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Abstract. The time symmetric initial value problem for black holes is discussed.
It is shown that if a solution contains marginally trapped surfaces these correspond to
minimal surfaces lying inside the black holes. Such minimal surfaces must have spherical
topology. These minimal surfaces are used to obtain lower bounds for the areas of event
horizons and upper bounds for the efficiency for radiating gravitational radiation. It is
shown that moving black holes closer together reduces the energy available and that a
single initially distorted black hole (perhaps formed just after a very assymetric collapse)
cannot radiate more than 65 % of its rest mass away. “Wormholes” are also briefly discussed.

Introduction

Recently important advances have been made in the theory of black
holes in General Relativity. Hawking [ 1] has provided a precise definition
of a black hole in a weakly asymptotically simple space-time as a
connected component of that part of a partial cauchy surface S which is
inside the future (past) event horizon, J~(#*),(J/*(#)). He has used
this definition to show that in a strongly asymptotically predictable
spacetime which contains no “naked singularities” then the area of the
boundary of a black hole dB(f) must increase (decrease) with time. The
reader is referred to Hawking’s paper for the definitions of J~ (.4 ") etc.
He has applied these results to obtaining upper bounds on the amount
of gravitational radiation emitted when charged, rotating black holes
initially very far apart fall into one another. To do this he has invoked
another crucial assumption — the Carter-Israel conjecture which claims
that in any asymptotically flat system containing one or more black
holes, the exterior solution will eventually settle down to that of Kerr-
Newman.

The two principal reasons for this belief are:

1. Solutions representing a stationary exterior with no singularities
on or outside the event horizon seem to be restricted to the Kerr-Newman
family [1].
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2. In a study of small deviations from the spherically symmetric
case, Price [2], Doroshkevich, Zel’dovich and Novikov [3], de la Cruz,
Chase and Israel [4] have shown that the exterior system does indeed
settle down to the system one expects.

In this paper I wish to extend this work by studying particular partial
cauchy surfaces. The aim is threefold.

1. To provide some insight into how restrictive the Hawking efficiency
limit is and how it relates to Newtonian ideas of what gravitational
energy is available to be radiated.

2. To test, by a means first suggested by Penrose, the hypothesis that
in a solution which was initially non singular, any singularities which
subsequently develop would not be visible from infinity but would be
hidden behind an event horizon. Penrose has called this the assumption
of a Cosmic Censor. The idea is to try to show that assuming it one could
establish a contradiction with the theorem [5] that the mass of an
asymptotically flat system must decrease with time. The Cosmic Censor
is discussed in [6].

3. To provide some concrete and easily visualized examples of the
rather abstract concepts which it has been necessary to introduce into
the theory.

To do this I shall discuss the time-symmetric initial value problem
[7,8]. That is, instead of studying the whole of Einstein’s equations, |
restrict myself to considering the constraint equations which the cauchy
data for a solution must obey. In the case of a solution containing a
surface of time symmetry these constraint equations take on a simple
form — the cauchy data reduce to giving the metric of a space-like
hypersurface S with normal t* on which the intrinsic Ricci scalar °R
is related to the energy density by

3R = 167'[ Taﬂtdtﬁ .

Solutions to these equations which represent an arbitrary number
of black holes which are momentarily at rest with respect to one another
have been given by various authors [ 7,9]. These solutions have the topology
of a number of sheets all joined to another sheet by “necks” or “bridges”.
If the bridges connect regions on the same sheet they are referred to as
“wormholes”. Associated with these bridges or wormholes are minimal
surfaces — surfaces of least area. These minimal surfaces must lie inside
the black holes that these solutions represent. Their area is a lower bound
to that of the black hole. In this paper I shall prove that these minimal
surfaces must have the topology of a sphere — toroidal minimal surfaces
are excluded — and that the available energy of a black hole which is
initially very distorted is less than 65% of its initial rest mass energy.
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If two such black holes collided they could lose at most 75% of their
rest mass energy.

Section I describes the method adopted to achieve 1 and 2 and intro-
duces a new assumption — that of “asymptotic reasonableness”. 1 go
on to define minimal surfaces in S and prove that they must, under the
conditions of interest in this paper, have spherical topology. In Section I1
I discuss surfaces of time symmetry. In Section III explicit metrics are
used to show that as non rotating black holes are let fall into one another
from initially closer positions less energy is available to be radiated
away in gravitational radiation. Lower bounds to the area of any surface
of an assigned homology class are provided and it is argued that it is
unlikely that one could produce a contradiction this way.

In Section IV the method of images is used to discuss wormholes
and lower bounds are obtained for their areas. It is shown that the minimal
surface in question is a totally “geodesic submanifold” — i.e. its second
fundamental form must vanish. The results are used to obtain efficiency
limits.

Notation. In this paper I use a signature — + + + and Riemannian tensor convention

Ryt =14~ 1%
Ry =Riaq
I adopt units in which ¢ = G =1 (geometric units).

Greek indices run from 0 — 3.
Latin lower case indices run from 1 — 3.

I. The Method of Areas

Given a space-time .# containing a partial cauchy hypersurface S
with unit time-like normal ¢, the cauchy data which it is necessary to
specify on S in order to determine the geometry of .# consists of 1) the
intrinsic metric, g,,, of the surface S which it inherits from .# ; and 2) the
second fundamental form K, of S which determines how S is embedded
in /. The cauchy data has to obey certain constraint or initial value
equations. Provided S is “asymptotically flat” it has associated with it an
initial mass M,. Specifically I shall consider data such that the three
metric can be expressed near infinity as

gabzéab+O<L) (1)

R
0,45 1s the Kronecker delta. R is an area distance such that a sphere at
infinity has an area 47 R?. In this coordinate system the Ricci tensor of S
is given, if g,, obeys certain reasonable differentiability conditions
7*
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(uniform smoothness), by

M;

3Rab = R3

Bfufy= )+ 0 ] ®

where in spherical polar coordinates

fi=cos¢sinf,
,=sinfsing,
fi=cosf.

I am assuming that near infinity there may be some electromagnetic
field but no ponderable matter. This definition of mass corresponds
to the mass of the Riesner-Nordstrom solution and any candidate for
the mass of the system as defined on S should reduce to the same ex-
pression. Another restriction I shall make on S is that the second

1
fundamental form K,, =0 ( R_z) S does not bend about too much near
o . . 1 1
infinity. If the mass density T,,t*t" is O (F) then 3R=0 (F) and the

Eq.(2) is consistent with the gauss-codazzi equation since f, f, = 1.

How does this mass relate to the mass defined at future (past) null
infinity (Penrose [10])? I shall make the following assumption.

Asymptotic Reasonableness. The limit of the mass defined on a
2-surface on .# ¥ as the 2-surface is moved towards the singular point I°
is the same as the corresponding limit defined on .# ~ and that both of
these coincide with that defined on any suitable partial cauchy surface S.
Whether or not this mass is always positive remains an outstanding
question [11]. One would expect a spacetime to be asymptotically
reasonable if the system it represents was not radiating gravitational
radiation in the infinite past nor will it do so in the infinite future.

I shall now assume that .# contains an event horizon J~(.# *) which
intersects S in a number of connected components dB, which are the
boundaries of black holes, and that after some suitable time the black
holes have collided and merged to form a final black hole whose exterior
solution is that of Kerr Newman with at mass M/, charge e, and angular
momentum per unit mass a,. During this time the total area of the event
horizon must increase [ 1] whilst the mass must decrease [5]. The area of
the final event horizon is

Ap=4nM(2M,; — e +2M (M2 — a2 — e2)%).
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In particular if it is non rotating and uncharged.
A;=16TM} . (3)

Now let 16t M? be a lower bound for the sum of the areas A4, of the
black holes B,. That is, it is known that

A=Y A,>al6nM?. 4)
We have also
A,> Y 4, (5)
M
WV
and the efficiency
n=(M; =M)M ' <1-)/a. (6)

My aim is to find as high a value of « as possible. In particular if « can
be shown to exceed unity the mass of the system has increased we have a
contradiction and one of our assumptions must have been incorrect.
Defining the available energy as E = M, — A*(167)~ > ] am seeking systems
with negative available energy. The idea of looking for initial value
hypersurfaces containing black holes which are too large for their
mass is due to Penrose [12], and is discussed in more detail in [13].
To find a lower bound for 4 I look for compact orientable 2-surfaces
T which are marginally outer trapped surfaces [14,17]. These are
space-like 2 surfaces whose future directed outward null normals [*
have vanishing convergence ¢ (see [15] for definition of g). The null
hypersurface which has [* as its generators cannot in general be an
event horizon because the presence of matter or gravitational radiation
will cause the normals to converge and the generators of the event
horizon must have positive or zero divergence. It is only in the stationary
case that it can be zero [1] and so the two surface 4B and T must in
general be distinct. The generators of the null surface spanned by T
cannot extend to .# * since there they must have non negative divergence
so that T must lie inside the event horizon and hence T lies inside JB.
If s* is the unit spacelike normal to T lying in S and directed outwards [*
is given by

F=t"+5 7

0 is given by
0 =ty pm*im’ + s, ym*m” (8)
where m*, im* are complex null vectors orthogonal to t*, ¢* and normalized

so that m*m, = + 1. The first term comes from the second fundamental
form, K,, of S regarded as embedded in .# and the second from the
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second fundamental form of T regarded as embedded in S. If K, m*m"
is zero then T is characterised as being an “extremal surface” lying in S.
An extremal surface is one for which the first variation of its area is zero.
If the second variation is always positive then it is a “minimal surface”.
Note that in the literature what I have called an extremal surface is often
referred to as a minimal surface [16]. If the shear or trace free part of the
second fundamental form of T also vanishes it will then be a “totally
geodesic submanifold” [16] since only then will geodesics initially lying
in the surface remain in it. I shall now prove a useful lemma.

Lemma 1. In any Riemannian space V with a metric which is at least
twice differentiable and such that there exists an isometry ¢: V-V
which leaves fixed the points of a submanifold W then W is a totally geodesic
submanifold and hence an extremal surface.

Proof. Assume that the lemma were not true, then there exists a
geodesic I' lying initially in W which leaves W. The isometry ¢ takes this
into a new geodesic ¢ - I'. Points of the geodesic not in W are taken to be
new positions while those in W are left fixed. Thus there exist two distinct
geodesics through a point of W with the same initial tangent, which is
impossible.

I shall now prove a theorem concerning compact orientable 2
surfaces lying on a 3 surface S.

Theorem I. All compact orientable two surfaces W, lying in three
surfaces S whose Ricci scalar is non negative, and which are minimal surfaces,
are homeomorphic to a two sphere.

Proof. For an extremal surface the second variation of the surface
with respect to uniform deformations dt along the normals is given by

2

Ca=- [ CR,,S°S? +22?) dA (&)
‘ [

where

Z2 =45,z

and X, is the trace-free part of the second fundamental form of W. The
gauss-codazzi equation relating the gaussian curvature K of W to the
curvature S and the second fundamental form is

@2

2K =R —2°R,, 5" — 252 + (10)

@ is the trace of the second fundamental form and is zero in this case. Thus

d*A 3R
5( .

= ——~—22+K)dA, 12)
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Now by the Gauss-Bonnet theorem jKdA =2ny=4n(l—p) is a
topological invariant of W. y is the euler characteristic of the surface

and p the “genus” or number of handles it has. For a sphere p =0, a torus
2

p=1 etc. So that unless p =OW will be non positive, whence follows
the theorem.
The Ricci scalar 3R is given by the gauss-codazzi equation relating the

intrinsic curvature of S to its embedding.

R=16nT, 1*t# —2(K%)? + 282
Where 2 1 b 1 1 1 sb (13)
§? =15,,8% =4 [Ki — $64KS] [K, — §5K<]

is the “shear” of the normals and K¢ their expansion. T, ,t*t” is the energy
density and so provided the normals are not expanding too fast *R will
be non negative. In particular if K, vanishes the theorem holds and in
this case Eq.(8) shows that such a surface is also marginally trapped.
This result is a companion result to that of Hawking on the topology of
Black Holes [1]. I am grateful to Dr. Hawking for pointing out to me the
possibility of such a theorem.

I1. The Time Symmetric Initial Value Problem

If the spacetime .# possesses a surface of time symmetry S then
Lemma 1 shows that its second fundamental form must vanish (¢ is the
time symmetry isometry interchanging past and future). Further if there
exists a future event horizon there must also exist a past event horizon and
these will intersect on S in ¢ B. In this case the initial value problem takes
on a particularly simple form [7, 8]. The cauchy data reduce to giving
the intrinsic metric of S —g,, and this data must obey the simple con-
straint equation

R=16nT, 11" (14)

A good example of such a solution is the Schwarzschild solution. If we
examine the Kruskal extension (Fig.1) [17] we find two horizons,
A * and A", a surface of time symmetry S and a black hole, with boundary
0B. The surface S consists of two asymptotically flat regions connected
by a “throat” or “Einstein-Rosen bridge” [18]. The two regions are
isometric and the throat is fixed under the isometry so it is an extremal
surface.

The metric of S is given by

dr?

2m

1— ="
;

ds* =

+r2(sin?0d¢? + d6?) (15)
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Singularnty

Singularity

Fig. 1. The maximal analytic extension of the Schwarzschild solution. The diagram
represents the r, t manifold, each point represents a 2 sphere. Null lines are at 45°

by the substitution
= (1 ; ﬂ)“ o
20
it becomes

4
ds? = <1+ T";) [do? + 0*(sin*0d$? +d6?)] (16)

where 0 < g < o0.

4
A sphere of coordinate radius ¢ has area 4> (1 + 2£) which has a

2 when g= -2, that is when r=2m at the

2
Schwarzschild radius. The point ¢ =0 has to be excluded from the
manifold and so S has the topology of a euclidean 3 space with one point
removed i.e. of

minimum value of 16mm

R® — {0} .

This example is conformally flat and this lead Misner and Wheeler [7]
to consider other solutions of this form. They found solutions representing
an arbitrary number of charged non rotating black holes momentarily
at rest with respect to one another. From now on I shall restrict myself to
the uncharged case since the addition of charge merely increases the
available energy without adding any new features unless the charge
exceeds the mass (in geometrical units) when as is well known naked
singularities enter from the very beginning. The question that the paper
is concerned with is the evolution of initially regular cauchy data.

In what follows I shall discuss only the future evolution since in a
realistic example it is this part of the solution which would be matched
onto a solution representing the collapse of a number of massive bodies
which form black holes which are momentarily at rest and then fall into
one another.
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II. N Black Holes
The solutions of Misner and Wheeler [7] are conformally flat
do*=d*5,,dx*dx" .
The vacuum initial value equation reduces to Laplace’s equation
V2 =0.

The only suitable solutions in which the initial surface S is non singular

are of the form c-n |

d(N=1+ Z

Lo Me
= 2 |re—1]

where m are positive constants and r is a position vector in the flat space.
The points |rc —r| =0 are excluded from the manifold S which has the
topology of R? with N points removed. This solution is interpreted in the
following way. It consists of N sheets joined to an N + 1'® sheet via N
bridges. Each mass is surrounded by a minimal surface marking the
bridge and as one moves through this and towards the points |ro —r| =
one is moving into a new asymptotically flat region. Associated with
each sheet is a mass mq(1 +y) [9] where

B=N 1

1= 2

B=1 2 er—"cl

mpg

B*C
A=N
The N + 1" sheet has a mass M; = ) m,. The minimal surface
A=1

around the ¢ mass is to be called T, with an area A, (it is also marginally
trapped) and there may in addition be further minimal surfaces around
any n of them (1 <n < N).

As the system evolves it will radiate into each of the N + 1 asymp-
totically flat regions. I shall begin by showing:

Theorem II. If N> 1A, > 167(m,)>
4
Proof. Consider two metrics g,,, = (1 + T,m—l-> 34 and g,,=P*6,,

Let A(g’,w), A(g,w) be the area of W evaluating using g,, and g,
respectively then )

Alg, w)> Alg', w)
and let T, be the minimal surface around m. when all the other masses are
not present

Alg. T)) = 167m?

Alg, T)> Alg, T.)
and the theorem follows.
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From the point of view of an observer in the ¢ region the solution
represents a single distorted black hole. The energy available for emission
is M;— M. From the above result this is bounded by (1 + y)~' M,, thus
the possible efficiency # for radiation into the ¢™ sheet is less than
I — (14 ») "' As the mass points move together the surface T, becomes
more and more distorted as y —oco. The upper bound on the efficiency
becomes unity, this is improved on in the next theorem.

Theorem III. Any surface enclosing R mass points has an area A
bounded below by

C=R 2
2n< Y mc> :
Cc=1
Proof. Consider the second variation of the surface with smallest
area of the homology class in question. Its geometry may be discussed in
terms of g,, or d,,, when J,, is being used the corresponding quantities

will be denoted by a subscript e denoting euclidian. It is required to
minimize | @*d A, since

MdAe =§J5ndAe
we have

1 1
J= (R— + R_) is the mean curvature of the surface and R,, R, the
1 2

principle radii of curvature, %‘E is the normal derivative of @. One has
n

ek 1 0€D 1 09
M: :————— —_— :—— P,
c; e 6n j ® on PdA..

Applying Schwartz’s inequality one obtains

(an2<j( -a-> dA, | 92dA,
and again

Q2rnM)* < (»5 7) dA,)/([ #*dA,))/([dA,)
QaMP <| —LL) dA)/4)/4,

P4 _((K-3%dA  (Eq.(12)

now

d
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[KdA={K,dA,since | KdA isa topological invariant also

¢422222=_1_<L*_1_>2

. 4\R, R,
S
d*A
dtZ :I(Ke—zg)dAe
It is also true that 22 = —-J?—K,;J = 4 00
d on
d*A 1 oo
— —-4 — e
dtZ IzKedAe f(@ an) dAe

)
P4 o 4Q2nM)
2 dr? VAV A,
‘;t—f must be positive therefore ]/Z )/ A,>2nM?
A>2nM?.

Now consider the case of two black holes of equal mass. When they
are far apart there will be just two minimal surfaces of area >167m?.
As they are moved closer together the area will increase and there will
be less and less available energy — as one would expect on Newtonian
grounds. There is a danger that o« will exceed unity. However as they are
moved closer a third minimal surface will form around both once the
euclidean distance apart d is less than 1.59 m (Brill and Lindquist [9]).

This area is bounded below by 2z M?. It is also less than the sum of the
two areas enclosed, as can be seen from the following argument. Join
the two inside surfaces by a very narrow pipe (see Fig.2). This can be
made of negligible area. The surface then 4, + 4, < A3, since A; is by
definition a minimal surface. Thus if the Cosmic Censor Principle
holds one would expect that before the two individual surfaces become

Fig. 2. Two minimal surfaces surrounded by a third. The 2 points represent the asymp-
totically flat regions on the other side of the Einstein-Rosen bridge. The dotted surface
is obtained by continuously deforming T
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too large the third surface forms around both and saves the day. I have
not been able to show this completely using analytic methods but I
feel that the following result lends some credence to this belief.

Theorem 1V. For the above system the available energy is positive for
d> ([/E —1)"' m=2.48 m. Two lemmas are required.

Lemma 2. If A, is a one parameter family of surfaces t € (a,b) and A
the area of the smallest minimal surface of this homology class and

A< f(1)
A<mibr)1f(t).

(a,

The proof is obvious.

Lemma 3. If
f(t)=t2(a+§> t€(0, a)

min f(t) = 2% 22 p* if O<g<a
. _ A B
mmf(t)~a2<oz+?) if O<a<;.

Again the proof is easy.

Proof of Theorem IV. For our one parameter family chose euclidean
spheres of radius r about one of the two mass points. The minimal surface
about it must lie in its own half space by symmetry.

Thus

4 4
A,=§(1+%+x> dA?<j(1+L"-+1"—) dA,

2r d

2y m o om\*
A, <4mr (1+2r+ d)'

Now use Lemmas 2 and 3 to show that then

2
A< (1 + %) 16mm?
provided

m m\~!' d
7(”7) <5

2
which will always be true. Thus a = %(1 + —r:ll—)

which is less than unity for d < ([/5 —1)"' m whence the result follows.
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It is also possible to apply theorem II to the radiation into the ¢™
throat mentioned earlier. From the point of view of its infinity the
minimal surface T, surrounds all the other points and so its available
energy will be <(1—1 /1/§) M, which is less than 65% of the initial mass.
This situation might arise when a black hole formed during an extremely
assymetric collapse (with no net angular momentum however). Initially
the black hole is very distorted but it relaxes back to a spherical state
and in the process it can radiate no more than 65% of its rest mass in
gravitational radiation. In practice it will probably radiate much less.

Obviously one can proceed to more complicated situations but as
with this case it is most likely that one would need to have recourse to
numerical methods.

IV. Wormholes

Misner [19,20] has generalized the solutions described above to
obtain metrics representing the initial conditions for ‘wormholes’. A
wormhole arises when two separate regions on the same sheet are joined
together. The surface on which this join occurs will in general be a
minimal surface. Misner’s method is one of successive images. He retains
the form ds? = ®*5,,dx*dx' and starts with one of the solutions described
above. Then he surrounds each mass point by a sphere and then obtains
the image mass of each external mass which will lie inside the sphere by a
process of inversion. Then he repeats the process to each mass point in
turn, thus obtaining an infinite sequence of images. He shows that the
process will converge and by a familiar property of Laplace’s equation
the potential so obtained will also be a solution. The result of this
process is that inside each sphere is a region which is isometric to the
exterior of each sphere — the isometry being a sort of inversion. Now one
can identify spheres in a suitable way to obtain wormholes or other rather
similar structures. In the case of just two spheres he has obtained an
explicit form for the metric [19]. For more details the reader is referred to
Misner’s papers and also to Lindquist [21] who has obtained the charged
case.

In this section I shall make two remarks on Misner’s method and then
obtain an improved lower bound on the area of the minimal surfaces.

1. By Lemma 1 the spheres are totally geodesic submanifolds and
hence minimal surfaces.

2. The method can only work for spheres because if a suitable isometry
exists 22 =0 which implies X? =0 which means that T, is a euclidean
sphere [22].

I shall now use the fact that X2 =0 to give a lower bound on the
area of the surface. Because of the repeated inversion Theorem II no
longer applies.
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Theorem V. Define the mass of the minimal surface, considered as
immersed in the complete euclidean three-space as

L . 0®

=—— dA, .
" 21 Y On ¢
Then
A>4dam?
Proof.
4 0 2

when r is the euclidean radius of the sphere.
1 1

2nm= — | ®JdA,= — | ®dA

= JoJdd, 2r J ¢

[ PdA, <A A}
by Schwartz inequality

2nm < % A*AE < AY)/n

thus A > 4nm?* since A > A,.

Now consider the coalescence of a single wormhole. From the point
of view of an observer far away from the wormhole it will look like either
1) two small black holes or 2) one large black hole. It is only when the
observer investigates the insides of the black holes that he can tell that
in both cases the interiors are connected and hence they should both be
referred to as a single black hole within Hawking’s definition. However,
although there is one black hole present, the intersection of the event
horizon, if it 1s present, with S, can consist either of two disjoint surfaces
0B, and 6B, both homologous with the minimal surface T and in a
loose sense situated at either end of the wormhole; or, there may be
just one connected component of the intersection of the event horizon
with S, 0B;. In this case it will not be homologous with 7. These two
possibilities are illustrated in Fig. 3. One would expect the first case to
hold if the “black holes” are far apart compared with their mass and the
second to be the case if they are close together. In the second case one
would expect a third minimal surface Ty to have formed. The mass
of the system M, as seen far away will be 2m. If the system collapses and
ultimately settles down to a schwarzschild solution with mass M,
one has in case 1, using theorem V

167M? >2A4 > 87m? > 2n(M,)?

and so the efficiency is less than 65%. This is rather better than the 75%
limit one obtains by applying theorem III directly. If one has to treat
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CASE 1 CASE 2.
Fig. 3. Possible topologies of a wormhole. Since the system is symmetric about an axis
joining the centre of the spheres, each point in the diagram represents a semi-circle. The
shaded region represents the interior of a single black hole

case 2 one can apply theorem III to T;. This provides the same limit
which shows that the available energy of a wormhole is always less than
65 %.

Discussion

In this paper I have discussed the use of trapped and marginally
trapped surfaces in the investigation of the interaction of black holes. I
have shown that in the cases considered (the time symmetric problem)
marginally trapped surfaces must be homeomorphic to a sphere and I
have placed lower bounds on their available energy and shown that as
black holes are moved closer together the available energy decreases.
I have argued that it is unlikely that one could use this method of Penrose
to provide a contradiction to the Cosmic Censor assumption.

To do this I have restricted the discussion to non rotating black holes
where the initial surface is conformally flat. The second restriction is
probably not very important since it corresponds to there being no
transverse gravitational waves in the A.D. and M. formalism of General
Relativity [23]. The first restriction is however rather more important.
It is known that for a > m the Kerr solution contains a naked singularity.
The question that naturally arises is this: given a number of black holes
with large orbital and spin angular momentum (but such that for each
individually a < m) which fall into one another, can they always radiate
away enough of their angular momentum in the form of gravitational
radiation to avoid forming a rotating black hole with a>m? This
problem is the major obstacle to a complete understanding of the
exterior dynamics of black holes.

Throughout this work I have benefitted greatly from conversations
with the members of Cambridge Relativity group and most especially from
the interest, encouragement and advice of my supervisor, Dr.S. W.
Hawking. I am also most grateful to Professor R. Penrose for helpful
discussions and for suggesting the use of the time symmetric initial
value problem in this work.
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