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Abstract. The general analysis of the equivalence of ensembles in quantum lattice
systems, which was undertaken in paper I of this series, is continued.

The properties of equilibrium states are considered in a varίational sense. It is then
shown that there exists a canonical as well as a microcanonical variational formulation
of equilibrium both of which are equivalent to the grandcanonical formulation.

Equilibrium states are constructed both in the canonical and in the microcanonical
formalism by means of suitable limiting procedures.

It is shown, in particular, that the invariant equilibrium states for a given energy and
density are those for which the maximum of the mean entropy is reached. The mean entropy
thus obtained coincides with the microcanonical entropy.

I. Introduction

In a previous paper [1], the problem of the equivalence of ensembles
in Quantum Lattice Systems was begun. The purpose of this paper is to
continue the analysis of equivalence of ensembles in quantum spin
systems. In [1] we gave an algebraic formulation of the mathematical
framework of quantum spin systems in the three usual ensembles and
also some equivalence formulas of the respective thermodynamic func-
tions. This allowed us to show some properties in one ensemble if they
are proved in another.

In the present we continue in the same way and we consider the
properties of the equilibrium states using a variational principle intro-
duced by Ruelle for the grandcanonical ensemble [2].

We consider a quantum lattice system on Zv. We associate with each
lattice site x e Zv a Hubert space J^c of dimension two, and with each
finite region A in Z v the tensor product

jce A

If ΛίCΛ2 we can identify each bounded operator A on ^(Λ^ with

ί on J^(Λ2\ where lAl/Ai is the identity of Jf (Λ2/A) w i t n
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convention one defines the algebra of observables by the following

91 = 1

where U(A) is the set of bounded operators on
We note that the group Z v of space translations is a subgroup of the

automorphism group of 91 and we denote the action of this group by

A e SH(Λ)^τaA e 9I(τl + a), a e Z v .

We consider interactions, i.e., functions Φ from the set of finite subsets
of Z v to 91 such that

i) Φ(X)e 9I(X), VXcZ v ,
ii) Φ(X) is hermitian,

iii) Φ(X + a) = τaΦ(X), \JaeZ\

where the last sum extends over all finite subsets of Z v containing 0 and
N(X) is the number of points of X.

We denote by 93 the set of such interactions.
We consider a system of particles on the finite set A and the energy

operator UΦ(Λ) e 9I(/1) corresponding to the interaction Φ defined by

uφ(A)= Σφ(χ)
XCΛ

We also introduce the "interaction energy" at the origin by

Further we denote by {e(

o

x), e^} an orthonormal basis of J^x, for each x e Z v.
Now for each finite region A C Z v, we define a configuration \X} which

is at once a subset {xx xk} of A and an element of J^(A) defined by

xeΛ

where δ(x) = 1 if x e {xx,..., xk} and 0 if not.

If Λγ CA2 we can identify every configuration \X} of 2tf(Λ^ with
\Xy®&Λ2/Λi °f 21(^2^ where 0Λ2/Λί is the vacuous subset of A2/Aί.
Clearly the set of all configurations of A is an orthonormal basis of 34? (A).

We define projectors PN(A) e 9I(Λ); 0 ̂  N ̂  N(A\ by

P W U) I JO = \xy if N(X) = N

= 0 if not.
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Now we give a review of definitions in the three ensembles which be used
in the following.

In the microcanonical formalism variables are the energy per unit of
volume e, and the density n, O ^ n ^ 1.

For each finite region A of Zv and interaction Φ e 33, we can define
the microcanonical partition function by

ZJ Eλ.(φ>Λ)

Φ,Λ)^E

where E = e N(A\ N is an integer such that 0 rg N g N(A) and XΛ^Ψ^L)^ > 0

is the set of eigenvalues of UΦ(A) repeated according to multiplicity and
{Eλi{φ Λ)}ι^0 is the corresponding set of spectral projectors.

We define the microcanonical thermodynamic function, actually the
entropy, by

sφ{e,n)= lim — i — \ogΩφ{e N{A\N).

In the canonical formalism variables are the density n and the inverse
temperature β.

For each finite region ACZy and interaction Φe33, we can also
define a canonical partition function

Sj(iV, β) = ΊτmΛ) {P»(Λ) exp(- βUφ(Λ))}

where N is an integer such that 0 ̂  N ^ N(Λ).
We define the canonical thermodynamic function, actually the free

energy by

In the grandcanonical formalism variables are the inverse temperature
β and the chemical potential μ.

For each finite region A CZv and interaction ΦeB, we can also
define a grandcanonical partition function

, μ) = T Γ j r ( i l )

where ^ ( / Q e 2Ϊ(Λ.) is defined by

VXCyl Jί{A) \X} = N(X) \X} .

We define the grandcanonical thermodynamic function, actually the
pressure, by .
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Let E be the set of the normalized positive linear functionals over 91,
i.e. the set of the states and Er\L^ the subset of £ of the translationnally
invariant states, i.e. such that

QEE ρ(τxA) = ρ{A) V ^ G 9 I and VxeZ v .

If ρ e £, the restriction of ρ to any 9Ϊ(/L), the state defines a positive
operator ρΛ on J^(Λ) such that

{ρΛ} = 1 and Ύτ^iA) {ρΛΛ} = ρ(A)

for A e 91(4).

We refer to [3] or [4] for the properties of the mean entropy of an
invariant state, defined by

Ί
 ^

where the limit A -> oo is the sense of the parallelepipeds. The mean
entropy is a non-negative affine upper semi-continuous function on
EnLλ

zv.
As in [1] we consider only the interactions which commute with all

the PN(A) for each Λ.

II. Variational Properties

With the foregoing definitions the Variational Property (Theorem IV
of [3] and Theorem III of [4]) has the following form:

Theorem 1. // Φ e 93 then we have for β > 0 and μ e 91

βpφ(β,μ)= sup {S(ρ)-βQ(Aφ) + βμρ(jV0)} (2.1)
ρeEnLzv

and

S(ρ) = inf {βpφ(β, μ) + βρ(Aφ) - βμρ(J^0)} for ρ 6 EnL^ . (2.1')
ΦeSB

Once one notes that this Theorem is identical to that of [3] because

where P(.)is the pression as defined in [2] and Φ' is connected with Φ
by the following:

φ'(X) =βΦ(X) XCA and N{X) + 1

The aim of this section is to describe this variational property in the
canonical and microcanonical ensembles.
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First, for canonical ensemble, it was shown in [1] that thermo-
dynamic functions of grand canonical and canonical ensembles are
related by the following

pφ(β,μ)} (2.3)

for ΦeS, 0 < n < l , jff>0andμe9l.
Then, we can show the following.

Theorem 2. If Φe 93, then we have for β>0 and 0<n<l

(I) -βfφ(n,β) = sup± {S(ρ)-βρ(Aφ)}. (2.4)
ρeEn Lz

v

Furthermore

(II) S(ρ)=mi{-βfφ(ρ(Λ-0\β)-βρ(Aφ)} for ρ
Φe93

We put

-βfφ{n,β) = sup {S(ρ)-βρ(Aφ)} (2.5)
ρeEn Lrz

v

and we begin by proving that

-βfφ(n,β)^-βfφ(n,β). (2.6)

By Theorem 1, we have, for all ρeEnL^v such that ρ(<Λr

0) = n and all
μeK

βpφ(β, μ) ̂  S(ρ) - βρ(Aφ) + βμn (2.7)

and by (2.3)

- βfφ(n, β) = β inf {pφ(β, μ) - μn) > - βfφ(n, β). (2.8)
μe9ί

Now fφ(n β) is a convex function of n because for 0 ̂  A, n^ n2 ̂  1

-βfφ(λn1+(ί-λ)n2,β)

^ sup {S(λei + (1- λ)ρ2)- βλρ1(Aφ)-β(l-λ)ρ2(Aφ)}
ρi,ρ2 eEnLz

v

= sup

= -λβfφ(n1,β)-(l-λ)βfφ(n2,β).

So for /? and Φ fixed

V»e]0.1[ 3μne9ί V/e[0,l]

fφ(l,β)^fφ(n,β)-μn(n-D
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and it is shown in [1] that

Furthermore

Vε>0 3ρe EnL^v

such that

sup^ {S(ρ) - βρ(Λφ) + βμnρ{Jί0)} ^ S(ρ) - βρ(Λφ) + βμnρ(J^0) + ε

and put ρ{Jί0) = I
Therefore

= βμn n - sup {S(ρ) - βρ(Λφ) + βι
ρeEn Lzv

^ βμnn — S(ρ) + βρ(Λφ) — βμnρ\Jίo) — ε

= βμn(
n~ΐ)— S U P {̂ (̂ ) ~ βQ(Aφ)} — £

where we have used (2.11) the Theorem 1 and the convexity property
(2.10). Combining (2.8) and (2.12) part (I) follows. Part (II) follows from
part (I) by analogy with 5 of Theorem 2 of [4]. We remark that, also
with results of [1] and the fact that the function

sup {S(ρ)-βρ(Λφ) + βμρ(^0)} (2.13)

is convex in μ, we show in the same way that Theorem ί follows from
Theorem 2.

We recall that Aφ is interpretated as the mean energy per site asso-
ciated with an interaction Φ e S and if ρ is an invariant state ρ(Λφ) may
be considered as the expectation value of the energy per site for the
interaction Φ in the state ρ.

The following Theorem is thus an easy physical interpretation com-
pleted in the following section.

Theorem 3 J / Φ e S we have for \e\ ^ ||Φ|| and 0<n<l

(I) sφ(e,n)= sup S(ρ).
ρeEnLLzv

Q(-Mo) = n; ρ(Aφ) = e

Furthermore
(II) S(ρ)= mfsφ{ρ(Λφ),ρ(jr0)) for ρ

Φe95
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The proof of this Theorem is similar to the previous one. We remark
only that for each n the function

sup S(ρ) (2.14)

ρ(jro) = n;ρ(AΦ) = e

is concave in e by the following

sup S(ρ)^ sup S(λρ1+(l-λ)ρ2)
ρeEnLzv ρι,ρ2eEnLx

z^

ρι(Φ) i; ρ 2 ( φ ) 2

= λ sup SiρJ + il-λ) sup S(ρ2)
ριeEnlJzv ρ2eEnLz^

where 0^/1^1.
And so, we can use results of [1] and Theorem 2 for proving the

present Theorem.
We remark also that the function

sup i{S(ρ)-βρAφ)}
E L L

is convex in β and using also results of [1] this proves that part I of
Theorem 2 follows from part I of Theorem 3.

Part II follows by analogy with Theorem 2 and 1 and continuity of
sφ(e,n) in (e,n).

3. Equilibrium States

In Quantum Statistical Mechanics the ensemble averages are given by
a positive operator of trace class. If A is a subsystem of the lattice con-
fined to Λ, for all A e <Ά(A) we define a ensemble average of A by

where Tf is the ensemble unnormalized density matrix, meaning in the
grand canonical ensemble:

Tf=exp{βμjV(Λ)-βUφ(Λ)}

in the canonical ensemble:

TΛ

φ = PN(A)exp{-βUφ(A)}

in the micro canonical ensemble:

Tf = PN(Λ) Σ EMΦM
λiβEi

where EΔ

A is the interval [eN(Λ\ N(Λ) (e + Δ)~] for Δ e 9ί+.
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As in the grand canonical ensemble [3] and [4] we will prove the
existence of invariant states reaching the maximum of formulas of
Theorems 2 and 3 and for a "large" set of interactions they may be
obtained as thermodynamical limit of the averages before1.

We recall that in [3] is proved that for each (Φ, β, μ) we can associate
at least one invariant state QΦtβ>μ, such that

, μ) = S(ρΦtPJ - QΦ>βJβΛφ - βμ(^0)

= sup± {S()β(A) + β(jr)}
EL

It is proved in [4] that each tangent functional ocφyβ>μ(.) to the graph of
pφ(β,μ) determines an (invariant) equilibrium state that verifies (3.1).
More precisely the situation is the following:

Let Tx C 93 x 9ί+ x Ή be the set of (Φ, jff, μ) e 93 x 9ΐ+ x 91 such that
the graph of p has a unique tangent functional at this point, i.e.

β.μ + μ1)^pΦ(β,μ)-(XΦJJΦuμ1) VΦ^S, (3.2)

determines a unique α φ j 3 μ ( . , . ) ε (93 x 91)' for (Φ, β, μ) e Tv

Now ocφ>βμ(., 1) determines a state ρφβμe EnL^v through the
relation

*Φ,PJΨ< 1) = " QΦ,βJΛΌ) + QΦJ,MΨ) VΨe®.

The state ρφ>β>μ gives the maximum in (3.1) and this maximum is unique
only if (Φ,β^μ)eTί.

Now we can investigate some properties of these equilibrium states
using the Theorems 2 and 3.

We begin with following

Theorem 4. Let Φ e S . For each μe$i

i) we can define a non empty set ήμ C [0,1] of the nμ such that

ii) there exists at least one (invariant) equilibrium state ρφ>βφ that
verifies (3.1) and

QΦ,β,μ is unique if and only if (Φ, μ, β)eTί,

1 In the microcanonical case we are interested in the case zl->0. Unfortunately it
appears that then, in the Quantum Spin System, the limit A -> oo is connected to the size
of convergence A -> 0.

14 Commun. math Phys, Vol 24
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iii) each of these equilibrium states reaches the maximum of Theorem 2

- βfΦK β) = S(Qφ,βJ ~ βQΦ,βJΛΦ)

where nμ = ρφ βμ{Jί0)
and conversely, for each n e jO, 1[.

iv) We can define a non empty set μn C 91 of the μn such that

fΦ(n,β) = μnn-pφ(β,μ).

v) There exists at least one state ρφ>π>/Se EnL^v such that

QΦ,nA^o) = n and -βfφ(n, β) = S(ρΦtΛtβ)-βρΦtΛtβ(Aφ).

vi) For each of these states there exists μn e μn such that

βpΦ(β, μn) = S(Qφ,ntβ) ~ βQΦ,n,β(Aφ) + βVnQφ.n.βW '

We note T2 C 23 x ]0,1 [ x 9Ϊ+ the set (Φ, «, β) such that ρφ>π>jβ is unique.

Proof. Statements i) and iv) together are proved in [1]. The beginning
of this section gives references to the proof of parts of ii).

Now we recall that the set EnL^v of invariant states is weak-*-com-
pact in the set of all states. Then the set of the states such that

QEEΓ\L\V and Q(^0)
 = n for some nG [0,1]

is a closed subset of Ec\LL

z^ because the function Jf{ρ) = ρ(jV0) is con-
tinuous on EnL^v, and therefore weak-*-compact. This proves v) be-
cause the function S(ρ) — βρ(Λφ) is upper-semi-continuous on EnL^v.
The last inequality of (2.12) proves vi) by the following:

{S(ρ) - βρ(Λφ)} + βμnn=- βfφ(n, β) + βμnn

(3.3)

= sup {S(ρ)-βρ(Aφ
ρeEnLzv

e(ΛΌ) = ί

where μM, as in (2.12) is an element of μn verifying iv).
Now (3.3) is true for all / e [0,1], therefore using v) we have

= sup sup {S(ρ)-βρ(Aφ)
Ze[O,l] ρeEnLx

Zv

βp(β,μn)

To prove statement iii) we note that using (3.1) we have

sup {S(ρ) - βρ(Aφ)} = S(ρΦtβJ - βρΦ,β,μ

ρeEnL^
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The remaining part of statement ii), i.e.

follows now by iii) and i).
We remark that if (Φ, ft μ) e Tx and (Φ, nμ, β) e T2 therefore by the

previous Theorem

Qφ,β,μ = Qφ,nμiβ

and

As in the grand canonical ensemble we can compute the equilibrium
states associated to each (Φ, n, β) using the tangent planes to the thermo-
dynamics function.

We define:

{ψ) zΦ(Nβyί T ί

for Φ e © and 0 <Ξ N ^ JV(Λ), Λ (finite) C Z v and we extend this function
to all the values of the density parameter 0 ^ n ̂  1 by linearity.

The following Theorem gives information concerning the equilibrium
states in the canonical ensemble, i.e. for Φ, n, β fixed.

Theorem 5. Let T2 C 93 x [0,1] x 9ί+ be the set of (Φ, n, j8) 5wc/z that
the graph of f has a unique tangent functional in the dual of © at Φ then
for (Φ, rc, β) e T2 the equilibrium state ρφftι>β is determined by the tangent
functional αφ „ β and is ergodic. Further we have for (Φ, n, /?) e T2 the
relation

where he limit A-^oo is in the sense of van Hove.
Furthermore, each tangent functional to the graph of f at (Φ, n, β)

determines a state Qφ>nίβ e EnL^v through the relation

The proof of the first statement of this Theorem is identical to [2]
or [3] once one notes that for finite A and each (n, β) the function
Φ^fffaβ) has a unique tangent plane and because the linearity of
Xf(n, β) in n for N £ n. N(A) ^ N + 1 it is o^tKtPtA.

The remaining part is identical to part 2 of Theorem 3 of [4].
Clearly T2 coincides with the set defined as in Theorem 4.
The following two Theorems give information about the equilibrium

states using the microcanonical formalism.
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Theorem 6. Let Φ e 93 and ne [0,1]. For each β>0

i) we can define a non empty set eβCEφ = [— | |Φ||, | |Φ||] of the eβ

such that:
sφ(eβ,n) = βeβ-βfφ(n,β).

ii) There exists at least (invariant) equilibrium state Qφ nβ that veri-
fies the maximum of the canonical variational property of Theorem 2 and

Qφ>n,β(Λφ)e έβ -

iii) Each of this equilibrium state reaches the maximum of Theorem 3,

sφ(eβ,n) = S(ρΦin>β)

where

eβ = ρΦ>n,β(Λφ)

and conversely, for each e e Eφ.

iv) We can define a non empty set βeC 9Ϊ+ of the βe such that:

v) There exists at least one state ρφ e neEnL^v such that

Qφ.eΛ ^Ό) = n ' Qφ,e,n(Aφ) = e

and

vi) For each of these states there exists βe e βe such that

- βef
Φ(n, βe) = S(ρφ>eίn) - βρΦ,e,MΦ).

We denote T3 C 93 x Eφ x [0,1] the set of the (Φ, e, ή) such that ρφen is
unique.

Proof Using the equivalence of thermodynamical functions proved
in [1] and Theorem 2 and 3 the proof of the Theorem is identical to that
of Theorem 4. Once one notes that the function Λφ(ρ) = ρ(Λφ) is also
weak ^-continuous and so the set {ρ e EnL^v, ρpfo) = n a n d Q(AΦ) = e)
is weak ^-compact in Ec\LL

zv.
Like in the other ensembles we can also in the microcanonical

ensemble to construct equilibrium states using the finite volume thermo-
dynamic functions.

Let ΦG93, ΛeZ\ A finite and e e £ φ , 0^N^N(A) we define for
a given A e 9ί+ :

Tr^(^ίPV) Σ
v ; N(Λ) T i > ( i l ) { P % l ) ^ .

where Ej is the interval [e N(Λ), e • N(Λ) + A • N(Λ)].
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We can extend this functional to all n such that 0 ^ n ̂  1 in the
third index.

We begin with the following

Theorem 7. Let T3 C 93 x Eφ x [0,1] be the set of the (Φ, e, ri) such that
the graph of sφ has a unique tangent functional in the dual of 93 at Φ, then
for (Φ, e,n)eT3 the equilibrium state ρφ^e>n is determined by the tangent
functional aφenat Φ and is ergodic. Further we have for (Φ, e, n) e T3 and
forallΨe®"

Qφ.eJAψ) = ocφe>n(Ψ) = lim sup cci,e>n>Λ(Ψ).

Furthermore each tangent functional to the graph of s at (Φ, e, n) determines
an equilibrium state ρφene EnL^v through the relation

Xφ,e,n(ψ) = Qφ,eΛΛψ) Mall Ψ G 93 ,

The proof of this Theorem uses one Lemma. For that let Φ e 93, A C Z \
A finite and e e Eφ, 0 ^ JV ^ N (A) we define for a given zl e 9ΐ+

Tr ίPN(Λ) V
\

We extend this functional to all n such that 0 ^ n ̂  1 in the third index.
Now we define also the function

l08Tr" » ΓΛ)

and we extend this functional to all n such that 0 ^ n ̂  1 in the second
variable. With these definitions we have the following

Lemma. yΦie>n>Λ(Ψ) is the tangent functional at Φ to the function

Proof We have
\Γ / .1 X a ^ J , , x .

T O
P-VΦ{Λ)
e

= 0

where we have noted EΦ(A) = ^ EλiiΦtΛ) and C\ is a contour in C
λi{Φ,Λ)eEΔ

such that Ei is within and for small λ there are no eigenvalues of Uφ+λΨ(A)
A) on Ci
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1
The last equality follows by commutativity of e Uφ(Λ) and -

Z - UΦ(Λ)
and cyclicity of Tr.

The Lemma results from the definition of tφ

 Λ(e, ή) and analogy with
Theorem 5 or 3.

Also we recall that the properties of the microcanonical entropy
implies [5], that:

sφ(e, n) = lim sφ

Λ{e, n) for all A

where
N \ 1 _

N(A)J N(Λ) L

Now to prove Theorem 7, we have

because
TV S T)N{ Λ\ T?A ( Λ\\ s, — [eN(A) + AN(A)] <? TV / Γ)N( Λ\ T?Δ ( Λ\
1Γ \r y/L) £Lφ\/L)j e 2^ Ll^>^A^\r y/L) Hiφ\/L)

Furthermore we note that a tangent functional γ e ©,to sφ(e, n) also
is a tangent functional to sφ(e, n) — e.

Then

e, n)-e^ sφ(e, n)-e- (γitetΛtΛ(Ψ) + A)-ε

which concludes the proof.
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