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Abstract. The Bogoliubov inequalities are derived for the infinite volume states
describing the thermodynamic limits of physical systems. The only property of the states
required is that they satisfy the Kubo-Martin-Schwinger boundary condition.

I. Introduction

In the conventional Green's function approach to statistical mechanics
all relations are first derived for strictly finite systems; the thermodynamic
limit is taken at the end of the calculation. Since the original derivation [1]
of the Bogoliubov inequalities was carried out within this framework, the
subsequent applications had to follow the same prescription. In this way
the inequalities have been applied by Josephson [2] to derive rigorous
inequalities for the specific heat and by a number of authors [3-7] to
show the impossibility of various kinds of long-range order in one- and
two-dimensional systems. In the latter class of problems, a special
difficulty arises from the fact that finite systems do not exhibit the broken
symmetries usually associated with long-range order. This has led to the
use of Bogoliubov's quasi-averaging method in which the finite-system
Hamiltonian is modified by the addition of a symmetry breaking term,
which is set equal to zero only after the passage to the thermodynamic
limit. This method has never been shown to be equivalent to the more
rigorous treatment of broken symmetries provided by the theory of
integral decompositions of states on C*-algebras [8,9] furthermore,
for some problems (e.g. Bose condensation and anti-ferromagnetism) the
symmetry breaking term has no physical significance.

The purpose of this paper is to show how these difficulties can be
avoided by establishing the Bogoliubov inequalities directly in the
thermodynamic limit. An application of the inequalities to long-range
order in one- and two-dimensional systems will be published separately.

* This work was performed under the auspices of the U.S. Atomic Energy Commission.
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II. Theoretical Framework and Physical Assumptions

The appropriate setting for our derivation is provided by the algebraic
approach to statistical mechanics; in particular we will make extensive
use of the results of Haag, Hugenholtz, and Winnink [10]. Let ω denote
a state on the algebra 31 of quasi-local observables. A standard con-
struction associates with ω and 31 a Hubert space § and a representation
of 31 by bounded operators on §. Physical symmetry operations are
represented by groups of automorphisms on 21 and in some cases by
unitary transformations on §.

We restrict our attention to states which satisfy the Kubo-Martin-
Schwinger (KMS) boundary condition. It is known that KMS states are
invariant under time translations, which implies that time translations
are represented by unitary operators on §. The precise statement of the
KMS condition is

j dt/(t - iβ) ω(BAt) = J dt/(t) ω{AtB), (1)

where A^At is the time translation automorphism. This equation is to
hold for all/e Q) (the space of C00 functions with compact support) and
all A,BeS&.

In their analysis of the KMS condition Haag, Hugenholtz, and
Winnink introduced a subalgebra 31C 31 as follows: For each A e 31 define
the operator-valued distribution

A(ε) = jdtelEtAt,

which exists by virtue of the fact that At is a bounded (operator) function
of t. Then 3Ϊ is defined to be the algebra generated by all A for which A
has compact support. We list here several properties of these operators
which will be useful later on. In the first place, the Fourier transform of
a distribution with compact support is an entire function for complex
values of its argument [12]. Thus, on 31 the real time-translations can be
extended to complex time, η, by the automorphism

which satisfies (A^)η = {An$ and ω(Aη) = ω(A). The latter condition is a
consequence of the invariance of ω under real time-translations. For A
and B e 31 we can replace (1) by

ω(BAt + iβ) = ω(AtB).

It is also true that a distribution with compact support is a continuous
linear functional on the space, $, of C00 functions without any growth
restrictions at infinity [13].
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Finally, we remark that 91 is norm-dense in 91. To see this, note that
if A G 91 and/ e Θ, we have

Let σ be a norm-continuous linear functional on 9t, and suppose that σ
vanishes on each A/, then

Q = $dtf(t)σ(At)

for all A e 9ί and/ e 3). The functions/ having/ e 3) are dense in £f (the
space of C°° functions vanishing rapidly at infinity), and the bounded
function σ(At) determines an element of the dual space £f'\ therefore, the
above condition can be extended to al l/e ff. It follows that σ(At) = 0;
in particular, σ(A) = 0 for all A e 91. Consequently, any continuous linear
functional which annihilates 91 necessarily vanishes; this implies that
91 is dense in 9ί.

III. The Bogoliubov Inequalities

For A, B e 91 we assert that the following equivalent expressions
define an inner product:

1 f t
β o

= \ \dτω{{AjB).
P o

Since ω is a state, these expressions are evidently linear in B, but the other
necessary features of an inner product depend on the property of time
translation invariance. We have

1 β

{A,B)*=-- jdτω((B^)_iτA) = (B,A),
a n d ! °β

1 ^ A '

0 \ ~T 2

Thus, the time translation invariance of ω is sufficient to ensure that
(A, B) is an inner product in particular, one obtains the Schwarz inequality

\(A,B)\2^(A,A)(B,B). (2)

To derive the Bogoliubov inequality from (2), we need some special
properties of this inner product which follow from the KMS boundary
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condition First, choose B = i(d/dt)Ct\t=sQ and use time translation
invariance to write

In the integrand we can replace i(d/dt) by (d/dτ) and evaluate the integral
to get

( A B ) [

where the last line follows from the KMS condition. Next, we obtain an
upper bound on (A, A) as follows:

{A,A)=-^ \dτω{A^Aix)
P o

1 β

= — I dτ $ dε eτε ω(A* A{ε)),
P o

eβε- 1
J βε

The last step is justified because the first factor is a C00 function and the
second is a distribution with compact support. Furthermore, ω(A* At) is a
positive definite function, which means that ω(AjfA(ε)) is a positive
distribution. This fact, together with the elementary inequality

ex - 1 ex + 1

2
leads to -

(4)

These results have been derived for elements of ίl however, we have
already shown, in Section II, that Φ is dense in 9ί, and we will now show
that the inner product is continuous. Continuity follows from the
estimates

\(AB)\[(
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thus, \(A, B)\ <Ξ \\A\\ - \\B\\. The inner product is then defined on all of 21

by continuity.

Finally, we obtain the Bogoliubov inequalities by combining (2), (3),

and (4).

CM (5)

This relation assumes a more familiar form if we pass from the algebra 3X

to its representation on § . We then have a unitary group Ut with a

corresponding generator H in terms of which we can write (with the same

notation for elements of 91 and their representative operators),

Using the conventional notation, ω(A) = <A>, (5) can be rewritten as

, [H, Ct]]> £ j |<[C, / iη>[ 2 , (6)

which holds for all A e 2ί. The inequality also holds for physical quanti-

ties represented by unbounded operators provided only that their

spectral resolutions lie in (Ά. In such a case, we can obtain the unbounded

operator as a limit of a sequence of elements of 9ί and if the limits of the

various expectation values all exist then (6) will continue to hold.
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