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Abstract. The stability of a class of homogeneous cosmological models is investigated.
It is shown that the perturbation problem for six such universes can be reduced to a system
of ordinary differential equations. The time development of the perturbations is such
that they remain finite at all times for which the unperturbed metric is non-singular.

I. Introduction

In a previous paper [1] the stability of the Taub universe was ana-
lyzed and shown to reduce to a system of ordinary differential equations.
In this paper we generalize that result to universes whose 3-surfaces of
homogeneity admit a simply transitive, 3-parameter group of motions
of Bianchi types I, II, VΠ0, VIII, and IX, as well as to the Kantowski-
Sachs universe [2]. Except for the Kantowski-Sachs case, which is dis-
cussed in Appendix B, all these universes belong to "class A" in the
classification of homogeneous cosmological models given by Ellis and
McCallum [3]. These are non-rotating universes with the flow vector
of matter (assumed perfect fluid) orthogonal to the surfaces of homo-
geneity. The group structure is of the form

IX19X2-] = N3X39 lX2,X3] = NίXi9 iX3,X^=N2X2 (1.1)

where the N^ can be chosen to equal 0 or ± 1 .
If we define the 1-forms ωa by <ωα, Xβ} = δa

β9 we can write the metric
for these universes as

ds2 = dt2 - Aiω1)2 - C{ω2)2 - £(ω 3 ) 2 (1.2)

where A, C, and B are functions of the time, ί, to be determined by
Einstein's field equations (see [3], Section 4, for justification of this
form of the metric). We will further restrict our universes by requiring
local rotational symmetry [3, 4], This is equivalent to demanding A = C
and Ni = N2 and is made in order that the "Laplacian operator"
gaβXaXβ separates in the coordinates used to express the Xa (see Ap-
pendix A). We thus consider groups satisfying

[Xu X 2] = NX,, [X2, X{\ = nX1, [*3, * J = nX2 (1.3)

* Work supported in part by the National Science Foundation.
1 Greek indices have the range 1, 2, 3; Latin 0, 1, 2, 3.
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and, correspondingly, 1-forms ωα satisfying

dωί=-nω2Aω\ dω2=-nω3Aω\ dω3 = -Nω'Aω2 . (1.4)

The Bianchi types corresponding to different choices of n and N are given
in the following table2:

n

0
0

+ 1
+ 1

±1

N

0
+ 1

0

τ i
±1

Bianchi type

I

II

VΠo
VIII

IX

II. The Field Equations

The gauge of the perturbation is chosen so that the metric takes the
form:

ί-β
0 - ,
0
0

0
4( l+α + 7

- K

-λ

0

-μ

0
-λ

p) - μ

where A and B are functions of ί, while α, β, y, K, λ, μ are functions of ί,
x1, x2, x3. This choice is made because it simplifies the equations. It does
not affect the fact that a solution by separation of variables is possible.
Indeed, from the symmetry of the problem, one expects3 that (δg01, δg02)
and (δg3ί, δg32) will transform as vectors under rotations in the space
spanned by Xί and X2 δg009 δg03, δg33 and the trace of δgAB (A, B = 1,2)
will transform as scalars; while the traceless part of δgAB will transform
as a tensor. (See also Regge and Wheeler [6] for similar considerations
for the Schwarzschild metric.)

The exact equations determining A and B are

T l ηr>2
1 = ^ 2 =

7-0
0 '

P-

T 3
i 3 ~

l A

2 A

p-

1 AB
2 AB

1
1 2

A

' A

β

1

4

1
4

|
1 4

A2

A2

A
A2 +

AB

AB

nN
A

1

4

nN

A

A2

A2

3

4

NZB
AA2 '

1 E?2

4 B 2

N2B

A2 '

JV2B

(2.2)

(23)

(2.4)

2 Only the relative sign of n, N is significant.
3 I am indebted to Dr. James B. Hartle for this remark.
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while the linearized equations governing the perturbation functions
are given in the preceding page4. These are best obtained using the
methods of Cartan; i.e. we compute the connection 1-forms ωιj~gιkωkJ

by solving dg{] = ωtj + ωμ and dωι -\-ω\Aωk = 0 for the metric (2.1) and
the 1-forms (1.4). Then Rίj = Rs

ίsj where \ R}klω
kAωι= dωi

j + ωi

kAωk

j.
Note that, for any function F,

dF = Fdt + (XiF)ω1 + (X2F)ω2 + (X3F)ω3

so that no reference to coordinates need be made. The numerical sub-
scripts on all tensors thus refer to the tetrad frame ωι (ω° = dt).
In these equations the subscripts 1, 2, 3 refer to "partial derivatives" with
respect to the operators Xa\ for example, (λx 4- μ2)3 meansX3(X1/l + X2μ),
etc. We also construct the following linear combinations of these
equations:

(2.15)

1 1 JB IL*B__A. 2N2B 2nN\
B IB \λ Ati A A A 1

i-In) + κ12 + κ21 3JV

AB AB -π

B )^~μ^~jB~~κμi~*2)(2A6)

AB A 2N2B 2niV

2AB A' A2 AJ

An N\ X3±2in

4 The equations are written for δp — 0 for simplicity. Since δp = \—- δp, with
\dQ)e=ΰ0

 dQ
given by the equation of state, the equations separate again when δp =t= 0; the only difference

dp
is that Eqs. (4.1) and (4.2) now have terms proportional to .

dρ
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B ~ Ajκ ^'~ AB

AB A 2N2B
(2.18)

± l i (λ±ίμ)3 ——(X1 + iX2) h±i-\ = O,

where we have used the commutation rules (1.3).

III. The Space Dependence

In analyzing the stability of the Taub universe, we showed rigorously
[1] how the different equations, taken in order, implied the form of the
space dependence of the perturbation. The same argument can be
repeated here, but we will simply state the results. Namely, if we denote
by Ψs

m the eigenfunctions of Xl + X\ and X3 satisfying

(X1

2+Xf) P r a = - ( s - m 2 ) < F ^
and \ (3.1)

then the metric perturbations must satisfy the equations

a(t, x\ x2, x3) = Σ a*, »(t) ψUx\ x2, x3), (3-2)
s, m

β(t, x1, x2, x3) = X bSι m(ί) Ψs

m{x\ x2, x3), (3.3)

(3-5)

(3.6)

(3.7)

in order that the field equations reduce to ordinary differential equations.
(The ranges over which the sums extend are different for the different
groups; the sums must be understood to extend over all eigenvalues of
the Ψ's.)
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Eqs. (3.4), (3.5), and (3.6), (3.7) can be combined as follows:

(3.4) + ί (3.5) = (X, + iX2) (λ ± iμ) = i£(P± Q\n ^ , (3-8)

(3.6) + i(3.7) = (X, + iX2)
2(y±i~) = Σ(R± S),,M Ψ'm . (3.9)

\ Λ l s,m

The integration of these equations is immediate upon noting that
Ψs

m is an eigenfunction of the operators (Xί±iX2)(X1 + iX2) and
(Xί + iX2)

2 (X\ -F iX?)2- Indeed, using the commutation rules (1.3) and
the defining equations for the Ψs

m% (3.1), we find:

= (X^ + Xi + ίNX3) Ψs

m = -(s-m2 + mN) Ψs

m (3.10)
and

(X1±iX2)
2{Xί + iX2)

2Ψ&

m

= (X, ± iX2)(X? + Xi + iNX3) (Xx + ιX2) Ψ*m t

2 + X 2 T /iyχ3) Ψ*n

= (s - m2 T 3mN-2nN) (s-t

The solution of Eqs. (3.8) and (3.9) is therefore

A ± ϊμ = - ί Σ ^ ^ ^ ^ ^ ^ i ± ^2) y m - ^ i f t ) ^ +flT±(0 (3.12)

and

{ ί

κ

1 ~l A ^m(s-m2 + mN)(s -m2 + 3mN - 2nN)
' (3.13)
+ c 2 (ί)Z 1

± +c 3 (ί)Zf+Λ ± (ί)
where the functions Z^ and Z^ satisfy

(X1 + X 2 )Z 1

± -0 and (Xx + i'X2)
2 Z j = 0. (3.14)

The significance of these extra terms is that they provide those terms in
an expansion of the form Csm Ψs

m which may be missing from the sums
in (3.12) and (3.13). To see if any terms are missing one must express
(Xx ± iX2) Ψs

m and (X, ± iX2f Ψs

m in terms of Ψs

m. and then see if the
summation over s, m includes all allowed values of sr, m'. Denoting
Xλ ± iX2 by X±, and using the commutation rules (1.3), we find that

X3X+ ψ>m = [X+X3 + M J Ψs

m = i(m + n)X+ Ψs

m (3.15)
and

(X2 + X2)X± ψ*m = [X±(X2 + X2) ± iN(X±X3 + X3X±)] Ψs

m
(3.16)

= -[s-m2-N(nτ2m)~]X±Ψs

m,

i.e. X+ Ψs

m is an eigenfunction of X3 and X 2 + X | hence it is proportional
to Ψs

m, where m' = m + n, s' = s + (n — N) (n + 2m). Similarly we find
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(X±)2 Ψs

m ~ Ψζ., where m" = m + In and s" = s + A(n -N){n + m). Clearly
for n = N = 0 (Bianchi I) s" = s' = s, m" = m' = m and the sums in (3.12)
and (3.13) include all allowed values of s\ m\ s", m"; the extra terms can be
put equal to zero in this case. (However, this is not true in general - see [1],
where the extra terms must be non-zero.)

IV. The Time Dependence

The equations determining the time dependence of α, b, P, Q, R, S
are obtained by substituting Eqs. (3.2)—(3.7) in (2.9), (2.10), (2.15), and
(2.16) and Eqs. (3.12), (3.13) in (2.17) and demanding that the coefficients
of the different Ψs

m vanish. Dropping the subscripts s, m we find:

(A

B
b) m P

AB A

N ί = o,
(4.1)

.A ΊΆ (3N2B 2nN\
l-A+b^ + a[~A^-~A~)

- (a — b) 3N

I A2

——y
4 A2

1 N2

4 A2

R

AB

A2

A_

' A

= 0 ,

2N2B 2nN\

A

+ m\is
(43)

= 0,

m2+{s-tn2)~\(a-b) =

+ R S
B A

+ — {(s - m2 - 2nN)P + 3mNQ} = 0,
AB

[A 2 Bj B A

+ - ^ - {(s - m2 -

(4.4)

( 4 5 )

( 4 6 )

3miVP} = 0.
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Similarly the equations determining cl9 c29 c3, g, and h can be found by
substituting (3.12) and (3.13) in (2.17) and (2.18) and using the fact that
XT(Z2) is proportional to Z * which follows from (3.14). One finds
that g, h, and c2 satisfy homogeneous equations while c1 and c3 couple
to each other. We omit these equations since we will not use them below.

The role played by the different values of n and N is best seen in these
equations where they serve to couple the different functions together.
One notes that when N = 0, Q and S decouple from α, b, P, R. There
are also special cases for particular values of s and m; for example, when
m = 0, P and S decouple from a, b9 Q, R. Also when s — m2 = ± mN,
Eqs. (4.3)—(4.6) imply that P = ±QoR = ±S which is needed in order
that (3.12) and (3.13) make sense. These special cases are best discussed
for each group separately.

The initial value problem then consists in assigning δρ, δua, a, b,
P, Q, R, S, ά, b, P, Q, R, S subject to the four constraints δG° = δT?
(Eqs. (2.5)—(2.8)), which read

2ρ{δUl± iδu2) = j - ( s-m 2 ±m2V) (ά + b
\ B ΰ \ A I
V I \ I ( 4 _ 8 )

+ /t>v B j j (s-m2±mN) ""
and

A\B
— I -m -+-ι β + 4i

4 B A
(4.9)

These equations give δρ and δua at subsequent times when a, b, P, Q,
R, S evolve according to (4.1)—(4.6) (δu0 is given by the requirement that

The solution of Eqs. (4.1)—(4.6) might be expected to be well behaved
everywhere except near their singular points, namely, A = 0, B = 0, and
possibly, t = ± oo. At A = 0 or B = 0, however, the unperturbed metric
becomes singular. We can thus conclude that the instabilities of this
class of universes occur at their singularities or at t = ± oo.

As was the case with Taub [1], the gauge chosen in writing (2.1)
does not completely specify the coordinate system. The remaining
coordinate freedom can be found as in Appendix C of [1]. The compu-
tations are lengthy but straightforward. The result is that the following
expressions give a coordinate dependent solution of (4.1)—(4.6) (sup-



Stability of Homogeneous Universes 267

pressing summation signs and indices s, m on the functions u, p, v, and c):

a = (s-m2)v{t)-~u{t)

2mp(t)-~u(t)}ψs

m,

. K
y±i~ = -(X1 ±iX2) {v(ή(Xλ±iX2) + c(t)(Xi + iX2)}

A

λ±iμ = -i{Bp(t) + (mA + NB)v(t)} (Xt ± iX2) Ψs

m

-ic(t) {(m±2n)A + NB} (X1 + iX2)Ψs

m,

where the functions of time u, p, v, c satisfy the equations

1 B

m
τ

u
-

(4.10)

(4.11)

,, (4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Note that the coordinate dependent solutions form a 4-parameter
family - the four initial values of u, p, v, and c needed to integrate (4.14)
to (4.16). ( In [1] the constant c was mistakenly taken equal to zero
resulting in a 3-parameter family.)

Appendix A

The operators Xα satisfying (1.1) have been given by Ellis and
X 2 X2 X2

McCallum [3]. Computing tfβXΛXβ = \- + -ir + -^-\ we note

that this operator will have eigenfunctions of the form Φ^x1) Φ2(x2) $3(x3)
only if A = C and N1 = N2 (except for the case N1 = N2 = N3 = 0 where
A Φ C is possible). Specializing, therefore, to the "locally rotationally
symmetric" case we find:

n+0 n=0

i = cosx3

δx1
X1 —

X2 = — ft s i n * 3

δx1
cosx 3 Z

δx2
NX1

dx3

X-i =
δx3

(A.1)

(A.2)

(A3)
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where

and

S(x

n ]\
— r 11\

S. Bonanos:

jg2/χlyι-l/2 I V j JY
[dx2

ί sinx1 |

\ x1 for N = I

sinhx1

r n

0

i — n

d

dx3

The operator X2 + X 2 takes the form:

nN
(dx1)2 S' dx1

(A.4)

{Sy [{dx1)2 dx2dxό (dx3)2

where

and
d2 d2 ! d2

 2 i 2 d2

Thus, in all cases, the eigenfunctions of X2 + X\ and X3 can be chosen
to be eigenfunctions of d/dx2 also. Letting Ψs

mk = eimx'eikχ2Ωs

mk(x1) we
find that the function Ω satisfies the equation:

Bianchi type

'-l- + s - m i - k 2

(dx1)2

II: <j—"i 2 "̂  s — m2 ~(k + mNx1)2\Ω — 0 , (A.7)
VΠI: ' ( )

d 2 , u l d k2+2mNksinhx1~m2

 Λ 2 I ^ A / A ON1 tanhx1 —r- —̂ —: \rS-2m£\Ω = 0, (A.8)
(dx1)2 ' ^ ^ dx1 cosh 2* 1

= 0. (A.9)

All these equations are known ODE's with known eigenfunctions.
(A.6) is the wave equation in one dimension, (A.7) the Schrodinger
equation for a one-dimensional harmonic oscillator, (A.9) (with
x1=β + π/2) is discussed in [5] (Eq. (4.7.6)), while (A.8) is related to
(A.9) by a complex transformation.

In this paper we have suppressed the index k from Ψs

mk because it
does not enter in our equations. However, for the expansions (3.2)—(3.7)
to be complete, an additional sum over k must be understood.
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Appendix B

The Kantowski-Sachs universe [2] has a metric very similar to (1.2):

ds2 = 4Y2dη2 - X2dr2 - Y2 [dθ2 + sin2 Θdφ2~\ (B.I)

where X and Y are functions of the parameter η:

X = ε(l-hηtanη) + bt?iΏη, Y=acos2η (B.2)

(α, b, and ε are constants).
Unlike the Bianchi cases where the Xa (and hence the ωa) were fixed

by the commutation rules (1.3), here one is free to choose ω2 and ω 3

so long as they satisfy (ω2)2 -f(ω3)2 = dθ2 + sin2θdφ2. Two possible
choices are ω2 = dθ, ω3 = sinθdφ and ω2 = cosφdθ — sinφsinθdφ,
ω3 = ύnφdθΛ- cosφύnθdφ. However, neither choice makes X2 + X%
a known operator, which is desirable since the perturbation will be
expanded in terms of its eigenfunctions. Moreover, the appearance
of the metric on the sphere, dθ2 + sin2θdφ2, in (B.I) would lead one to
expect that an expansion in spherical harmonics should be possible.
This is indeed the case if we rewrite (B.I) as

ds2 =4Y2dη2 -X2dr2 - Y2ύn2θ(-^-~~ + dφ2) , (B.3)

because now we can take ω2 = , ω3 = dφ giving X, = sin#
sm0

, ω = dφ giving X, = s i n # ,
sm0 dθ

Xλ = ——, so that
dφ

dθ y λ l ι w d θ ) ^ s i n 2 ^ d φ 2

becomes the total angular momentum operator in spherical polar
coordinates. In addition, with Xλ = d/δr, we find that all the Xa commute
(correspondingly dωa = 0), which simplifies the calculations. (Of course,
this simplification is offset by the appearance of sin2 θ in the unperturbed
metric!)

We therefore start with (B.3) and, in analogy with (2.1), choose the
gauge of the perturbation so that the perturbed metric becomes:

(B.5)

AY2{\-β)
0 -X
0
0

0
2(i+β)
-μ -Y2

A

0
-μ

sin2^(l+«
— K

0
A,

: + y) —K

- 72sin2^(l + α-y)
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where, as before, α, /?, γ, K, λ, and μ are the perturbation functions. The
linearized field equations, obtained as before, now contain terms in
sinθ and cosθ. The equations become more symmetrical after the
substitutions γ = σ/sin2# and κ=Y2τ are made. Separability is achieved
by expanding α, β and certain combinations of derivatives of λ, μ, σ,
and τ (analogous to (3.4)—(3.7)) in terms of eίkr YιJΘ, φ). The latter
equations can be combined in pairs to give (compare (3.8), (3.9)):

XlT2^3 (β ± ίλ) = *'Σ(P ± Q)k,ieikr K (B.6)

and

' Xl^l^\ (ysin2θ + i-^A = Σ(R + s)kieikrYin (B.7)

where P, Q, R, and S are again functions of time. The integration of these
equations is less straightforward than (3.8), (3.9) because (X2 ± iX$) Yι

m

is a linear combination of Yι

m and Y^1 rather than a single Yι

m. as
was the case with the Ψs

m's. The result is that λ and μ depend on Y^
and Y1^1 while y and K depend on Yι

m, Y^1 and Y1^2. Clearly, no extra
terms corresponding to Z ± are needed in this case.

The equations determining the time dependence of the perturbation
can be obtained from the corresponding ones for the Bianchi models
(4.1)—(4.6) after we make the obvious substitutions:

at 2Y dη

and the not-so-obvious nN-*l, AΓ->0. Numerical integration of these
equations leads to the expected result that the perturbations become
unbounded as the singularity Y = 0 is approached. An oscillatory
behavior similar to that found in [1] is again observed here as k and /
become large.
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