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Abstract. A systematic presentation of the quasi-linear first order symmetric hyperbolic
systems of Friedrichs is presented. A number of sharp regularity and smoothness properties
of the solutions are obtained. The present paper is devoted to the case of R" with suitable
asymptotic conditions imposed. As an example, we apply this theory to give new proofs
of the existence and uniqueness theorems for the Einstein equations in general relativity,
due to Choquet-Bruhat and Lichnerowicz. These new proofs using first order techniques
are considerably simplier than the classical proofs based on second order techniques. Our
existence results are as sharp as had been previously known, and our uniqueness results
improve by one degree of differentiability those previously existing in the literature.

§ 0. Introduction

Part of the folklore of mathematics is that the Friedrich's theory of
symmetric hyperbolic systems extends to the quasi-linear case. Our
original motivation for looking at these systems came from the fact that
it is possible to reduce the Einstein system studied by Choquet-Bruhat
and Lichnerowicz [3,4, 33] to a first order symmetric hyperbolic system.
The techniques these authors used are based on the second order theory
of Leray [32] as improved by Dionne [16].

However we needed a version of the symmetric hyperbolic theory with
sharper differentiability properties than previously existed in the
literature. The basic theory is presented in §§ 1,2 below. We consider the
equations in Rn with asymptotic conditions imposed. Presumably
similar results are true for bounded regions with suitable boundary
conditions. One could also argue locally in Rn and use domain of
dependence arguments; cf. Fischer-Marsden [21], Wilcox [42]. Part II
will deal with the theory on manifolds.

This theory is complicated in its technical details by two facts. First,
differentiability properties of the coefficients complicate the proof that
the solutions are just as differentiable as the initial data in the Sobolev
class Hs. Second, we want this value of s to be the best possible, s > n/2 + 1.
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The linear case is presented in § 1. For the applications, we want to
make the assumptions on the coefficients as minimal as possible. This
necessitates using carefully the domain of the linear generator of the
equations. In particular the usual energy estimates are not good enough
to show that the top order derivatives are well behaved. This is replaced
by a perturbation argument. This is then used in § 2 to effect the quasi-
linear case. The proof is, in outline, that suggested by the standard method
of handling quasi-linear equations (cf. Courant-Hilbert [15]). Namely,
one sets up a suitable contraction mapping on a function space using
the linear theory, and the fixed point represents the solution. It is pro-
pagated only for a small ί-interval.

Several properties are established in addition to the existence and
uniqueness theory. For example we establish regularity (the time of
existence does not depend on s, the differentiability degree) -- this was
also obtained for the second order systems by Choquet-Bruhat [7,9].
We also show that the propagator Ut(u), u e H\ is a C°° function of u for
fixed t and is jointly continuous in ί, u.

We go on in §§ 3,4 to apply these results to the Einstein system. As in
[3, 33] we use harmonic coordinates. The key idea is that in these
coordinates the top order terms in the Einstein system uncouple. In
the second order theory this enables one to verify strict hyperbolicity
here it enables one to reduce the equations to a symmetric hyperbolic
system in the same way that one reduces the wave equation to a symmetric
hyperbolic system.

We obtain most of the important results in a fairly compact exposition,
using the relatively simple theory of symmetric hyperbolic systems.
We deal directly with the asymptotic conditions, obtain the best possible
value s ^ 4, and establish uniqueness of Ricci flat Hs spacetimes up to
Hs+1 coordinate transformations (in [6] it is Hs). Results local in space
can be dealt with in the same manner; cf. [21].

§ 1. Linear Symmetric Hyperbolic Systems

A symmetric hyperbolic system in Euclidean space has the form

A°(t,x)^= t Aί(t,x)^τ+B(t,x)u + C(t,x) (1)
01 i = 1 OX

where A°(t, x) is an m x m positive definite symmetric matrix for
(t,x)eRx Rn, u = u(t,x) = ut(x) is an m component vector and Aι(t, x)
are symmetric matrices.

These systems have been studied and applied rather extensively.
We refer, for example to Friedrichs [23], Lax [31], Courant-Hilbert [15],
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Dunford-Schwartz [17], Phillips [37], and Kato [29]. See also Wilcox
[42] and Schulenberger and Wilcox [38].

In this section we would like to present a few refinements of theorems
due to the aforementioned authors. These refinements concern the
differentiability of the coefficients and are needed in the quasi-linear
theory (§ 2) and in subsequent applications.

We denote by Hs{R\Rm) = H\ the usual Sobolev space; Hs is the
completion of the C°° functions with compact support under the Hs norm:

l!/lis

2 = ll/i!έ- Σ tt*f(*)\2dχ-

Here Dkf denotes the total derivative of order k.

We make use of two basic Sobolev-type theorems:

(i) Hs is a ring under multiplication,

Wf g l Z c o n s t 1 1 y

if s > n/2. Here / g stands for some bilinear form from Rm x Rm' -*Rm"
composed with / x g\ for example, componentwise multiplication;

(ii) fors>y +k,HscC

|| / II ck g const

where | | / | | c k is the supremum of |/ | , | D / | , . . . , \Dkf\ over all of jRw.
These results are standard; see for instance Nirenberg [35].
Our starting point will be a result which is essentially contained in the

above references. The assumptions are as follows:

(i) s > n / 2 + l .

(ii) A0 is symmetric positive definite and

is a C 1 map from R to Hs(Rn,Rm2) and a C° map from R to
Hs+ x (U11, /Γ2). Here / is the m x m identity matrix.

(iii) A1 is symmetric, i = 1,..., n and ' x

is a C° map from R to Hs(Rn

9 Rm2).

(iv) ίt->J3f(χ) = B(t,x) is a continuous curve from R to Hs{R\Rm2).

(v) ί κ>Q(x) = C(ί,x) is a continuous curve from R to Hs(Rn,Rm).

1.1. Theorem. Let assumptions A1 hold. For any uoeHs there is a
unique continuous curve t\->uteHs which is differentiable as a curve in
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Hsl (in the norm topology) and equals u0 at t = 0 and which satisfies
Eq. (1). (Note that each side of Eq. (1) is an element of Hs~ι.)

In fact there is a family of smooth maps

U{t,s):Hs-^H\ t,seR
such that

(i) l/(ί, s) o ί/(s, r) = L/(ί, r) (Chapman-Kolmogoroυ equation),

(ii) U(t, £ ) U O = MO, and

(iii) t\->U(t,s)u0 is a continuous curve in Hs and a C 1 curve in IIs'1

and satisfies Eq. (1). We refer to U(t, s) as the flow defined by Eq. (1).

This result is generally attributed to Friedrichs.

Remark. The solution w(ί, x) will, from the differential equation itself,
be locally jointly Hs in (ί, x). However, that t\->ut is a C° curve in Hs and a
C 1 curve in H8'1 is saying more. Indeed, from the restriction theorem
(Palais [36]), if u(t, x) is jointly Hs, it does not have to be Hs in x for fixed t
(one "loses \ a derivative" on restriction to a hyperplane).

Since Theorem 1.1 does not appear in the above form in the literature,
we shall sketch its proof.

Sketch of Proof

Since A0 is symmetric and positive definite, we can write A0 = T2

where T is symmetric and positive definite. Moreover T — I will be in
Hs + 1 and C 1 as a curve in Hs. Thus T is close to / at spatial infinity,
and so T or T " 1 multiplied with something in Hs is again Hs (write
TA = (T — I) A + A). Then v=Tu satisfies (using the summation con-
vention on repeated indices)

which is of the form

where now A\ B, C satisfy the same hypotheses with A0 = I. Thus this
change of variables reduces the problem to A0 = /. Note that one degree
of differentiability was lost in the transformation. If A0 is only Hs,
different arguments are needed - see below. This change of variables may
be found in Courant-Hilbert [15].

We see from our assumptions together with Sobolev's theorem that
the conditions in Kato [29] are met. This assures the existence of unique
ί-continuous solutions in H1, and ί-differentiable in L 2 .
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To obtain the Hs case from this we employ the Leray energy estimates,
as in Courant-Hilbert [15]. First we proceed formally; letting ( , ) be
the L2 inner product, we have

ίΞ constant (v, υ) + constant \\v\\L2,

\\v,\\L2^ek-

Here we have written

and exploited symmetry of A1. We thus have \v\Ll bounded on finite

f-intervals. Note - — - is uniformly bounded as s > n/2 + 1.
ox1

We continue this process up through the Hs norm. One must exploit
the ring property of Hs here, being slightly careful as our coefficients are
just Hs. Consider the total derivative of order s; again we have, formally,

1 u
% Dsv) = (D S U* -^+BV + C\ DSV

= [A1 ^(D sι;)H \-{DsAι) -,Dsυ
\ dxι dxι

+ ((DsB)υ + + BDsv, Dsυ) + (DSC, Dsυ).

The first term ί >4£ —— (Dst;)5 D
si;|may be dealt with as in the L2 case

above. The other terms are handled by Sobolev inequalities. For example

dυ

δxι

dv

δxι

c°

^ (const) II^H^II^IIH-

The rest of the intermediate terms are handled in a similar way as in the
proof that Hs is a ring. The B terms come immediately from the ring
property:

(iy(Bv),iyv)Z\\Bv\\H.\\v\\H.

g const ||B||H. H I , .

Warning: This technique does not work if B is only
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These arguments show that there is an a priori bound on the Hs norm.
To make the proof precise requires further arguments. Indeed, at first
one doesn't even know that Dsv is an L2-function. This can be remedied
by a C00 approximation argument. Namely, we observe that we would
rigorously obtain the above bounds if v were C00. So approximate the
coefficients by C00 ones and the initial data by CJ data. By differentiating
the equation it is not hard to see that the solution is C00 (or use Dunford-
Schwartz [17]), and by the Hs estimates above, our sequence of approximat-
ing C00 solutions converges in Hs. The theorem then follows. |

Theorem 1.1 is not yet shaφ enough for the applications we have in
mind. We wish to allow B to be just Hs~1 and Λ° to be Hs. Let us observe
that without special conditions on A\ Hs~x solutions need not be W
if the initial data is Hs. Indeed, take the case A° = I, Aι = 0, C = 0 and

m = 1. Then we are dealing with the equation —— = Bu. This has solution
ot

[Bdt

κ(t, x) = e MO(X) which is only Hs~1 if B is only H s ~ 1 .

To deal with this case, we consider first a few lemmas:

1.2. Lemma. Let A be the generator of a C° semi-group etA on a
Banach space $ with DA the domain of A. Let DcDAbe a Banach space
continuously included in DA (with the graphtnorm). Suppose etA leaves D
invariant and forms a C° semi-group there. If D is dense in DA, then D
is a core for A (cf. Kato [26] for terminology).

Proof. The argument is along standard lines; cf. Kato [29], p. 243.
Namely, from ^

(λ-A)-1^ j e-λtetAdt
o

for sufficiently large A, we see that (λ — A)~1 maps D to D. Now (λ — A)~x

is one to one and maps $ onto DA. Since D is dense in S, the image
(λ — A)~ 1{D) is also dense as is easily seen using $*. From this it follows
easily that A is the closure of A \D as required. ~

Further details and applications of results like this are found in
Chernoff-Marsden [14].

The purpose of this lemma is to insure that when we regard A1 —- Γ

ox
as an operator from Hs to H8'1, its closure is the generator of a (semi-)
group and hence the correct domain may be obtained from this closure.
We state this formally as follows:

1.3. Corollary. Let Atu = ΣAι -r-j- where A1 satisfies conditions Ax (iii).

Regard At as an operator from Hs to Hs~ι. Then the closure of At, for



The Einstein Evolution Equations 7

each ί, is a generator of a one parameter group. Let this closure be At with
domain Dt.

Proof. Fix t. Then by Theorem 1.1, At generates a flow on L 2 which
maps Hs to Hs, and Hs~x to Hs~1. The generator of this flow, restricted to
Hs~x is clearly an extension of A^.H'-^H^1. Now apply the lemma

- i f 5 " 1 and D = HS. |

1.4. Lemma. Let At:DtCi^Sbe the generator of a flow U(t, s)\S-*δ.
Let t\->Btbe a strongly continuous curve of bounded operators on S. Then
At -f Bt has a (unique) flow, F(ί, s).

Proof. This is proved as in Kato [27], Theorem 4.5. |

Warning. The flow V(t, s) need not map the domain Ds to the domain
Dt. Since Bt is a bounded operator, the domain of At is the same as that
of At + Bt.

If we apply these remarks to symmetric hyperbolic systems we obtain
a result in which B need only be Hs ~*. Our assumptions are as follows:

(i) s>n/2+l.

(ii) A0 is symmetric positive definite and t\->A?(x) — I is a C 1

map from R to Hs~1 and a C° map from R to Hs. .

(iii) A' is symmetric and t\->Aι is a C° map from R to i ί s . 2

(iv) t\->Bt(x) is a continuous curve from RtoHs *.

(v) ί κ>Q(x) is a continuous curve from Rio Hs~ι.

1.5. Theorem. Lei assumptions A2 /zoW. Lei D6 denote the domain of
the closure of the operator

At(u)=ΣAι(t,x)^U

Γ

ox
as a map of Hs to Hs~1. Assume Ds is independent of t.

Then for u0 e Ds there is a unique solution ut eDs to

0 δu Λ . δu

δt {^γ ' δxι

In fact this equation defines a flow U(t,s): Hs~ι -> ίF~ 1 which maps
Ds to Ds.

Proof. We may assume, as in Theorem 1.1, that A0 is the identity.
Applying 1.4 we see that

δv ~. δv

Ύt ~ Ίhϊ +

has a well defined flow.
If the inhomogeneous term were H\ there would be no problem,

as in Kato [29], Theorem 7.1. However, even for C only Hs~ι we claim
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that a solution in the domain of At remains in the domain. This is not
obvious at all from DuhameΓs formula (which masks extra "smoothing").
However, the result does follow from a more general smoothness result
on lipschitzian perturbations of linear systems due to Segal [39]. It
applies in particular here to show that initial data in the domain of A
remains in the domain. See also Chernoff-Marsden [14] for an exposition
and further applications of Segal's result. |

That we may allow C to be just Hs~ι will be important below in
studying asymptotic conditions.

Warning. For the hypotheses (A2), the energy estimates only hold up
through the H8'1 norm. The added differentiability comes from the
domain oϊAt. It is not in general true that Hs initial data remains Hs.

Next we proceed to consider linear symmetric hyperbolic systems
with asymptotic conditions imposed.

That u e Hs(Rn, Rm) means that u dies off to zero fairly quickly at oo.
In particular for s > n/2, \u(x)\ ->0 uniformly as |x| —• oo. For relativity we
wish to impose a different condition at oo for example u is asymptotically
constant. More precisely, we make:

Definition. Fix w : Rn -> Rm. We say a map u : Rn -• Rm is Hs asymptotic
to w iff u - w e HS{R\ Rm). We denote this set of u's by Hs

w(Rn, Rm). By
translation, H^ inherits a metric structure.

1.6. Lemma. Let s > n/2 and suppose the derivatives of w of order ^ s
are continuous and bounded on all of Rn. Then (componentwise) multiplica-
tion

H^xHs-+Hs

is a continuous map.

Proof. A typical element of H^ is / + w where feHs. Now for g e H\
writing

we notice that fg e Hs as Hs is a ring, and wg e Hs since the derivatives of
w are uniformly bounded. Thus for/1 ? gxeHs

so the lemma follows. |

In particular, multiplication by / e H^ is a continuous linear map of
Hs to Hs.

We now consider again our system (1):

^r+ B(t9 x)u + C(ί, x).
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Let Cs

b denote the Banach space of maps which are of class Cs and have
bounded derivatives of order ^s. We formulate our assumptions as
follows:

(i) s>n/2+l.

(ii) A°t e Hχo where V^A°t e Cs

b is a C° curve and a C 1 curve to
Cs

b~*. Moreover, A® is symmetric and positive definite with, more
specifically,

0 4 ° > ^ < >

where ct > 0 is a constant depending continuously on t. (The latter
assumption then also follows for A®.) \ (A3)

Also assume t\->At° — A® eHs is a C° curve and a C 1 curve
i n t o / / 5 " 1 .

(iii) >4j G ifjk where ίκ>i; e Cs

b is a C° curve and t\->A\ - A\eHs

is a C° curve. Also, A\ are symmetric and Ds is independent of ί.

(iv) E, e flf"1 where ίκ>β f e Q " 1 is a C° curve and
t\->Bt -Bte Hsl 1 is a C° curve.

(v) ίκ>Q is a C° curve in H 5 " 1 .

(vi) Let w G Cί and assume (a) — ^ e H 5 " 1 and (b) BtweHs~\
δxJ

Note. The condition (vi) is not the same a s w e F and the distinction
will be important later for the Schwarschild type of asymptotic condition
we want to impose.

1.7. Theorem. Let assumptions (A3) hold and let Ds denote the domain of

Ax— \ALX-^-Λ as an operator from Hs to Hs~ι. Then system (1) has a

unique solution u(i)eDs

JrwCH^~1 for u(0)e Ds-\~w. Indeed, Eq. (1)
defines a flow on H^~1 with domain Ds + w for its generator. If s> n/2 -f fc,
u(t)eCk

bb
- 1

Proof. Observe that the equation for v — u — w is

δt dx

By Lemma 1.6 and assumptions (v), (vi), the inhomogeneous term is
f/5"1. Now we assert, as before, that we can assume A0 = Identity.
This is done just as before. The assumption concerning A® is necessary
to insure that T " 1 remains bounded on all of Rn so that the transformed
equation will have B satisfying the same assumptions. So we can assume
A0 = Identity.
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Now we first consider
dv . dv

Since A\ e Hs

Άι and s > n/2 + 1, and A\ e Q, it follows that the C1 norm of
A\ is bounded. Thus t\->A\eC\ is continuous. Thus by Kato [29], as
before, this equation has unique solutions in H1 and L2. The point now
is that because of Lemma 1.6, multiplication by A\ is still continuous
from Hs to Hs so the Leray energy argument will still work. Thus we get a
solution flow to dv/dt = A\ dv/dx1 in Hs.

We can, as before, add on the B term because by Lemma 1.6, B\u\->Bu
is a bounded operator on Hs~1. Thus we get solutions to

dv . dv
A ι B=AtΊr7+Bv

ct dxι

in the domain of the closure of the operator A\ ——.
dxι

Since the inhomogeneous term is Hs~x, we can, as before, add it on
as well. Thus we get our solution u = v + w. |

Finally, in this section, we shall present an example of how this theory
can be used to prove a sharp result for the wave equation. The result
actually goes back to Sobolev (see [40], § 21 where different techniques are
used). We shall generalize it to include asymptotic conditions as well.
This result will be used in § 4 to obtain the best possible differentiability
results on spacetime coordinate transformations connecting two solu-
tions of the Einstein equations.

Basically we want to prove here that solutions to the wave equation
with H\Hs~ι coefficient functions preserve HS+1,HS Cauchy data.
Let 1 = ημv denote the Minkowski matrix on R4, let m ^ 0 be given, and

let l m be equal to 1 plus a term of class Cs

b which is / outside of a

bounded region in R3, where / = δμv is the unit 4 x 4 matrix. Thus for r
sufficiently large,

r

I
Γ

r

0

0

0

0

2m

r

0

0

0

0

1 -u 2 m

r

0

0

0

i + 2 m /
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which is just the asymptotic Schwarschild metric in isotropic coordinates
on a ί = constant hypersurface. Let ifs C Hs

lγn denote the maps from JR3

to the Lorentz matrices on RA which are Hs asymptotic to l m ; we call
such maps asymptotically flat with mass m (see p. 23).

1.8. Theorem. Let s>n/2+ 1, w = 3. Let gμv(t,xι) be a given Lorentz
metric on JR4 (or ( — ε, ε) x R3) satisfying the conditions:

(i) t\->gμv(t, ) is a C° curve in J£s and a C1 curve in # ί ~ *•

(iί) The inconstant surfaces are space-like for gμv; specifically,
assume gijξtξ^cWξl2 ξ e R3, c>0 fixed, and -goo(t,x)^δ>0.

(iii) Let bμ(t, x) be a C° curve in Hfι where bμ e Cs

b and c(ί, x), d(t, x)
are C° curves in Hs~λ and H%~1 respectively, where deCs

b.

(iv) Let weCs

h(R3,R) with-^eH3'1 and let ( ψ o , ψ o ) e # * + 1 ( K 3

; R)

x H(R3,R) (note that HS(R3, R) is the tangent space to H^(R3,R)).

Then there exists a unique ψ(t, x), a C° curve in H^+1(R3, R) and a C1

curve in H^(R3,R) with derivative in HS(R3,R) and which is also locally
jointly Hs+1 in ί, x such that

L(0, x), ̂  (0, x)) - {ψo(x), ψo(x))

and

aμv(tχ)

Proof. We can apply Theorem 1.7. One can easily define A0, A\ B, C
(see §3 below and Courant-Hilbert [15], p. 595), so that our equation
becomes the symmetric hyperbolic system A0 δ u/δ t=Σ Ajdu/dxj + Bu + C
in the five component vector

Ψ
u —

We have enough differentiability so that ψj = δψ/dxι is the classical
derivative. (See note on p. 38.)

We shall now check out the assumptions (A3) of Theorem 1.7. Con-
ditions ( iH v ) aM hold by assumption, with the asymptotic values A0, A1

given by inserting the metric l w into A0, A1. The w of (vi) is given by
w\
0 . The special assumption B -we H s ~ * holds by virtue of the fact that
0/

c e Hs~1, i.e., c is asymptotic to zero.

Next we shall determine the domain of the operator Aj——r — A u.
δxJ
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1.9. Lemma. The domain of the closure of A as an operator from Hs

to HS~L is given on the three blocks of u by

D = Hs~ί®Gs®Hs

where

Gs =

Proof. It suffices to treat the three blocks separately. On the first
block A is the zero operator (the first column of each Aj is zero) so that it
clearly extends to all of H 5 " 1 .

On the second block, A is the operator

0,0,0,0,^"
dχι

Thus A extends to Gs. Then it is easy to see that on this domain A is
closed (that is, un e Gs, un—>w in Hs~ι, Aun-+v in Hs~λ implies ue Gs and
Au = v). Now the closure of A on Hs has domain Gs since A on Gs is a
closed extension, and we know from Lemma 1.2 that Hs is a core for A
in ί P " 1 (the corresponding flow leaves Hs invariant).

Finally, on the last block of M, A is the operator

giJJZ~9 2g°j " H " ) = (0'grad</>? 2X{Φ))

where Xj = gOj is a vector field. As above, if this is Hs~ \ the second com-
ponent gives that φeHs. The domain of X D H s so the domain of this
block is again Hs. |

Now let u(ί, x) be the integral curve of our system as determined by
Theorem 1.7 which has, by assumption, initial data in the domain of A.

ψ
ψj\ eD. Therefore ψ 0 is C ι ; the

Ψ,o

Hence we get a solution u{t, x) =

equation gιj J =gιj—-^-ψ 0 together with non-singularity of gιj and
ct ox3

the initial data shows ψj = dψ/dxj and ψί0 = dψ/dt. Now the condition
ψjEGs becomes

But f̂ιj is uniformly positive definite, so the standard elliptic theory (cf.
Nirenberg [35]) gives ψeHs + 1. Thus we get the result. •

It might be noted that this result of having solutions more differen-
t i a t e than the coefficients is not a general property of first order systems.
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For example, for a scalar equation

the solution can, in general, only be Hs if the X1 are Hs (see Appendix 2).

§ 2. Quasi-Linear Symmetric Hyperbolic Systems

The essential techniques for dealing with quasi-linear systems are
rather old, going back to Schauder, Frankl, Petrovsky, and Sobolev.
See Courant-Hilbert [15] for a fairly complete bibliography.

Our purpose here is to present a version of this theory which pays
particular attention to the differentiability of the coefficients. This care
in dealing with the coefficients is necessitated by the applications.

There are several possible sets of hypotheses. The simplest of these
was discussed in [21]. Here we wish to treat the case in which an A0

term is present. It is not generally appreciated that in the quasi-linear
case, this is a non-trivial generalization because the reduction to Λ° = Id
is no longer possible without destroying some differentiability of the
12-term. To deal with this situation it is necessary to work with domains
of A1 as was done in § 1. Otherwise one is confronted with an unnecessary
derivative loss (Hs initial data would yield only an H8^1 solution).
Furthermore, we shall make a few additional special assumptions
designed for later use. They are inserted so that we can obtain the
sharpest possible bound on s, namely s > n/2 + 1. If one is willing to take
larger s, the assumptions can be relaxed (see below).

So we are considering an equation of the form

A°{t9 x.u)^^ ΣA% x9 u)^ + B(t, x9u). (1)
ot ox

In applications, A°,A\B will be rational functions of u with non-zero
denominator. For purposes of generality we shall just state the relevant
properties these functions need. (To verify the conditions for more
general classes of functions than rational, one could use Sobolev's
"condition T", [40], p. 217.)

For Eq. (1), our assumptions on the coefficients which we shall refer

to as assumptions (A2) are as follows:

(i) s > n/2 + 1

(ii) we are given a closed subspace F s - 1 CHS~1 with Fs = F s ~ x nHs

and an open set Us~x C Fs~λ

(ίii) for ueU8'1, A°(t,x9u), A^t.x.u) are Hs functions, B(t,x,u) is
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Remark. This assumption (iii) is the special one referred to above.
If 5 > n/2 + 2 we could take ueUs. (This is pointed out in the proof
below.) The boundedness assumptions follow.

(iv) The maps ue (7 s " 1 *->A°{t, x, u)eH\ ueUs~ί\->Λi{t,x,u)e H\
ueUs~ι\-^B(t,x,u)eHs'1 are bounded (map bounded sets to bounded
sets) and are C 1 maps with bounded derivatives.

(v) For ueUs~\ Λ°, A\ B, C satisfy the conditions (A2) of § 1. The
corresponding solutions are assumed to map F s - 1 to F 5 " 1 .

(vi) For ve Vs'1, t 6 R, let the domain of the closure of the operator

AVttu = ΣA^t, x, v) du/dxι: Hs->Hs~ι

be denoted Ds

υ t and let ||| | | |S)lM denote a Banach space norm on Ds

v t. Assume
that Fs~λ nDs

v t is independent of t. Denote the space Fs~λ nDJ t simply by
Ds with norm \\\u\\\s. Thus for all ue Ds we may suppose

where K is independent of v e IIs *, ί e [ — T,T~\,ue Fs 1.

Finally, we require a special "smoothness" type assumption on
A1 related to its domain. We state explicitly what we need:

(vii) For w 1 ,w 2 e(7 s ~ 1 , veD\ we have a Lίpschitz estimate of the
form

dv . dv „ „ m ,„
E(ί, x, wx) —f - Aι(t, x, w2) -j-j- ^ const \\wί - w 2 | | s_ 1 |||ι;|||s

S 1

where the constant may depend on | |w 1 | | s _ l 9 | |w 2 | | s _ 1 .

The main result of this section is the following (the asymptotic case
is done below).

2.1. Theorem. Lei conditions (A2) hold. Then for uoeUs~1nD\
there is an ε > 0 and a unique solution ute Us~lr\D\ —ε<t<ε of (1)
which is a C1 curve in JRF" 1 , and a C° curve in D\ and equals u0 at t = 0.
Moreover ε > 0 can be chosen uniformly in a Ds neighborhood of u0 and ut

varies continuously in Ds as a function of u0 and t e (— ε, ε).

Proof. For δ, M 1 ? M2 > 0 to be specified below, let E denote the set
of continuous curves

w:[-<5,<5]->Ds

l5 w(0) = κo

which are also C 1 curves in (7 s " 1 and which satisfy |||w(ί)IL = ̂ ^i a n c ^

We shall set up a contraction / on £ in a suitable metric and use
the fixed point obtained on the completion of E to get the solution.
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Step ί. Construction of the map f.

For w e E we let υ — /(w) be the solution to the system

v{0) - u0 λ

r)υ r)υ \ (2)
A^t,x,w(t,x))—==ΣAi{t,x,w(t,x))—-+B(t,x,w(t,x)).\ y }

ot ox J

Because of (iv) and (v) we see that these coefficients A°(t, x, w(ί, x)),
,4ι(f, x, w(ί, x)), £(ί, x, w(£, x)) satisfy the conditions (A2) of § 1, so we do
have a unique solution υ(t) eDs.lt is C° in Ds and C 1 in Hs~ι.

Step 2. f maps E to E for suitable <5, M 1 ? M 2 .

From the linear theory in § 1, we know that the Eq. (2) defines a semi-
group onHs~l or on Ds. (As in § 1, the A0 term may be grouped with the
Hs~ι B term.) Now we also know from the energy estimates in § 1 that
for each fixed ί, Eq. (2) defines a quasi-contraction in Hs~ι (that is, the
norm of the solution grows exponentially). We can, as in § 1, show that
this same property is inherited by the domain Ds. Thus, using (vi) we
conclude that

where α is a universal constant (as in the remarks following the assump-
tion (vi)) and β depends on ||w||s_ x. Thus we may conclude that for M1

chosen sufficiently large, we will have ^(OIIL^Mj, if δ is sufficiently
small. From this estimate and the differential equation itself (with A0

as a B term) we see that for M2 large, the condition ||ί;'(ί)| | s_1 r§M2 will
hold. Finally, from | v'(t) | s_ t ^ M 2 , it follows from the mean value
theorem that υ(t)G U5'1 for δ sufficiently small. This completes step 2.
Note that for δ small we also may assume that E lies in an s — 1 ball
contained in (7 s " 1 centered at u0.

Step 3. f is a contraction in the Hs~ι norm on E for δ sufficiently small

For weE defined above, let

! < _ ! = sup Holls-i.

We shall show that f\E-*E is a (strict) contraction for δ small; that is,

where 0</c< 1.
In making this estimate we may assume A0 is the identity because

our assumptions allow us to do this in system 2 without changing the
hypotheses on B. (Of course this is possible only because we allow B to be
H8'1 and consequently are working on Ds rather than on Hs. This
procedure does not simplify if A0 depends only on w(ί, x) and not on ί, x
explicitly.)
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We have from (2),

A'{t, x, Wj) . ι - A\t, x, w2) aV + B{t, x,'

B(t,x,w2),f(w1-f{w2)ι

s-1

t,x.w1)-^Γ[/(w1)-/(w2)],/(w1)-/(W2)
s - 1

1)/

+ <[B(ί ,x ,w 1 )-B(ί .x ,w 2 )] ,/(w 1 )-/(w 2 )X_ 1 .

The first term is estimated by the usual energy inequalities of § 1. It is
bounded by

since | |w1 | | s_1 is bounded and w1^^Λι(wί) is bounded by assumption.
For the second term we use hypothesis (vii). For the third term we have
a bound K3\\f(w1) — f(w2)\\^-1 and for the fourth term a bound
^4 | | w i ~ W 2 | | s - i | | / ( w i ) — /(W2)| |s-i m virtue of smoothness of
wH>J3(ί, x, w) and the boundedness of its derivative.

Remark. If s were larger we could use a priori bounds in Hs~ι to get
a contraction in Hs~2 (and a fixed point in H&~x~% thereby weakening
the assumption (ii) t o u e ί / 5 " 1 implies Λ°, A1 are Hs~ι.

Thus we have the estimate

Thus (by GronwalΓs inequality for example) we have

Hence letting k= — - ( e C l δ — 1) we see that if we choose δ sufficiently

small (so k < 1), we get a contraction.
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Thus / extends to a contraction on the completion of £ and hence has
a fixed point on this completion.

Step 4. The fixed point so obtained represents the solution desired.

Let u(t) be the unique fixed point of /, the extension of / to the com-
pletion E. Since, as in Step 2, we have EC (/s~\ with fixed point u(t)
obtained, we do get, as before, a solution ύ(t) e Ds of the system (2). We
assert ύ(t) — u(t). To show this we want to take the limit of solutions of
system (2) (with Λ° incorporated in B at each step). This is slightly delicate
because we are only assuming s>n/2 + 1. However, it may be achieved
by the Trotter-Kato theorem (cf. Yosida [43] and Chernoff [12]) which
also holds for time-dependent systems (Kato [28]). The version we need

is as follows: iϊ—-=X?(t)u is a (time-dependent) system depending
ot

on a parameter λ (in, say, some Banach space) and if Xλ(t) all have a
common core and Xλn->Xλo strongly on this core as λn-*λ0, then the
solutions converge strongly as well.

In our case, our λn represents successive iterations of a starting point,
say w0, under /. We know they converge strongly in ί P " 1 since / is a
contraction. Hence by our assumptions on the coefficients, Xλn converges
as well. Thus, by the quoted theorem, the iterations converge to ύ(t)
and hence ύ(t) — u(t).

Remark. See [21] for a more direct proof in case s is larger.

Continuity of the solution with respect to the initial conditions in
Hs~ι will follow at once from the following elementary lemma.

2.2. Lemma. Let M be a complete metric space, N a metric space and
f': M x N -> M be separately continuous and be such that for each yeN,
fy(

χ) — f(χ^y) is a contraction on M with d(fy(x1), fy(x2))Skd(xι, x2)
for a fixed constant 0 < k < 1 independent of y. Let x(y) be the unique
fixed point of fy. Then y^-^x(y) is continuous.

Proof. Pick x0 e M. Then x(y) = limit /v"(x0)
 t n e ϋ™* °f a sequence

n~*oo

of continuous functions. But since k is uniformly less than 1 independent
of y e JV, the convergence is uniform. |

We define /, in our case, to be the solution of system (2) on M = E with
y = u0 the initial condition. Lemma 2.2 applies; we just have to check
continuity of / separately in w and y = u0. But this is clear in u0 as (2)
is a linear system, and it is clear in w because we have a contraction in
that variable.

To obtain continuity in the Ds topology requires a bit more care.
However it may be proved as follows. Let uπ-> u0 be a sequence of initial
conditions converging in D\ and un(t) the corresponding solutions. We

2 Commun math. Phys., Vol 2X
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know from above that un(t)-+u(t) in H^1. However, as above, from the
Trotter-Kato theorem we know that this implies that the corresponding
linear semi-groups Ft

n converge strongly and are equi-continuous on Ds.
Letting Ft be the limiting solution, we have

\\\Ft(u0) - Ft(un)\\\s ύ \\\Ft(u0) ~ Ft

N(u0)\\\s + \\\Ft

N(u0) - i f (uπ)|||s

+ \\\Ft

N(un)-Ft(un)\\\s

S \\\Ft{u0) - Ft

N(u0)\\\s + (const) \\\u0 - un\\\s

+ \\\Ft

N(un)-Ft(un)\\\s>

Given ε > 0 choose n ̂  nι so the middle term is < ε/3, then choose N so
large that the first and last terms are < ε/3 (which is possible by strong
convergence). Hence we get continuity of Ft(u0) inu0. |

As in § 1 we may also consider the situation in which our coefficients
and unknowns satisfy a certain asymptotic condition. Our assumptions
are as follows, which we refer to as (A3).

(i) s > w / 2 + l .

(ii) For w e Cs

h we have a neighborhood Vs'1 of w in a closed subspace
Fs~ι of H^~1 (defined in § ί). Also, we have fixed i ? , A\, Bt e Cs

b such that
i4t°, A\, Bt are asymptotic to them for each ueUs and in these asymptotic
spaces the conditions (A3) of § 1 hold.

(iii) The conditions (A2) above hold with the appropriate asymptotic
conditions imposed.

2.3. Theorem. Under these conditions, the conclusions of Theorem 2.1
remain valid with the appropriate asymptotic conditions, i.e., for uoe Us~x

n{Ds + w) we have a unique solution of (1) in the same space, and the
solution varies continuously with the initial data.

Proof. Argue as in Theorem 1.7 making use of 1.6. and 2.1. |

This concludes the basic existence theory. Now we shall give a few
properties of the solutions. In the applications these properties will give
further information about the Einstein system.

2.4. Theorem.Let A3 (or A2) hold and let 9sCRx{Ds + w) be the
domain of the maximally extended solutions for the system (1). Then

(a) <3S is open

(b) integral curves of (1) are unique on their domains of maximal
extension.

Proof. This follows from the continuity of the solution with respect
to the initial data in the same way as for ordinary differential equations
cf. Lang [30]. |
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Thus for (t,ύ)e% we have Ft(u) defined as the solution to (1) with
initial condition u. Then Ft maps an open subset of Ds to Ds. Globally,
we have F : ΘS->DS a continuous map.

2.5. Corollary. Suppose Ft(u0) exists in Ds for all ί^O. Let T > 0 .
Then there is a neighborhood of u0 in which solutions exist for a time
t^T.

Proof. Immediate from openness of 2S. |

For second order systems this result was proven (in an apparently
more complicated way) by Choquet-Bruhat [10].

Sometimes this result is referred to as "stability" of u0, but that is
misleading; the usual notion of stability is a "second order" property
implying that near u0 solutions will be defined for all ί^O and will
remain close to the solution through u0. On the other hand, 2.5 merely
expresses continuity in the initial data. A less obvious result is the
following (compare also Choquet-Bruhat [10]):

2.6. Theorem. Lei A2 or A3 hold and F:@s-+Ds be as above. Then
for fixed t, Ft: D

S-*DS (locally defined) is a C00 mapping.

This property of being smooth for t fixed is actually quite general.
A general theorem, of which 2.6 is a special case, is given in Appendix A.

2.7. Theorem/Regularity). Let Ft be as above and u0 e Ds+ \ s > n/2 + 3.
Then Ft(u0) is in Ds+1 as long as it is defined in Ds. In particular the time of
existence is independent of s. In other words for r > s , possibly r=co,
we have

Proof. The trick is to look at the differential equation satisfied by the
second spatial derivative of w, the solution found in Ds C Hs~1. Now

ί)u 3u
A°(t, x, u) — = A% x, u) —r + B(t, x, u) (1)

ct ox

so if Du is the first differential of u with respect to x,

A ° { )
(Du) D2A%x,u)^+D3A%x9u) Du'-^ (2)

+ A% x, u) -^-^ Du + DB{U x, u) - [DA°(U x, M)]-^-
ox ot

where D2 A
1 and D3 A

1 are the partial derivatives with respect to the second
and third variables, respectively. If we consider this as a linear equation
in the unknown v = Duoϊ the form
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then we must treat D^AHt, x, u) „ . as a coefficient. However, since u is
ox1

only H5"1,—~τ-is only Hs~2. However, if we differentiate (2), it is easy
dxι
dx

to see that w = D2u satisfies

f)\v

where now Aι,C, D are Hs~2 functions, - . is incorporated into w and
ox1

we substitute from (1) for-r—. The reason is just that second derivatives

do not occur multiplied together as the first ones did. Hence, since
s > n/2 + 3, the coefficients are in H\ r == s - 2 > n/2 + 1, with A1 in // s~1

so by the linear theory w, which is initially in Dsl, remains in Dsl.
Hence u remains in Ds + 1. |

We shall apply this regularity result to the Einstein system to show
that C00 Cauchy data remains C00.

§ 3. Existence Theorem for the Exterior Einstein Equations

In this section we wish to show how the classical existence theorems
of Lichnerowicz and Choquet-Bruhat [3, 33] (including the improvement
recently obtained using a result of Dionne [16]) as well as some recent
modifications [6, 7] can all be obtained from the symmetric hyperbolic
theory above. Since our improvements of the results are technical ones,
we shall not include all the details.

We point out that the second order theory of Leray used by the above
authors requires strict hyperbolicity of the equations. Sometimes when
strict hyperbolicity fails, the system may still be put in the form of a
symmetric hyperbolic system; cf. Friedrichs [24]. We also point out that
the symmetric hyperbolic theory admits a global intrinsic treatment on
manifolds; this is the subject of Part II (see also [34]).

Some of the technically delicate points we deal with follow: a direct
treatment of the asymptotic conditions and globally defined "coordinate
transformations" Hs asymptotic to the identity; an improvement (from
Hs to Hs+1) of the degree of differentiability of the coordinate trans-
formation relating two solutions of the equations Rμv = 0 with the same
Cauchy data; existence of solutions in the class H 4 ; the latter is given in
[6, 8]. Moreover, we also show that the solutions to the Cauchy problem
depend continuously on the initial data in the Hs topology and that C00

initial data give C00 solutions; cf. [7, 9, 10, 25]. Finally we show that the
time T solutions are C00 functions of the initial data.
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Details not given below for the most part can be routinely supplied.
We now summarize our notations.

Greek indices run from 0 to 3, latin indices from 1 to 3. Local co-
ordinates are written xα = (ί, xι) = (x°, xι). We take c = 1 and our Lorentz
metrics gμv have signature ( —, +, +, +). The summation convention is
employed.

Christ off el Symbols:

1 dga

dxβ
δxa ΰxA

Contracted Christoffel Symbols:

Tμ = g*βTμ

β

1_ δ_

|/-detc/ dxv

where detg = determinant of gμγ.

Riemann Curvature Tensor:

S2gμβ S2gV0ί

~~ 9Qσl μvl Oi

Rίccί Curvature Tensor:

dxμδxβ dxadxβ dxμdxx

n rρ pσ
9 ρσ l μa1 vβ

Kaμβv

1

-9ΰσΓ°vΓ
σ

β δxμδxv δ
βπ pQ pσ

if ρσ1 μa.1 vβ

pz pβ _ pa pβ
1 μvιaβ i μβ1 va

Scalar Curvature:

Einstein Tensor:

Laplace-Beltrami Operator on Scalars:

1

]/-d

«β d

g δx

etg
2Φ
*δxβ

δ

δxβ

/— β dφ'
δxa

δφ
a χ α '

T h e covariant derivative is d e n o t e d t o t / ! ' μ v . . . | ( T e t c .
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The Cauchy Problem is as follows:

(Existence). Let gμv{xι) be an Hs asymptotically flat metric (see
below), 5^4, and kμv(xι) an Hs~ι symmetric tensor (asymptotic to zero).
Assume G°(xl) = 0. Find ε>0 and an Hs asymptotically flat spacetime

gμv(t, xι\ -ε<t<ε such that gμv(0, xι) = gμv(x% - ^ (0, xf) = k^x1) and

(Uniqueness). Let gμvand hμv be two Hs asymptotically flat spacetimes
with the same Cauchy data and which satisfy Rμv = 0. Find an ε and an
Hs+1 coordinate transformation xμ(xα) globally defined in space and
spatially asymptotic to the identity such that

dxa dxβ

hμv(χλ) = ^ r (χλ) - ^ (χλ) gxβ(χβ(χλ)).

Both of these problems as well as related ones will be answered
affirmatively.

By asymptotically flat, we mean that gμγ is Hs asymptotic to some
given comparison metric. In practice this means gμγ is Hs asymptotic to an
asymptotically Schwarschild type metric gμv, or gμv - gμv e Hs. Here our

comparison metric gμv looks like J W = ̂ V H δμv for r sufficiently

large, where m^O is a constant and ημv is the Minkowski matrix (see
1.7,1.8, 2.3). The existence theory then guarantees that these asymptotic
conditions will automatically be maintained in time.

As with the second order theory we make use of harmonic coordinates
defined by the condition

In this case, the system Rμv = 0 simplifies considerably.
An algebraic computation (see, e.g., Fock [22], p. 423) shows that

[v -Q-^ + Qva ~J^

where

and

9*0
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Thus if Γa = 0,Rμv reduces to JR(

μ̂ . Note that Hμv is homogeneous
quadratic in dgμv/dxa and is rational in gβV with non-zero dominator

μ

The principal part of the system R^l = 0, namely the operator
— jgaβd2/dxadxβ, operates the same way on each component gμv of the
system so that the highest order terms are completely uncoupled. Such
systems are said to be weakly coupled, and are a particular case of the
strictly hyperbolic systems of Leray [32].

From Leray's theorem [32] for strictly hyperbolic second order
systems as improved by Dionne [16], Choquet-Bruhat [6, 7] concludes
that H^H5'1 Cauchy data for the system R{£l = 0 evolve into an Hs

spacetime. In this section we shall prove this result using the theory of
first order quasi-linear hyperbolic systems which we developed in § 2.
First we shall set up our asymptotic conditions.

Let T]ym(iR4) denote the 10 dimensional vector space of symmetric
2-covariant tensors on R4 (symmetric bilinear forms) and let Λ(RA)
denote the open set C Tlym of forms gμv with Lorentz signature
( —, + , + , + ) ; thus the submatrix gtj is positive-definite and g o o < 0 .
Let l m denote the Minkowski matrix ημv plus a term of class Cs

b which for
2m

large r is δμv (all we really need is an asymptotic value satisfying the

sort of conditions spelled out in §§ 1, 2). Thus, as in 1.8, l m is Hs asymptotic
to a t = const, slice of the Schwarschild metric in isotropic coordinates.

Definition. A map g: R5-+Λ(R4r) is called Hs asymptotically flat
(with mass m) if g - lm e ίF(JR3, Λ(R*)).

Of course, here we put a positive-definite metric on Λ(R*) when
forming the Sobolev space HS(R3, Λ(R%

Let us fix m and put

c£* = {g R3 -+Λ(R*) \g is Hs asymptotically flat}
and

jfs = Hs(R\T?m(R*)).

The space ^ s x Jf 5~ \ s > n/2 + 2, n = 3, will be the space of Cauchy
data for the Einstein equations. Thus for g e i?5, it follows that g -• 1 C2 at
infinity and for k e Jfs~ \ fe-^0 in the C 1 norm at infinity. (This follows
easily from the Sobolev theorems.)

For e > 0 , let / = ( - e, ε) and V± = IxR3.

Definition. By an Hs asymptotically flat Lorentz metric on F 4 , we
mean a map gL : V4 -• Λ(R4) such that

(i) for each t e /, gL(t, •) e i ? s such that t\->gL{t, •) e ϊ£s is continuous

and

(ii) gL is locally jointly Hs in (ί, x).
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We shall also refer to gL as an Hs spacetime.

Note that as part of our assumptions concerning A(R% the surfaces
{t0} xR3cV4 are space-like for gL (that is, for veR3, t + 0, gL(tOyx)
.((0,ϋ),(0,ι;))>0).

From the dynamical point of view we shall see that, alternative to
(ii), one may wish to require that gL be a C° curve in J£s and a C 1 curve
in 5£*~1 (see § 2 and below).

We shall also wish to consider Hs coordinate transformations which
are asymptotically the identity.

Definition. A map / : F 4 - > # 4 will be called an Hs coordinate trans-
formation asymptotic to the identity if the following conditions hold:

(i) / is a local Hs diffeomorphism in (ί, x),

(ii) /(0, x) = (0, x), ̂  (0, x) = (1,0),

(iii) writing /(ί, x) = (F(ί, x), x(ί, x)), x is a C1 diffeomorphism of JR3

to R3 for each ί, with x — xeHs and ίκ>χ(ί, ) — xeHs continuous, and

(iv) F is an Hs diffeomorphism for each fixed x and F— t e HS(R3, R)
for each fixed t.

In the sequel, we shall just refer to / as an Hs coordinate transforma-
tion.

If g is a Lorentz metric on V4, and φ : F4-> V4 a diffeomorphism, we
recall that the pull-back of g by φ is the metric given by

where m e F 4 , I m , 7 m eΓ m K 4 %R 4 and where Tm φ is the tangent (derivative)
of (/>. The push-forward is (φ~1Yg. If we write g = {φ~ι)*g and let
3cα = (/)α(x̂ ) then we have the coordinate expression

f) γ α

We shall prove the following, as it requires some care.

3.1. Lemma. Let s>n/2 and let gL be an Hs asymptotically flat
Lorentz metric on V4 and f an Hs+1 coordinate transformation (asymptotic
to the identity). Then on ( —ε', ε') x R3 for some ε '>0, {f~x)*gL is also
on Hs asymptotically flat Lorentz metric.

Proof. We let ^(R") denote the Hs diffeomorphisms of K" asymptotic
to the identity, as defined above. We shall use the following (Cantor [5]):
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For s>n/2+ 1, &)\(Rn) is a topologicaί group and acts continuously by
composition on Hs(Rn, Rm).

This is a generalization with asymptotic conditions of the known fact
that the composition of an Hs map with an Hs diffeomorphism is again
Hs (see Sobolev [40], Ebin [18]). Also, products of Hs functions are Hs

(this ring property of Hs was used in §§ 1, 2). From these facts it follows
that g = {f~1)*g is locally H\ as g is formed from compositions and
products.

Of course, it is clear formally that g-+lm at spatial infinity since
f-+id at spatial infinity.

This may be obtained precisely from the above results as follows.
The map / is an Hs diffeomorphism of {t} x R3 onto txR3 asymptotic
to the identity. If we then write out g — l m we see by Cantor's result and
by Lemma 1.6 that g — l w is Hs and is continuous in t (note that Df e Hfd).
Since S£s is open in W and / starts out the identity, as does Dj\ g will
be in S£s for some f-interval (— ε'ε'). I

Let xA be a coordinate system on F 4 , and gμv a given spacetime. The
coordinate system is called harmonic if Γμ(xλ) = 0. This requirement is
equivalent to saying that the coordinate functions themselves are
harmonic functions: • xμ = 0 (since • φ = - gaβd2 φ/d x*d xβ + Γcφ/dxα).

In the next section we shall show that an arbitrary Hs spacetime can be
transformed by an Hs+1 coordinate transformation to one that satisfies
the harmonic condition. This new coordinate system is a global one.

The importance of harmonic coordinates and of the system Rfl = 0
is that it is sufficient to solve the Cauchy problem for R^l = 0. This
remarkable fact, discovered by Foures-Bruhat [3], is based on the
observation that the condition Γμ = 0 on the Cauchy data is automatically
propagated off the t = 0 hypersurface for solutions of R^l = 0, provided
that the initial data also satisfies G°(0, xι) = 0 where Gμv = Rμv-%gμvR
is the Einstein tensor. The latter condition is a postiori necessary since
Rμv = 0 iff Gμ v = 0, and G°μ can be computed from the Cauchy data

da
9μv& x% ~^EL (0, xι) alone (it is well-known that Gμ depends only on the

first order time derivatives oϊgμv). Similarly Γμ can be computed from the
Cauchy data above. We also remark that in fact G°μ does not depend on
dgOμ/δt. For example, in the notation of [20],

-4G(

(5 = JT-i((Trk) 2 -/c ./c) + 23

JR, -2NG? = δ((Ίrk)g-k),

where
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which demonstrates the assertion (in the expression for k^,^ denotes
covariant differentiation with respect to the 3-metric gtj).

3.2. Lemma. Let (g, fc)e(ifs, Jf3"1) and suppose s>3/2 + 2. Assume
Γμ(xι) = 0 and G°00 = 0 (the superscript0 refers to the fact that Γμ and Gμ

are computed from g,k). Let gμv be an Hs spacetime satisfying gμγ{0,xι)

- (0, xl) = kμv(xι) and R{*1 = 0. Then Γμ(t, xι) = 0.
dμvy n dt

Remarks. The basic computation appears in [3]. However, in the
present situation some care is required concerning the amount of
differentiability. In particular we are in the delicate situation of dealing
with Hs for low s in which case Hs is no longer a ring (closed under
multiplication). The idea is to work out Gμv\v = 0. Since gμv e H 4 , gμyeC\,
and the third derivative terms occur linearly multiplied by uniformly
bounded functions, the computation of Gμv\ v = 0 as if it were C00 can be
justified. One ends up with a system of the form

^ dxλ

where d2Γμ/dxβdxv is an Hι function. As was explained in Theorem 1.8,
this reduces to a first order linear symmetric hyperbolic system in
{Γμ,Γμ

ti9Γ
μ

t0)eH2. Since the coefficients of (1) are in C \ we have
uniqueness in the class H1, and since the initial data is zero, so is the
solution. Thus one can obtain 3.2 even for this low value of s.

Thus an Hs solution of R{

μ

}

v = 0 with prescribed Cauchy data and
Γμ = 0, G°μ = 0 is also a solution of Rμv - 0 (since Γμ = 0). As we shall see
in the next theorems, if the Γμ are not zero, we can make them zero by a
suitable coordinate transformation.

Our main new technique is given in the proof of the following:

3.3.Theorem. (Existence). Let s ^ 4 (or s>3.5 if not an integer).

Let (gμvΛμv)e ^ s x $Γs~ι- Then there exists an ε > 0 and a unique Hs

asymptotically flat Lorentz metric gL(t,xι), ί e ί = (-ε,c) such that
daL

t\->gL{t, -) e ^ is C°, is C 1 into £>s~\ gL(0, xι) = g{x% -~- (0, xι) = k(xl)

and R{v = 0.

The solution depends continuously on the initial data in 5£s x Jf s ~ 1 ,
and moreover, for T fixed, \T\ <ε, the solution is a C00 function of the
initial data. If the initial data is C00, so is the solution.

Case A. If the Cauchy data satisfy G° = 0, Γμ = 0, then gμv so obtained
satisfies Rμv = 0.
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Case B. If the Cauchy data satisfy only G° = 0, there exists an Hs+1

coordinate o transformation f such that g = {f~ι)*g has Cauchy data
satisfying G°μ = 0, Γμ = 0. Hence we get an Hs solution g — f^~gof Rμv = 0.

Remark, f is not unique, nor is the solution of jRμv = O unique.
Case B above constructs a particular one. See the next section for
elaboration on this point.

Proof. The system R{

μl = 0 is reduced to a first order system by
introducing the new unknowns gμv, kμv = δgμv/δt, gμVti = dgμJδxi, and
considering the following first order quasi-linear (symmetric hyperbolic)
system of fifty equations:

dt

δt
(F)

where Hμv(gμv,gμvί,kμv\ defined earlier, is homogeneous quadratic in
(gμvJ, kμv) and rational in gμv with non-zero denominator det g φ 0.

Within class C 2, the system (F) is equivalent to R{

μl = 0. Since glj is a
non-singular matrix (with inverse gkj — gkoϋjo/9oo) t n e equations

^ δ the same as δgμjδt = δkμjδx\ The firstg ^ g ψ

equation than gives—— (gμVji — δgμv/δxι) = 0. But equality at ί = 0 gives

gμv,i — δgμjδxι. The last equation is then exactly R{

μl — 0.

We shall now apply Theorem 2.3 to this system F with s' = s—l in
place of s. Let u = (gμv,gμvί, kμv) be our fifty component unknown. We
specify the closed subspace Fs'~ι and w as follows: w = (lm 50,0) for
lm as defined above and

δχι Jμ

which is clearly a closed subspace of H^~ι(R3,R50). Moreover, the
above shows that it is compatible with the equations. Let Us>"* be an
open set in Hζ ~ 1 defined such that all denominators are bounded away
from zero; for example IIs ~1 = {u|g ί ; is positive definite
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The matrices Λ°,A\B are given by

j l O

QlO

QlO

QlO

QlO

QlO

QlO

QlO

QlO

QlO

9

9

9

9

QlO

11 rlO

1 2 ^ 1 0

1 3 jlO

QlO

QlO

QlO

QlO

QlO

l j / 1 0

QlO

gi2l10

g22l10

0 2 3 / 1 0

QlO

QlO

QlO

QlO

QlO

g2jjl0

QlO

g13l10

g23jl0

^33,10

QlO

QlO

QlO

QlO

QlO

glijiO

Q ! 0

QlO

QlO

QlO

-gooi

QlO

α j 2 / 1 (

flj3 / 1 (

2fl j 01 1

\

10/

)

)

)

0

where 0 1 0 is the 10 x 10 zero matrix, I10 is the 10 x 10 identity,

μv
Q3O

and where 0 3 0 is the thirty component zero vector.
We see that the symmetric hyperbolic system

et
(S)

is just the system (F).
The asymptotic matrices A®,A\,Bt are just the matrices A?,Al

t,Bt

with ίm replacing gμv. It remains to check conditions (A2). The condition
(iii) results from the way we defined Fs'~ι, because ueFs'1 implies
gμve H^ and A°,Aι,B are rational combinations of gμv. From the fact
that Hs is a ring, we see that condition (iv) is satisfied. Condition (v) is
clear. For condition (vi) we can, as in Theorem 1.8, see that the domain
of v^Aj(u)δv/dxj is i/s~ * 0 G s 'Θ # s ' and on Fs>'1 the graph norm is
Hs' + 1@HS'®HS' as was shown in Theorem 1.8. Thus this graph norm
is independent of t, u. Finally, using the ®Hs'®Hs'~ι norm as
HI |||s, we see that (vii) holds as again the coefficients are rational func-
tions of gμv, and Hs is a ring (as long as denominators are bounded a
priori away from zero, division by an Hs function gives us another Hs

function).
Thus we have a solution existing in the domain and hence in Hs + !

®HS'@HS' and thus we obtain our unique Hs spacetime gμv satisfying

lί the Cauchy data satisfies Gμ = 0, Γμ = 0, then the conditions of
Lemma 3.2 hold and so Case A is established.
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Now we turn to Case B. This is based on the following computation [3]:

3.4. Lemma. Lei s>n/2-\-2 and gμv(t,xι) be an Hs spacetime on
= /x>R3 with Cauchy data gμΛndgμJdt that satisfies G° = 0. Let
x) = x~μ(xv) be an Hs+1 coordinate transformation which satisfies:

(i) (F(0, x ̂ x^O, xJ)) = (0,xj),

dxμ

( O O ( l 0(ii)

dt

Such coordinate transformations exist. Then the Cauchy data of the
transformed metric g satisfy:

—
9aβ — Uotβ

dt

d§0;

dt

dΰoo
dt

dt

dg0

dt

dg0

dt

L+dι,

° +3oα

o

d2xa

dt2

d2x*

dt2

d§oί
dt

<3£/oo
dt

= 0.

, giΛ

g00

g00

π

and

Existence of / is established in § 4. The existence of xμ is slightly
delicate because the right hand side of (iii) is just H8'1. We shall obtain
the existence of such transformations in the next section by solving a
suitable wave equation. The rest of the assertions can be checked by a
straightforward computation using the transformation rule for Γμ:

d2xμ

dxa υ dxadxβ

and the fact that G® does not depend on dgOμ/dt.
To complete Case B we consider the solution gμv of R{

μl~0 with
Cauchy data given by the lemma in the xa system. By case A, gμv satisfies
Rμx — 0. Hence g — f*~g will also satisfy jRμv = O (since it is a tensorial
equation) and will have the originally given Cauchy data. By Lemma 3.1,
g satisfies the asymptotic and smoothness properties of a spacetime.
This completes the proof. |
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§ 4. Uniqueness for the Einstein System

In this section we shall show that any two Hs asymptotically flat
spacetimes which are Ricci flat and have the same Cauchy data are
related by a n H 5 + 1 coordinate transformation asymptotic to the identity.
A local result like this with weaker differentiability of the coordinate
transformation was obtained by Choquet-Bruhat [6]. See also Choquet-
Bruhat and Geroch [11] where the problem of maximal extendability in
spacetimes is discussed.

Our proof is based on Theorem 1.8 which tells us that for the wave
equation with (H^H5'1) coefficients, solutions exist in the class
(HS+\HS).

As is well known, solutions to the system Kμv are not functionally
unique. Thus if gμv is an Hs asymptotically flat solution to Rμv = 0 and
xμ = xμ{xv) is an Hs+ι coordinate transformation asymptotic to the

dxμ

identity that is the identity on the surface t = 0, —-— (0, xv) = δ1^ and
ot

d2xμ

—"~γ- (0, xι) = 0, then by covariance of Rμv = 0 and by Lemma 3.1,

_- _* <3xα _ dxβ _.
guJxλ) = g0.β(xρ(xλ)) _ (xλ)~z^-(xλ) is also an Hs asymptotically flat

μ μ oxμ oxv

solution to Rμv = 0 and which has the same Cauchy data as gμv(xρ)
Of course, a similar situation holds for any tensor system of partial
differential equations on a spacetime.

Thus we want to prove the converse of the above remark. That is,
two Hs solutions g,g with the same Cauchy data are Hs+1 isometric.
As a first step, we shall now prove that when we bring an Hs spacetime
to harmonic coordinates, it remains Hs. To do this requires an Hs+1

coordinate transformation. This will also complete the existence part of
Theorem 3.3, Case B.

4.1. Theorem. Let gμv be an Hs spacetime, s ^ 4, on I x # 3 , / = (— ε, ε).
Then there is an ε\ 0 < ε' g ε and a unique Hs+ x coordinate transformation
φ\ Γ x R3 -+I x R3 xρ\->xμ = φ(xρ) asymptotic to the identity such that
the transformed metric gμv is an Hs spacetime with Γμ(xλ) = 0.

Proof. Consider the wave equation for the scalar ψ,

The coefficients are of class H\Hs~ι. Let F(ί, x) be the unique solution
with Cauchy data

F(0, xj) = 0, — (0, xj)=l.
ot
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To fit this into the framework of Theorem 1.8, consider instead the
equation for ξ(t, x) = F(ί, x) — t which is

Ot

Note that the coefficients are Hs,Hs~ι and the inhomogeneous term
is Hs~ι. Thus by 1.8 we get a solution ξ in H s + 1 , and hence have defined
a function Γ(ί, x) i/s + 1 asymptotic to t.

In a similar way we may use theorem 1.8 to solve • ψ — 0 for xι with
Cauchy data

Now ί i~>xι(ί, ) is continuous in Hs+ί (by Theorem 1.8) and 2 γ ι is open
in Hs+1 (Cantor [5])_so xf is an Hs+1 diffeomorphism of R3 to R3 for
some ί-interval. Also, t is for fixed x a diffeomorphism in t (on a uniform
f-interval for all x since dt/δt= 1) by the implicit function theorem. Thus
f(t, x) = (F(ί, x), x(ί, x)) on /' x R3 is an H s + x coordinate transformation
asymptotic to the identity, so that by Lemma 3.1 g = {f~ι)*g is an Hs

spacetime.
Now the equation • xμ = 0 is a tensorial (scalar) equation. In the

barred coordinates, it becomes

d2xμ - dxμ

pa" g dχ*δχβ + dx*

= Γμ

so that gμv satisfies the harmonic condition. Thus / transforms gμv

to harmonic coordinates. Uniqueness of / follows from uniqueness of
solutions to the wave equation with given Cauchy data. |

Note that since gμy is of class H\ the sharpness of Theorem 1.8 is
actually needed to show that the transformation / is Hs+1 and thus that
gμv in harmonic coordinates is also H\ Note also that we have uniqueness
of / because the Cauchy data used to solve the wave equation for
harmonic coordinates is contained in our definition of coordinate
transformation. Moreover, since / leaves the hyperplane t — 0 fixed
and Df is the identity on t = 0, / cannot even be composed with an
isometry, as an isometry which fixes a point and a frame at that point
is the identity.
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4.2. Theorem. Let gμ

ιj and gμ

2) be two Hs spacetίmes on (— ε, ε) x R3

with the same Cauchy data and which satisfy Rμv = 0.

Then there is an ε', 0 < ε' :§ ε and a unique Hs+1 coordinate transforma-
tion φ : Γ = ( — ε',ε') x R3-*I x R3 asymptotic to the identity such that
g(2) = {φ-~ι)*g{l) on {-ε\ε)xR3.

Proof. From Theorem 4.1, we can find the unique Hs+1 coordinate
transformations φγ and φ2 such that g ^ = (φΐ*)* g(1) andg(2) = (φ2

 λ)*g{2)

satisfy the harmonic condition. Moreover, from the expression for the
transformed Cauchy data and from the equality of the Cauchy data of
g{l) and g{2\ we see that the Cauchy data of g{λ) and g{2) are also equal.
But both g{l) and g{2) then satisfy R{

μl = 0 with the same Cauchy data,
so from uniqueness for that system, g ( 1 ) = g ( 2 ) (on their common
ί-interval). Thus {Φϊίfg(1) = {φ2 ΎQ{2\ or

where φ = φ2

o Φΐ1. It follows from the definitions and the fact that
Q)γι is a topological group that φ satisfies the conditions for an Hs+1

coordinate transformation asymptotic to the identity. That φ is unique
follows from uniqueness of φί and φ2. fl

We showed above that given H\Hs~ι Cauchy data, the system
Rμv = 0 always has some Hs solution. However, one may desire that
the solution have g00, gOi specified; for example, in Gaussian coordinates
with g00 = — 1, gOi = 0. In this case, it seems that the best one can do is
to obtain an Hs~2 spacetime from H\ H8'1 initial data. The case of
general g00 and gOi is similar; see [20].

4.3. Theorem.Let s > n/2 + 3 (n - 3). Then for (g, -£-\ e S£* x Xs'1

\ oi j

which satisfies g00 = - 1, gOi = 0, δgojdt = 0, there exists a unique Hs~ 2

spacetimeg with this Cauchy data, satisfying goo= — 1, gOi = 0 and Rμv = 0,
for — ε < ί < ε , ε > 0 .

Proof. Consider some Hs spacetime gμγ with the given Cauchy data
and satisfying # μ v = 0, whose existence was proved in 3.3. Consider now
the geodesic ordinary differential equations defined by g; that is, consider
the spray of g ([30, 34]). This is a system of ordinary differential equations
with Hs ~1 coefficients:

dt
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Since we have conservation of energy we can multiply v by a C00 function
of ||ι;|| with compact support ||ι;|| ^ M without affecting solutions with

dx dv
Ht II^M. Then we get a system —Γ-=Xί(x,v\—Γ=X2(x,v) where

at dt
Xγ, X2 are Hs ~1 functions. By Appendix B (sharpening a result of Ebin-
Marsden [19]), this has an Hs~ι flow asymptotic to the identity. Thus,
the associated exponential map will be an / F " 1 diffeomorphism φ(t, x)
asymptotic to the identity. This φ satisfies the requirements of a n F " 1

coordinate transformation. Thus φ~ι*g = g will be an Hs~2 spacetime
which, as is well known (cf. Synge [41]), satisfies goo = — 1 , 9oi = 0
This proves the existence part of 4.3. Note: g satisfies Rμv = 0 in a
distributional sense; cf. 3.2. For g to be defined we only need s > n/2 + 2;
for Rμv = 0 to make sense, g should be at least C 1 and H2 and so 5 > n/2 -f 3.

For uniqueness, we may prove, as in Theorem 4.3, that if g1 and g2

are two Hs~2 solutions, then there exists an JRF" 1 coordinate transforma-
tion φ (asymptotic to the identity) such that g{2) = {φ~ι)*g{ί). Thus g{1)

is obtained from g{2) by a coordinate transformation. But from the theory
developed in [20], it follows that such a coordinate transformation
mapping one solution of the Einstein system to another with the same
Cauchy data is completely determined by the lapse and shift function.
Since they are prescribed here, g{1) = g{2\ One can also see this directly
by writing out (φ~λ)*gil] = g{2) and using the conditions g\fo= — 1,
g^ = 0,A = ί,2. I

The same sort of argument works to show existence of unique solu-
tions for a general lapse and shift. Finally we remark that it seems quite
difficult to prove such results directly from the equations in the dynamical
3 + 1 formulation (cf. [20]).

Remark. In future papers we plan to discuss the question of global
existence of non-singular spacetimes. Besides the above existence theory,
the existence of such spacetimes depends on (a) finding non-trivial
solutions to the constraint equations near the flat solution which depend
on only one variable (we believe that toroidal gravitational waves are
examples), (b) the use of the mass function introduced by Brill and Deser
(Ann. Phys. 7, 548 (1968)) and positive definiteness of its second variation.
See J. Marsden and A. Fischer, Publications du departement de mathe-
matiques, Universite de Lyon; Lecture, March 3, 1972.

Appendix A. Smoothness of Non-Linear Semi-Groups

Here we prove a general result on the smoothness of a non-linear
semigroup Ft for fixed t and apply it to the case of symmetric hyperbolic
systems (Theorem 2.6). The smoothness for fixed t is important in many
applications; cf. [13].

3 Commun math Phys , Vol 28
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Let D Q E be Banach spaces and X: D-+E a C1 map. By a flow for
X we mean continuous maps Ft: D-^D such that F0(x) = x, Ft + S = Ft ° Fs

and — Ft(x) = X(Ft(x)) with the derivative as a curve in E. The flow Ftat
need in general only be locally defined and for t ^ 0.

Recall that a linear semi-group Ut is called quasi-contractive iff
\\Ut\\^eβt fora constant β^O.

Theorem. Let X: D^E be of class C1 with a flow Ft:D^D. For
xeDlet Yx be the part of the linear operator DX(x): D-^EinD (Yx = DX(x)
on the domain = {y \DX(x) y e D}). Suppose

(a) Yx generates a quasi-contractive semi-group on D with constant
β locally bounded in xe D

(b) the domain of Yx is independent of XE D.

For each u,ve D write

X(u) - X(υ) = Z(u, v) (u- v)

i \

so Z(u, v) = jDX(su + (1 — s) υ)ds\ and also let Z stand for its part in D.
o /

Assume, more generally than (a), (b) that:

(c) The domain of Z equals that of YXi

(d) Z is strongly continuous as an operator in D asu varies in D, locally
uniformly inue D (note that Z{u, u)=YJ, and

(e) Z(u, v) generates a quasi-contractive semi-group with β locally
bounded in u, v.

Then for each fixed ί, Ft: D^>D is differentiable with strongly con-
tinuous derivative, locally uniformly bounded.

Note. If one is willing to add more differentiability in u, v, condition
(d) can be relaxed to resolvent continuity.

Of course one can iterate the process. Sometimes one says Ft is of
class BT1 for the conclusions here. If DFt is again of this type, Ft is C 1

as is easy to see (see Abraham [1]).
The proof of the theorem is based on Kato's theory of time-dependent

evolution equations; Kato [26-28].
Namely, we can find an evolution operator for the family of time-

dependent operators A(t) = YFt(x) for x e D fixed. This is possible because
A(t) are all quasi-contractive (hence "stable") and have a fixed domain
and vary continuously in t. Call this evolution operator Ht:D-+D
(starting at 5 = 0). What we claim is that DFt(x) = Ht.Ύo see this, we note
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that θt(h) = -TT-jp (Ft(x + h) — Ft(x)) solves the equation

~ θt{h) = lX{Ft(x + h)) - X{Ft{x))-\l\h\

= Z{Ft(x + h\Ft{x)) θt(h)

and θo(h) = h/\\h\\ =e9 say. Now the operators Ah(t) = Z(Ft(x + h),Ft{x))

also generate evolution operators and θt(h) is an integral curve. Ash—>0,

Ah(t)-+A(t) strongly for each t. Thus by Kato [28], the solutions with

fixed initial data e also converge, as /z-*0. Thus as /i-»0 we get

The convergence is uniform over the directions of h because of (d). Thus
DFt(x) exists and equals h\->Ht h. This derivative is strongly continuous
and locally bounded in x because YFί{x) is. This proves the theorem. |

To apply the theorem to the symmetric hyperbolic case, we consider
the situation of, say 2.1, with D = Ds and E = HS. The non-trivial part of
the hypotheses is to verify (d) with w, v varying in the Ds topology. To
see this, we may take A0 = 1 and confine ourselves to the A term, so

X(u) = Aι(u) —-γ. Now write

We may write A^u) — Ai(v) = Rι(u, v) (u — v) where Rι is, say, some
algebraic combination of w, ι;. Thus we take

Z(M, U) -
ox ox

The last term is like a B term in our symmetric hyperbolic system and the
first term has coefficients depending continuously on ueDs. Thus
Z(w,v) depends continuously o n u e D s . This shows that 2.6 is a special
case of the above theorem.

Appendix B. Flows of Hs Vector Fields

Theorem. Let X :Rn-^Rn be an Hs vector field (asymptotic to zero)

where s>n/2+\. Then X has a flow FteQ)\ \Ft is defined by——Ft(x)
dt

= X(Ft(x)\ xeRn and Θ\ are the Hs diffeomorphisms asymptotic to the

identity].
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This improves a result of Ebin-Marsden [19] in two ways. First,
we have lowered the permissible value of s by one, and second we are
working in a non-compact setting.

A careful examination of the proof in [19] together with the results
of Cantor [5] can, in fact, be used to prove the theorem. The result has
been noted independently by H. Brezis who also remarks that the result

is true generally for X of class Ws'py s> h 1. However, we can give an
P

entirely different argument using the theory of symmetric hyperbolic
systems.

Proof of Theorem. Since s>n/2+ 1, it follows that the C 1 norm of
X is uniformly bounded. Hence X has, by classical theory [30], a globally
defined C 1 flow Ft. What we shall show is that Ft — Id lies in Hs. Since

Ft is invertible, this will prove the assertion. Consider the scalar equation

4 f ) ^ (1)
dxι

with φ(0, x) = Φo(x) given. As is well known, this has solution

(this is just the method of characteristics for first order partial differential
scalar equations).

Now (1) is also a symmetric hyperbolic system with Hs coefficients,
and so we may apply the theory in § 1. Thus φ0 of class Hs implies φt

isHs.
In particular let φo(x) = x\ the projection on the ίth coordinate.

The equation for y

ξ = φ-φ0

π
(2)

0.
By (the inhomogeneous) Theorem 1.1, the solution ξ(t,x) is in Hs.
Hence we have

Fl(x)-xi is Hs

(asymptotic to zero). This means Ft — Id is Hs and completes the proof. |

To extend this to non-flat manifolds requires the same sort of com-
pleteness and curvature assumptions which is needed for the non-
compact Hs theory. These details will appear in Part II.

Acknowledgements. We thank H. Brezis, Y. Choquet-Bruhat, M. Cantor, D. Ebin,
K. O. Friedrichs, T. Kato, H. Kunzle, P. Lax, H. Levy, A. Lichnerowicz, M. Protter, R. Sachs,
and A. Taub for several helpful discussions.



The Einstein Evolution Equations 37

Note added in proof, (a) Refinements of some of the results in §§ 1,2 have been obtained
by T. Kato, using the methods of [29].

(b) Strictly speaking, in 1.8 we should work in the closed subspace Fs of those u in W
such that ψι = dψ/dxι. This makes the domains independent of t and is why we use Fs in
(Λ2) and (Λ3) on pp. 13 and 18.

(c) Some existence theorems for the nonlinear constraint equations will appear in a
forthcoming paper.
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