ideal property is obvious. Besides, each element of the
ideals has rank 1. We have only to prove %, = #(B’) Tp, the verification
of #p=Tp,2%(B’) is then in a completely analogous way and will be
omitted. Let {X; | ie Ny} and { Y;] j€ Ny} be bases of Band B', respectively.
Then every Te#(B) admits the representation T= ) (;X;®Y;;

i,jeNN
thus, for all YeB', there holds TT,Y=T(V,®P)Y= 3 1,{X,P)
i,jeNn
(Vp®Y) Y, whence.withY:= ) 1, (X, P>Y,, TV;@P=V,QYe%L,
i,jeNn

ie. (BT C .¥p. Consequently, for every V,®Ye Zp: (Va®Y) (Vp,®P)
=Vp, YVp, PO Y=(Vp, >Y=V,®Y since <(Vp, P> =1. Hence
Ly CBB)T,.

Corollary. The correspondences B— %, and B'— %p are linear
bijections.

4. of the Rickart-theorems quoted yields Zp.Fp =T, B(B') B(B')Tp
= T, #(B') T, = R Tp, which leads because of (X @ P) (V@ Y)=(X, Y> T,
to the existence of a bilinear functional I' over %Zpx ¥, given by
FX®P,Vp®Y)=<X,Y)=u(X.,Y) I is, therefore, the canonical
bilinear functional over %, x %p, because {.,-» has this property on
B x B'. This enables us to formulate

Theorem 14. (i) The bijections from the preceding corollary are order
isomorphisms.

(i1) The sets LC B, GCB', KCB are represented by
Lo={Vo@F|Fel}, 9p={V,®E|E€ G} and #»={V,®P|VeK},
respectively.

Remark 6. According to Theorem 10 any minimal idempotent
Xo® Y, with (X,, Y,> =1 can be substituted for T, in the preceding
theorem, for it leads to equivalent representations.

Open remains the question of what algebras posses a bilinear func-
tional I' satisfying all postulates of u (and its extension) and of what
subsets of these algebras represent L C B, GC B’ and K C B, i.e. satisfy
all the axioms postulated of L and K. Theorem 14 suggests to attempt
a characterization of the dual pair (B, B’) by the algebra #(B’). The
following considerations prepare this task.

9 Commun math. Phys., Vol 28
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Lemma 3. In (#(B), ||, N) as a Banach space there exists an
additional norm defined by |T| . :=sup{||TF||FeL}, b'" denoting the
N-dimensional unit ball of B'.

Proof. Verification of the norm axioms: 1) | T, = o for all Te Z(B)).
2) |T||,=o0 implies | TF|=o for all Fe L, hence TF=0 for all Fe L.
Since L is generating in B’, so T =0. Immediately from the above defini-
tion there follow

3. |BT|.=1BI|T|, forall BeR and

4T+ D s T+ [Tl 1

Remark 7. Concerning this norm #(B’) is as a finite-dimensional
vector space complete and the two norms |-||,,N and |-|, determine
the same topology in #(B’), hence they are equivalent. Therefore, all
Te #(B') are already distinguished sufficiently sharp by the effects
F e L. This is the physical meaning of the norm ||| ,.

We can even strengthen Lemma 3 by

Theorem 15. (#(B'). ||-|,) is (just as (#(B'), |||, N)) a Banach algebra.

Proof. Since |TF| <p,|F| with B e R% for all Fe L, we have in
addition to the norm properties in Lemma 3,

INT|,=sup{|T\ L, F||Fe L} T, |TF| < |T[.|T.]..
Moreover, there holds | Ty|, = |iidy ||, =sup{|F| |FeL}=1. 1§

We intend now to tackle the problem of how to make (#4(B), |- .)
a #-algebra with .7 (G) as a subset of the set of all elements remaining
fixed under the involution #. Remark S gives an appropriate hint:

#/(G) is the smallest R-algebra containing 7 (G). Thus it contains
the R-algebra of all finite linear combinations of all finite products of
elements of 7 (G). By Remark 5 it equals 4(B’). Consequently, each
Te #(B') has a representation by finitely many Ty e 7 (G) because of
dim Z(B') = N* < oo. Without loss of generality these T may be selected
to be linearly independent:

T= ) ti)Tg, + Y tliyi))Ty Ty +--

i1eN; iy,i2
iy ¥iy

ot Yoo iy i) Ty Ty, Ty

meN, i e N, for all ke N,,, where | <dim%(B')= N>
We define for every me N:

T(GY" =Ty, Ty, .. Ty, | T €7(G) and keN,}.
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Then we regard on | | 7 (G)™ the relation * defined by

meN
(TE” T’E12 e TE:,,h, TEzm)*: TEzm TE],,,»} e T‘E‘2 TE!; .

This confronts us with the question when the defining property for * to
be a mapping holds: “For any T,, T,e 7 (G)": T, =T,=>T¢=T5.
Since T = T T implies T = Ty for each Ty € 7 (G) the defining property
of * is obviously valid for all Ty e 7 (G) being a subset of the set of all
fixed elements under *. Let us consider 7 (G)* and assume Ty Ty, =Ty, Ty,
The question is whether “T; Ty, = T, Ty, implies T, T, = T, T holds.

Theorem 16. For all ieN, and Ty € T(G): Ty Ty, =Ty, Ty, and
E\6E, implies Ty, T, =T, Ty,.

Proof. From Ty, Ty, = Ty, Ty, there follows Ty, Tp,,(E; AE,)=E, N E,
=Ty, Tg (E; NE))S Ey NE; and Ty, T, (E5 A Ey) =T, Tp (E5 N Ey)
=E;NE,<E, NE;. E\%E, is, by Theorem 2, equivalent with T, T,
=Ty, T;,. Applying then Theorem 1, we obtain Ty, .5,(E; NEY)
=Ty, To(EsNE)=E;NE,<ENE,. Ty, pEi=Tg Ty, E5x=0
implies <V, TE,AazE >=(V,Exy=0 for every Ve K,(E, A E,), hence
K (E; N Ey) Ko(Eg) = K(Ey), thus  E; A E, S E,. Ty, Ty, o p,
=Ty Tp, Ty, =0 implies Ty E, NE,=0, ie o=V, Ty E  ANE,)
={(V,E, NE,) for every Ve K,(E3), hence K,(E3)=K(E;)SK(E; AE,),
thus E; A E, £ E;. This completes the proof of E;, A E, =E; A E, from
which Ty, g, =Tz, , g, = Tg, T, results and thus Ty Ty, =T, Ty, |

Physically speaking, the above implication was only verified for
commensurable decision effects. Generally, however, the above implica-
tion is valid for (4.7 (G))*:

Theorem 17. For all Ty, Tp,, Ty, Ty, € AT(G): Tp, Tp, =Ty, Ty,
implies Tp, Tp, =Ty, Ty, .

Proof. (i) If Tp, Tp, =Ty, T, =0, then P, LP, and Q, L Q, and the
implication is true.

(i) U Tp, Tp,#0,then Tp Tp, = Vp,, P> Vp, QP =V, 020 Vo,® 0,
with (Vp, P> #0+{V,,,Q,) implies P, =Q,. Moreover, for every
atom P < Py we obtain T, T, =0, hence P < Q5. For every atom Q < Q3
we obtain T, T, =0, hence Q< Py. So, \/ 0=Q5<Py=\/ P03,

whence P,=0Q,. | 0=0; PP
Suppose * is a mapping, then * is obviously involutory on U T(G)"
meN

and the question arises whether * can be linearly extended to %(B’) to
give an algebra involution. A necessary condition for * to have such an
extension is:

“Forevery Te | | 7(G)": T*=0=T=0."

meN
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Obviously, this implication is true if E; LE; | for at least one
jeN,\1}. Let us consider Ty ... Ty, € 7(G)" such that (T ... Ty )*
=Ty, ... T, =0. This implies (V. Ty Ty  ...Ty F)=o0 for every
Fel and every Ve K: particularly, <V, Ty Tg  ...Tg F)
=V, Ty, ...Ty, Fy=0 for every Ve K,(E;)=K,E,) Since
Ty, Ty FeLoK(E;, ).soTy  ..Ty FeL,Ky(E )N LoKo(EZ)

=L,Ko(E;, , NEi) Wefailed to prove the desired implication generally
though it holds in an important special case.

Im—1 Im—1

Theorem 18. For every Te U AT (G T*=0=T=0.

meN

Proof. By the above consideration we get the following dichotomy:

(i) P, ANP-=P hence P, <P and the implication is true.

m-1’ 1

(ii) P, ,AP:=0 leads to T,  ..T, =0.To Tp  ...T, =0

the same procedure applies and we arrive at least at one je N, \{1}
such that P, L P, which states the validity of the implication. (i) and (ii)
express the existence of at least two orthogonal atoms being neigh-
bouring factors of the product in question. |}

There remains the open question whether for instance modularity
of G guarantees the existence of an involution * on #(B’) which makes
#(B’) a C*-algebra with 7 (G) in the set of all fixed elements under *.
The converse of this question (the open question 3 in [2]) will be answered
in a subsequent paper in the affirmative.
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