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Abstract. The relation between conserved currents and symmetries of the S-matrix is
investigated within the framework of Wightman field theory. Assuming a complete particle
interpretation with no massless particles, it is shown that every conserved current yields a
self-adjoint charge operator which acts additively on ^-particle states and commutes with
the S-matrix. For currents satisfying current algebra relations of a group ^, the correspond-
ing charges generate a unitary representation of ^.

1. Introduction

The relation between conserved currents and associated symmetry
transformations has been studied in much detail [1]. In a local relativistic
framework without massless particles it is known that a conserved
current always defines a symmetric (hermitian) operator (the "charge")
[2], but in order to uniquely define a one-parameter group of unitary
operators the charge must be essentially self-adjoint. In addition, even
if a set of self-adjoint charges satisfy the commutation relations of a Lie
algebra on a dense subset of Hubert space, it does not necessarily follow
that the charges generate a unitary representation of the associated Lie
group [3]. As suggested by Orzalesi in [1], the asymptotic states of a
scattering theory might provide a domain on which the charges are
sufficiently well-behaved to avoid the mathematical difficulties mentioned
above. In this note we point out that the locality of the current always
leads rigorously to the conclusion that the charge acts additively on the
asymptotic multiparticle states, and that these states provide the neces-
sary domain required to show that the charge is essentially self-adjoint.
If a set of conserved currents satisfy the commutation relations of a Lie
algebra, the charges will satisfy the same commutation relations on the
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asymptotic states and will generate a unitary representation U(&) of the
associated Lie group. These unitary operators act multiplicatively on the
asymptotic states and commute with the S-matrix. In view of the fact
that the interacting fields can be defined on a dense set of asymptotic
states [4], these states form a natural domain on which to study the local
action of U(^) on the interacting fields. The transformation properties
of the currents under U(&) are investigated in this way.

The discussion is carried out within the Wightman framework of
field theory [5]. Among the irreducible local Poincare covariant fields
Φα(x) are a set of hermitian conserved currents jΊ(x),i = l,...,N; μ = 0,
..., 3, and dμjf(x) = 0. The currents are not necessarily four-vectors, the
additional tensor indices being included in the index L In addition to the
usual Wightman axioms the following assumptions are essential here,

i) The existence of a unique vacuum | vac> and absence of mass-
zero particles.

ii) Asymptotic completeness with a finite number of particles at
each mass value.

Let D denote the domain generated from the vacuum by localized
polynomials in the fields: fields averaged with test functions from 3)
(infinitely differentiable with compact support in coordinate space). As
usual [1] a local charge j°(fRfτ) is defined with fκ(x\fτ(x°)eS),

for \x\<R /r(* 0) = 0 for |x°| > T

for \x\>R + λ, ]fτ(x°)dx° = l.

A charge operator Q is defined on the domain D by

β|vac> = 0
( U )

where P is a localized polynomial in the fields, and expression (1.1) is
independent of R for R sufficiently large, due to the local commutativity
of the currents and fields. Expressions such as (1.1) will always be inter-
preted as meaning that R is to be chosen "sufficiently large". The charge Q
is thus defined on the dense domain D and is symmetric there:

<P 1 vac |βP 2 vac>-<βP 1 vac |P 2 vac>

= <vac|D°(/Λ/Γ), P fP 2 ] |vac>=0.

The first step follows from substituting the definition of the charge (1.1),
and the last step follows from the absence of mass-zero particles [6].

It is now essential to extend the definition of Q to the asymptotic
multiparticle states. We briefly recall here the Haag-Ruelle construction
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of asymptotic states [7]. Let \p ί} be one-particle states of a given mass M
with momentum p and type i (the index i representing the spin and any
other quantum numbers), and let C be a given compact region of momen-
tum space. Then a set of operators bt can be constructed so that bt creates
a one-particle state of mass M from the vacuum and such that the wave
function

ac> = 5 υ (1.2)

in the region C. The operators bt are finite sums of the form

bt=ΣS<P(x)K{χ)Pa{x) (13)
α

where Pα is a polynomial in the fields averaged with test functions from
2, Pa(x) is the translate by amount x of Pα, and ha(x) is a rapidly decreasing
test function with support in momentum space confined to a neighbor-
hood of the mass shell p2 — M2. We further define

γμt)bi(xίt) (1.4)
i

with
fax, t) = (2π)"3 J PWfiip)e^-*-Vv^i)

and the support of ft(p) is contained in the compact region C of momen-
tum space. Then b(f, t) creates a one-particle state with wave function

&(/,t)|vac> = |/> with <pi |/>=/ i (p)

independent of ί.
The «-particle states with compact support wave functions are

constructed as the strong limit

Here the operators b(fk, t) may belong to different masses M. It will
now be shown that the charge Q is defined on these asymptotic states
and is self-adjoint.

2. The Self-Adjointness of the Charge

In Eq. (1.3) replace Pa by P?=[f(fRfτ)9 P J . In this way we obtain

and
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Then from the construction discussed above of one and many-particle
states, it is clear that bQ(f, t) | vac> is a one-particle state of mass M, which
we denote by | / Q ) . Furthermore the strong limit

exists and is equal to \f1 .../p.••/„)• This follows from the relative
locality of Pα and P£.

Translation invariance of Q implies

β&(/1,ί)...fe(/π,ί)|vac>= t b(fut)...bQ(fi,t)...b(fn,t)\vacy (2.1)

if we replace the rapidly decreasing test functions ha and ft which occur
in the definitions (1.3) and (1.4) by compact support test functions h'a
and f[. If we now let h'a and f converge to ha and fb then because the
fields and currents are tempered fields, the vectors occurring in (2.1) will
converge strongly. Since Q is densely defined and symmetric, we may
without loss of generality assume it is a closed operator, and it may then
be concluded that (2.1) holds also for rapidly decreasing test functions.

Finally we note that because b(/ 1 ? t)... b(fn, i) | vac) converges
strongly to \f, .../„>, Σb(fu O - W i , ί)...fc(/Λ, t) |vac> converges

ί

strongly to ]Γ | f x . . . fp... /„>, and because Q is closed, it follows that Q

is defined on |/i.../M> and maps it into ̂ ] |/i •••/?•••/«)• ^ u e t o

i

additivity, Q has the same action on the "in" or "out" states. Thus *:

Theorem 2.1. The charge Q is defined on the asymptotic n-particle
states \f1... fn} and acts addίtίvely:

Q\fl-fn>=Σ\fl-f?-f»>'
i

Q commutes with the S-matrίx.

To determine more explicitly the action of Q on the one-particle
states, note that the wave function ff(p) associated with β|/> is given by

= ΣMP) <p;>?|vac> = Σ iji(p)fi(p)
i ί

where we have defined

(2.2)

1 This result is obtained by Orzalesi [1] and Lopuszanski [8] where, however, domain
questions are not discussed in detail.
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which is an infinitely differentiable function of p because of the locality
of P® [7]. We use definition (2.2) only for p in the region C where
( p / l ^ v a c ) has the form (1.2). Because Q is symmetric, q}i(p) = <?;;(/>)*.

For any given compact region C we may find b/s such that (1.2) holds,
and the definitions (2.2) must agree for any chosen bt since Q has a unique
closure. We thus see that Q is defined on all one-particle states with
compact support wave-functions and acts on these states by matrix
multiplication with the infinitely differentiable hermitian matrix function
qjiip). It is clear then that the operator Q is bounded on states with a fixed
number of asymptotic particles with fixed masses and with momentum
space wave-functions whose supports are restricted to a given bounded
region. Denoting by D e x the set of states with a finite number of asymptotic
particles with momentum space wave-functions from <3), it follows that
such states form a dense set of analytic vectors for Q (with an infinite
radius of convergence). By Lemma 5.1 of Nelson [3], Q is self-adjoint.
Thus:

Theorem 2.2. The charge operator Q is self-adjoint.

Examples of currents with high tensor-character are easily constructed
in the free-field case. For example, for a charged scalar field, the current

X lV2(x) = i/2(: dVίΦ*(x) fμdV2Φ(x): + : dV2Φ*(x) PdVιΦ(x):)

is local, hermitian, and conserved, and leads to charges with tensor
character. Such currents are discussed by Kibble [9] and more recently
by Lopuszanski [8]. As pointed out in these references, the analogue
of such currents are not expected to exist for interacting fields since the
associated charges are polynomials in the momenta of the particles, and
such polynomials are not expected to be conserved if the particles interact
(see also Ref. [10]).

It is possible that the charge associated with a current is identically
zero. An example of such a current is provided by the free massive four-
vector hermitian field Aμ(x) describing a spin-one particle, for which
δμA

μ = 0, and for which the charge defined by equation (1.1) is identically
zero.

3. Current Algebra Relations and Group Structure

We consider now N hermitian conserved currents jμ(x),ί = l,...,iV;
μ = 0,..., 3 which satisfy current algebra commutation relations of the
form
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Here C?k are the structure constants of a simply-connected iV-parameter
Lie group ^, / is an arbitrary test function from 2, and S(Vf) denotes a
possible "Schwinger term" involving a local operator S(x) and the spatial
derivatives of /.

Theorem 3.1. The one-parameter groups C7£(s£) = expO'Sj β,-) generate a
continuous unitary representation U(@) of the group <&.

Proof. According to Theorem 5 of Nelson [3] it suffices to prove the
existence of a common invariant dense domain Do such that

LQi,Qk]=-ίΣc?kQm on Do (3.2)
m

and such that

is essentially self-adjoint on Do. The set Dex considered above provides
a dense set of analytic vectors for A, so A is essentially self-adjoint on D e x.
It is easy to show from the Jacobi identity that (3.2) holds on the domain D
as a consequence of (3.1), and since the charges are self-adjoint, Eq. (3.2)
also holds on D e x : For Φ1 eD,Φ2e Dex

Since D is dense, Eq. (3.2) holds on D e x and the theorem is proved.
If no Schwinger term is present in (3.1) then the currents transform

according to the adjoint representation of ^ on the dense domain Dex

consisting of states from D e x with non-overlapping momentum-space
wave functions [4], i.e. wave functions which are pairwise disjoint in
velocity space p/γp2 + M 2 . To show this first observe that the interacting
fields are defined on D e x (Sect. 6 of [4]) and in particular the currents are
defined there. The explicit form of Qt derived above implies the in-
variance of Z)ex under Qt and U^s) = exp(i5βί). In addition the commuta-
tion relation

ίQi,fk(f)']=-iΣClfm(f) (3.3)
m

holds on Dex:
Let Φί e Dex and Φ2 e D. Then

i.e.

<JUf)Φi\Qί\Φ2> = <JΪ(f)QiΦi -iYCTkiίiΠΦi Φ 2 > (3.4)
\J K \J / 1 I XΊ I Z/ \J K \J / XΊ 1 / J IKJϊϊlKJ / I Z/ \ /
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Now Qι is obtained by closure from the localized states D and it may
therefore be concluded that (3.4) holds for all Φ2 in the domain of Qf.
Since Qt is self-adjoint this implies that j%(f) Φ1 is in the domain of Qt

and that

Qfk(f) *i =fk(f) QiΦi-i

Therefore Eq. (3.3) holds on D e x .
Consider now the matrix element

where C/, (s)~1 Φγ has been expanded into a convergent power series since
Φx is an analytic vector for Qt. Successive application of the commutation
relation (3.3) leads to

< Φ 1 | ^ (s)A°(/)|Φ2>= Σ Σ <Jl{f*)*iWsa')mke
isQ>-]n\Φ2> (3-5)

n=0 m= 1

where [ ]„ denotes the nth term in a power series expansion in 5 of the
quantity in brackets, and αf is the matrix

which is the matrix representation of the Lie algebra of ^ in the adjoint
representation. Since Φ2 is an analytic vector for Qh the power series in
(3.5) converges to

Thus on Dex

Ui(s)fk(f)=ΣJi(f)(eis*')mkUi(s)
m

or

Since exponentials of the form exp(isat) generate the adjoint representa-
tion of ^, the following theorem holds.

Theorem 3.2. If the commutation relations (3.1) hold with no Schwinger
term, then

U(g)fk(f)U(g)-1=ΣfΛf)Amk(g) on D°*, (3.6)
m

where Amk(g) is the adjoint representation of&.
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Although (3.6) has been shown only for the time-component of jk(f\
the equation actually holds for all components. This follows from the
discussion of the next section, which shows that those charges which
are not Lorentz scalars generate a central subgroup, whereas the scalar
charges generate an invariant subgroup of ^ . From this fact it follows by a
straightforward generalization of relation (3.3) that the transformation
property (3.6) holds for all components of the currents.

4. The General Form of the Group ^

We suppose that the currents;'; are linearly independent: ̂  αj?(/) = 0
i

for all / implies at = 0. However, as the charge Q associated with a
current j' = £ a Jt may vanish, the Lie algebra Ά generated by the charges

i

as given in (3.2) is not necessarily identical with the Lie algebra β of the
currents as determined by the structure constants in (3.1). It is easily
seen that if the charge Q vanishes, then the corresponding current j lies
in the center of the Lie algebra f. The Lie algebra J is therefore a factor
algebra of f with respect to a central subalgebra, and it is the algebra
Ά (which is now generated by linearly independent charges) which should
be associated with the group (S.

Concerning the general form of ^, note that because the Qt are ad-
ditive and linearly independent and are represented on one-particle
states of mass M by the matrix functions qt(M, p)mn, there exist a finite
set / of masses M and a finite set S of p-values for which the matrices qt

become linearly independent: YJcιiqί(M,p) = 0 for all M in I and all p
i

in S implies at = 0. Thus the Lie algebra J has a faithful finite-dimensional
representation r by hermitian matrices and thus a positive definite
invariant quadratic form exists - with coefficients given by the trace
Tr(r(<2t ) r(Qj)). Thus J is a compact Lie algebra in the sense of Pontrjagin
[11]. It is therefore a direct sum

where # is the center of J , and 01 is a compact semisimple ideal. The
Lie group of automorphisms of M is compact, and its Lie algebra is
isomorphic to J* [11].

Now the unitary representation of the Lorentz group generates
continuous automorphisms of J . It is easily seen that an automorphism
of =2 must map the center ^ onto itself and the first derived algebra
(which in this case is 0t) onto itself. But it then follows that Lorentz
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transformations commute with all elements of 0t, since the only re-
presentation of the Lorentz group in the compact group of auto-
morphisms of M is the trivial representation. Thus any charge which is
not a Lorentz scalar is contained in the center c€1.

The natural group of symmetries of the physical system under
consideration is not the group U(^) generated by the charges, but its
strong closure U($). All elements of ΌTW) will commute with the S-
matrix because U(^) does, but U(@) is not necessarily generated by
local currents. The subgroup of "internal" symmetries U'iΉ) consisting
of those elements from U(^) which commute with Poincare transforma-
tions, is not necessarily compact, but its closure U'(^) will be compact.
This is illustrated by the example of two complex free fields Φί9 Φ2 of
mass M and the conserved current

f(x) = ie1: Φ*(x) tfiφ^x): + ίe2 : ΦJ(x) (fΦ2{x):

The charge associated with this current generates a one-parameter group
of transformations which is not compact if eje2 is irrational3. The
strong closure of this group leads to the compact group (7(1)® U(ΐ).
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