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Abstract. The homogeneous, anisotropic cosmological model is considered. It satisfies
three physically reasonable conditions: it is space homogeneous, possesses flat space like
sections and is filled with expanding, rotating and shearing matter. The asymptotic solution
is presented and general properties are discussed. The question how the rotation influences
the behaviour of matter near the singularity is investigated.

I. Introduction

There is currently a continuous interest in studying the space homo-
geneous world models. This interest was stimulated by the discovery of
the 3° K background black body radiation [1] and question of its aniso-
tropy [2, 3]. It is generally believed that those models could quite satis-
factory describe the complexity of data related to the large scale structure
of our universe [4—6].

We will present here a homogeneous world model with flat 3-dimen-
sional sections filled with rotating, shearing and expanding matter.

The model we are considering is a unique model satisfying the
following physically justified conditions: it is space homogeneous (the
space like sections are the transitivity hypersurfaces of a three parameter
group of motions), the space like sections are flat and the matter is
rotating.

The model is interesting also as an example satisfying the group
criterion of homogeneity but non-homogeneous according to the
physical criterion discussed recently by one of us (L.P.G.) [7, 8].

Since the space like sections are flat it is possible to introduce on each
of them a Cartesian coordinate system and easily stress the main differ-
ences between those criteria.

The homogeneous world models are usually parametrized by a
synchronous coordinate system in which the hypersurfaces of transitivity
are given by the t = const sections [9,10]. To get the physical charac-
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teristics of the motion of matter it is possible to proceed in the following
two ways. One can introduce a comoving coordinate system and use the
chronometric invariant quantities. This way was described by Grishchuk
[11]. It is also possible to describe the motion of matter in synchronous
coordinate system using kinematical description following Ehlers [12].
Since this method was not yet applied to general space homogeneous
metrics we will give in appendix the expressions for irreducible parts of
the derivatives of velocity four vector and corresponding scalars.

In Section 2 we present the line element and the whole set of Einstein
field equations and the equations of motion. The solution of this system
for non-rotating matter is briefly discussed. In Section 3 we are giving
the asymptotic solution of our problem discussing the motion of matter.
The physical contents of our model are considered in Section 4. In partic-
ular we investigate the question how rotation influences the behaviour
of matter near the singularity.

II. The Line Element and the Field Equations

It is known that only the metrics of Type I and some metrics of
Type VII, according to Bianchi classification, could have flat space-like
sections. The metrics of Type I exclude the motion of matter and so, also
rotation does not appear.

Consider a homogeneous metric belonging to Bianchi Type VII
q = 0, with generators of the group given by

Xl=pίl X2 = P 2 l X3 = -*2Pι+xiP2+P3 (Π.l)

The covariant and contravariant tetrad components are given by [11]

ei = [2cosx3, 2sinx3, 0] e{ = [|cosx3,^sinx3, 0]

I; - [-2sinx3, 2cosx3, 0] e( = [-^sinx3, ̂ cosx3, 0] (II.2)

The metric tensor assumes the form :

where dl2 = yβ b l ίe kdx idx k (II.3)

and yab is a symmetric 3 x 3 nonsingular matrix (Latin indices run
through 1, 2, 3).

We will restrict yab assuming that y12 = 0 and yn = y22 what assures
that the space like sections t = const are flat. For the sake of simplicity
we will assume further that y13 = 0. This does not restrict the physical
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features of the model, so the metrix yab we can write as

a 0 0\

Ίab —

The line element therefore is:

0 a n 1 . (II.4)

One!

ds2 = dt2 + 4a dx12 + 4a dx22 + c dx*2

+ 4n sinx3 dx1 dx3 — 4n cosx3 dx1 dx3 .

We will assume that matter is represented by the energy momentum
tensor of the hydrodynamical type. So

τaβ = (£ + P) u«uβ - pgaβ (11.6)

where t/α is the velocity four vector, ε and p density of matter and isotropic
pressure respectively. The hydrodynamical equations in general form
read :

-(ε + P)PcPc = PPcPc

(ε + p} (u0pc + pap
b Ca

cb) + uoPcp = 0 (II.7)

(ε + p) (MO + pcCb

bc +—u0~\ + έu0 = Q

where ' denotes differentiation with respect to time, C*bc are the structure
constants of the group, pc = eaua and y = Det||yα b | |. The condition that

u be a unit timelike vector is

In our case, the Einstein field equations R0c — — (ε-f p)u0pc for c = 2
and 3 give p2 = p3 = 0 so there is only one nonvanishing tetrad com-
ponent of the velocity vector, namely pl . The hydrodynamical equations
can be now integrated to give :

Pl exp J -̂ - = K, u,\^y exp f
" ε ~τ~ p

where K{ and K3 are integration constants determined by the initial
conditions.

In further calculations it will be usefull to use the first integral

p) = K1 K3^K2 (Π.9a)

which is a consequence of (II.9).
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The whole set of Einstein field equations can be reduced to:

1 p2

(Inα)" + — (Inα)' (Iny)' = ε - p - 2(ε + p) — -- 2Λ
2 a

(lna)"+—(lnά)'(lnγ)'- — \ — } =ε-p-2A (11.10)
2 y \a]

(Inn)" + 4- (Inn)' (Iny)' + °^- (— ) (— ) = ε - p - 2Λ
2 n2y \a) \c )

1 ac2 I n\2

(Inc)" + — (Inc)' (Iny)' -- — - ε - p - 2 A
2 y \c]

— [ά2c — ή2a — 2άήn + 2άca] = 4[(ε + p)u0

2 — p — Λ~].

In the special case when matter does not move (p1 = 0) — = 0 which
n

immediately leads to — = q = const. Applying the coordinate trans-

formation :

x2 = x2 + ̂ q sinjc3 x3 = x3 (Π.ll)

we can simplify the line element to:

ds2 = dt2 + 4a(dx12 + dx22) -h b dx32 (11.12)

which can be obtained directly from (II. 5) by putting n = 0. This metric
was considered by many authors. We will give here only the asymptotic
solution for the purpose of comparison with the more general solution
which incorporates rotation of matter n φ 0. It will be seen from further
considerations that the solution of our system of Eqs. (11.10) leads to a
definite relation between the matter density and its pressure, which in the
asymptotic region reduces to ε = p near the singularity and ε + 3/? = — 2Λ
for ί->oo. Therefore we will discuss the metric using in asymptotic
regions the corresponding equations of state.

Near the singularity for f->0, assuming that Λ = Q and ε = p we have

a=-a0t«ι b=-b 0 £ 2 ( 1 - α ) ; ε = p = ̂ -(4- 3α)-^- (11.13)

where α0 and b0 are positive constants defining the length units, α is a
parameter related to K3, α0 and b0 by

a0

2bϋ(3a-4) = K3 (11.14)
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and restricted by the positive definiteness of energy to 0 ̂  α ̂  f. The
scalar quantities describing the motion of matter are:

where Θ denotes the expansion and σ2 square of the shear tensor. For
large values of time when t-> oo we will keep the cosmological constant A
and assume that ε + 3p = —2A. The asymptotic solution is

9 7 3
a—— α0ί b=—b0t, ε = — 3p — 2A = ~-γ + Λ

/ , χ

 l (11.16)

Θ = 7;

a0, b0 are constants.

III. The Asymptotic Solution

Now let us look closer into our general system of equations. The
requirement of flat space like sections causes the density and pressure to
be independent functions. They can not be connected by a simple equation
of state of the form ε = const p. In fact we have 6 independent equations
(two hydrodynamical equations and 4 second order equations out of the
six Einstein field equations) for 6 independent functions: α, n, c, p l s ε
and p. The equations R® = — Tfl° are constraint equations and they relate
the initial data. The assumption ε = const p makes the system over-
determined.

Using the high symmetry of the system of Eqs. (11.10) one can
simplify it to:

uu"+~u'2- ^ 2 g 2 l 2)2 =0

Pi
17 Commun. math Phys., Vol 25

i

ε + p
P'
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where u = a'1, α and β are constants and the x coordinate is related to
time by:

Using the coordinate transformation (11.11) we can eliminate the
parameter β, obtaining simple relations:

We apply now the scaling transformation x3-> — x3, obtaining

n^>ή = ax, c-+c = a (which is equivalent to setting α = 1). In this way α
disappears from the field equations but remains in the line element.
Further we will put in the field equations α = sgn K2 and β = 0.

Unfortunately the main Eq. (III. 1) can not be solved analytically for
a general value of the variable x. We can solve this system in two asymp-
totic regions for x's near one and near zero.

The first asymptotic region (x « 1) represents the behaviour of our
model near the singularity. Here it is useful to introduce instead of time
coordinate a parameter y = 1 — x, related to t by :

/—

t = 2*(\K2\)* (

y = 0 corresponds to the singularity.
The metric components in this region tend to zero according to:

n = sgnK2(l-y)a (III.5)

c = a.

Using again the coordinate transformation (11.11) it is possible to
simplify those relations to:

-=-y, — = 2y. (111.6)
a a

This transformation in the other asymptotic region for x ^ 0 will make
the off-diagonal element y 23 and 7u = y22 of the same order. If we require
that the metrix yab for x->0 should be diagonal (according to (III.3)), then
it turns out that n « a for y->0 (according to (III. 5)).

The components of the four velocity vector of matter are:

y(~lny)-

uQ = -ylny.

From this we see that near the singularity matter rests with respect to the
synchronous coordinate system. The kinematical parameters describing
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its motion asymptotically behave as:

1 (-In.y)1

Θ =

(III.8)
2 1

β 48|K2| y 3 t2

1 ,
;α 16|/C 2 |V

Near the singularity density of matter and pressure are rapidly growing as:

(III.9)

and they are related by the stiff ultrarelativistic equation of state.
From the behaviour of kinematical parameters near the singularity

we see that expansion and shear dominate. Asymptotically the shear
matrix after the diagonalization assumes the form

Diag || A! , 0, λ2 \\ where λ} φ λ2

and ^~~^2 (IIL10)

The cosmological constant does not change the behaviour of geo-
metry and matter near the physical singularity.

Comparing those results with previously obtained we see that the
rotation influences the asymptotic behaviour of geometry and the
distribution of matter so, that the density of matter and pressure are
tending slower to infinity near the singularity than in the case without
rotation.

In other asymptotic region (x ̂  0), which corresponds to t -> GO
we get: ,

a— —r ί2

n — —
K2

(III.ll)
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From those asymptotic forms we see that the synchronous coordinate
system becomes comoving, so matter comes to rest since UQ = 1, p^ = 0
asymptotically and pressure becomes negative for f-»oo. It is interesting
also to look at the scalar invariants describing the motion of matter.
They are:

Θ = -
t

~

(111.12)

Asymptotically then for large values of the proper time we have the
following picture: isotropic pressure becomes negative for some value
of the proper time and for ί->oo tends to zero. The density of matter
decreases monotonically to zero and matter rests with respect to the
synchronous coordinate system with the scalars describing rotation and
shear rapidly tending to zero.

The cosmological constant which could be very easy incorporated
into our consideration changes only the asymptotic behaviour of pressure
and density. They become:

(111.13)

ε = 4-+Λ.

The cosmological constant does not change the asymptotic behaviour of
geometry and the motion of matter.

Those results correspond exactly to asymptotic solution without
rotation and the equation of state ε + 3p = —2Λ.

IV. Discussion and Conclusions

Let us come back to the problem of homogeneity of our model. As we
already mentioned this model is space homogeneous according to the
group criterion. On the other hand looking more closely on some vector
quantities we see that it is non-homogeneous from the physical point of
view. The best example of such a vector quantity is provided by the angular
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velocity vector. The vorticity tensor in our case has only two non-
vanishing components. Projecting it onto the hypersurface of maximal
transitivity of the group we get only one independent component,
namely:

-ipι. (IV.l)

Using the vorticity tensor we are constructing the angular velocity
three- vector :

which has only one component ω1 = —p\>
It is easy to see that ωa.b φO violating the physical condition of

homogeneity. This is also transparent from the following considerations.
At a given moment of time we can parametrize the hypersurfaces of
transitivity by the Cartesian coordinates. The angular velocity vector in
this coordinate system is:

ω* = - y — (cosx3, sinx3, 0) . (IV.3)

Hence, on each surface x3 = constant the angular velocity vector is
homogeneous but changes direction when moved from one surface to
another.

The shear tensor and its principal directions are examples of a tensor
and vector quantities which are non-homogeneous from the physical
point of view.

The proposed model satisfies three quite realistic physical conditions.
It is space homogeneous (according to the group criterion), matter moves
with rotation and the space like sections are flat. In the course of expansion
the anisotropy is decreasing and the model resembles more and more
closely the Friedmann model. Our solution can very closely describe the
present structure of the Universe in the sense that there exists a period
when the pressure is negligible and the rotation and the anisotropic
deformation are very small. From this point of view the unrealistic
equation of state ε + 3p = 0 which governs matter for infinitely large
values of time is not so unpleasant.

In the vicinity of singularity p and ε are increasing so, that for ί->0
the equation of state is ε = p. The velocity of matter with respect to the
used synchronous coordinate system is tending to zero in both asymp-
totic regions for £-»0 and f->oo.

The rotation of matter changes the asymptotic behaviour of our
solution near the singularity in comparison with the solution without
rotation. The rotation slows down the increase of matter density and
decrease of metric components near the singularity.
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In order to understand better the role played by rotation near the
singularity let us consider the Raychaudhuri equation [13]

θ + i Θ2 - ύα

;α 4- 2(σ2 -ω2) = ̂ (ε + 3p) (IV.4)

with the equation of state ε = p. Comparing terms entering into the
Raychaudhuri equation and using the asymptotic forms (III.8) we see
that ω2 and wα.α are small relative to the leading terms Θ, Θ2 and σ2. The
rotation does not change the asymptotic behaviour (1/ί2 for f-»0) of
those terms.

The matter density is small in comparison with the leading terms of
the Eq. (IV.4) and in this sense the matter ceases to influence the behav-
iour of solution near the singularity. The rotation changes the coefficient
in the 1/ί2 term of the asymptotic expansion of σ2. One can say that the
rotation influences the result indirectly through the anisotropic deforma-
tion generated by it. When rotation is present the sum of the leading
terms in Eq. (IV.4) (they are of the order 1/ί2) vanishes. The matter density
therefore increases slower than 1/ί2 for ί->0. In principle, the rotation
of matter should be able to remove the singularity. Hypothesis of this
type were put forward by many authors.

We should like to mention that in the isotropic case (Friedmann's
solution) the density changes as 1/ί2 for f->0 with an arbitrary equation
of state. From this point of view the rotation leads to the non-Friedmann
like behaviour of density near the singularity.

Appendix

Let ua denote the velocity four vector of matter with tetrad components
MO and pa = eαwα .

The covariant derivative ua.β can be separated into irreducible parts
as follows:

a-,/* = [α,fl (aβ}

where haβ = gaβ- uΛuβ\ ύΛ = uΛ;βu? and Θ = u*.a.

The vorticity tensor and the shear tensor are given by:

The corresponding scalar quantities are:

2σ2 = σ ? σ α β ; 2ω2 =
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In the synchronous coordinate system for the space homogeneous
models the components of the vortΐcity tensor and shear tensor are:

ω0fl = 2(~PaPcPc - ΰQuQpa + ̂ ybcp
bpcpa + u0pbp

c Cb

αc)

ωab = i(Cc

αbpc + 2P[aPb]u0 -f 2pdp
cp[aC

d

b]c)

c + τyabPaPbu0 - pcp
c Θ

yd(aC
d

b}cp
c - 2p(apb}u0

(aC
d

b}c-lyabΘ + lpa

The scalar kinematical quantities assume the form

+ if Vdp z C
l

acPsC\

+ ^ύ0uoP*P

byab-±(y

2σ2 = σ σ

_l ab . _ nd i 1 2 a b , c d _2 / ybdPap ^ 4uo y y yachd
r>e^cdra -4--nknrCa Γb v vc

P 7 C de ̂  2P P C c/cC d r / α b ?

For the sake of completeness we will give also the expression for one
more quantity which enters the Raychaudhuri equation, namely:
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