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Abstract. In a previous paper asymptotic creation and annhilation operators a\ have
been constructed by the Kato-Mugibayashi method from the creation and annihilation
operators a9 for spin \ fields with an interaction Hamiltonian density which is an even-
degree polynomial in the field with ultra-violet cut-off and its derivatives. For any
eigenvector Φ of the total Hamiltonian H = H0 + HI partial isometries Ω± have been
defined so that a\ equal Ω± a9 Ω% on the ranges &± of Ω±. Since the existence of a ground-
state of H has been proved, the existence of at least one pair Ω± follows. The purpose
of this paper is to show that for any ψ e <F± orthogonal to Φ the distribution of spins and
momenta of the interacting Schrδdinger states exp[- itH']Ω±Ψ approaches for t-> T °o
the distributions of spins and momenta of the free state exp [— UHQ] Ψ if a wave-amplitude
renormalization is carried out in &±. This is achieved by studying the expectation values
of the operators in the maximally abelian W*-algebra 31(0) generated by operators of the
form j ρa*a, in terms of which any information about spins and momenta can be expressed.

1. Introduction

The aim of this paper is to demonstrate that the concept of physical

wave-operators introduced in Ref. [1] in order to deal with the scattering

problem for long-range potentials [2] can be applied also to constructive

quantum field theory. This presents the hope for a unified quantum

scattering theory formulated in terms of such operators, which would

apply to the relativistic as well as non-relativistic case.

The class of models under study [3] are the spin \ fields ψ(x) which

self-interact via an interaction Hamiltonian

#i.κ,,= lv(x)HItK(x)d*x (1.1)
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with a finite ultraviolet cut-off K and a space cut-off v(x) of compact
support. Dealing with one field rather than with the more general and
more realistic case of n interacting spin \ fields simplifies the notation
without presenting a serious limitation on the techniques and results,
which stay valid in the general case.

Let us adopt a very general approach to scattering theory by assuming
that the interacting system is described in a Hubert space Jf, while the
asymptotic cases in which there is no interaction between all parts of
the system are described in the Hubert spaces Jfex, ex = in, out, which
are not necessarily identical with ffl. The family of observables in Jf
and Jfex will be denoted by Θ and 0ex, respectively. It is straightforward
to generalize the procedure for defining physical wave operators in
Ref. [1] by assuming first the existence of a mapping Λ-^Λex of 0 onto
Θex (determined on physical grounds [1]) and then stating that any pair

Ω+ of linear one-to-one mappings of Jfout onto closed subspaces R+
of Jf represents physical wave operators if Ώί Ω+ is a partial isometry
from Jt?in to jeout and if

lim ke-itHΩ±Ψ\Ae-itHΩ±ψy-(e-itHoψ\Ae-itHo>J=0 (1.2)
ί-> +00

for any bounded operator A e Θ and state-vectors Ω+ Ψ e R±.
In the case treated in this paper, Jfin = J fout are chosen to be identical

to the Fock space 3F (Section 2), while ffl consists of a linear subspace
of ^supplied with a "renormalized" inner-product <.|.>ren which is equal
to the original inner product multiplied by eΛ, where eAI2 is a wave-
amplitude renormalization constant. The set & of observables considered
in this paper is Θ = {HKtΌ}κjΘ0, and corresponding Θex = {H0}KJΘ0,

where Θo is the sub-algebra of all self-adjoint elements in the W*-algebra
SΆ(Θ) generated by the spin-momentum distribution observables [3]. The
choice of 21(0) instead of the algebra of local observables is deliberate,
since it presents us with a maximally abelian algebra [3] of observables
in terms of which any measurement of spins and momenta of any finite
number of particles can be described. Since spin and momentum are
ideally suited to scattering experiments, and since S-matrix computa-
tions are always carried out in the momentum rather than configuration
space, this choice seems most appropriate.

The wave operators of the models considered are partial isometries
on # , and are defined by means of asymptotic creation and annhilation
operators [4-6, 3] and of eigenvectors oϊHκ v. Since we have no informa-
tion about the point spectrum oϊHκ v beyond the existence of the vacuum
energy [3, 7] as the lowest eigenvalue, we cannot establish uniqueness
of Ω±. In general, to each eigenvalue of Hκv would correspond a dif-
ferent pair of physical wave operators.
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In Section 3 we establish the main result of the paper (Theorem 3.1)
which implies that if Ω± Ψ are orthogonal to the ground state oϊHκv then

lim (Ω+Ψ\eitH«>»Ae-itH^Ω+Ψ}ren = <Ψ\Aψy (1.3)
+ 0 0

for any A e 21(0) corresponding to a finite number of particles. In view
of (1.2) and the commutativity of HQ and 91(0), this means that Ω± are
physical wave operators, and therefore [1, 8] that the interacting states
exp[-iίHκ > v]Ω± Ψ describe asymptotically in time for ί-> + oo respec-
tively the same distribution of spins and momenta as the free states

p[iiifo]y.
In the conclusion (Section 4) we discuss some further physical impli-

cations of the derived results.

2. Fock Space and Summary of Previous Results

To simplify the notation we introduce the measures μ and μ0 on the
Borel sets in R4 and 1R5, respectively:

dμ{k9 σ) = -^- dμx (σ), ω(k) = ]/k2 + m2 , ^

dμo(k, σ, v) = dμ(k9 σ) dμ2(v).

Here m0 is the mass of the Fermion, while μx and μ2 are measures in
IR1 with supports on the sets { ~ i + i } and { - 1 , + 1 } , respectively,
and such that / f , ,., / f , ,.Λ ^ >2 2^

where σ and v denote spin and particle-antiparticle indices, respectively.
The single particle space ^ u o and the single antiparticle space J ^ i

in the momentum representation are both taken to be identical to
Z (̂1R4). The space J ^ ^ f m Fermions and n antifermions, m + n > 0, is
the space

where (x)̂  denotes the antisymmetric tensor product, and for m = 0 and
n = 0we identify the corresponding tensor product with the one dimen-
sional space #0,0 generated by the Fock vacuum Φo,o The F o c k space is

^ = θ *•..„•
m,n = 0

On proper subspaces of #" [3], the creators and annhilators as
sesquilinear forms satisfy:

[αv(fc, σ), fl*, (*', σ')] + = ̂ v v, δσσ. ω(k) δ(k - kf) (2.4)

with all the other anticommutators being zero.
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If Ut = exp[itHKtΌ] e x p [ - itH0~] then for any /(ft, σ)e L2

μQSL4)

< t ( / ) = " - Mm Uta*(f)U* (2.5)
ί-» + oo

exist [3,4-6], and satisfy the same anticommutation relations given in
(2.4). Let Φ be any eigenvector of Hκv and denote by #+(Φ) the closed
linear subspace of &> spanned by the vectors

(2.6)

corresponding to all fl9... Jne L2

μ(R4) and v l 9..., vne {- 1, + 1} and for
alln = 0, l ,2, . . . .

When Hκv is restricted to &r±(Φ) it is given by [3]

Hκ>v = ηl + j ω(k)α*±(fc,σ)αVsb(k,σ)dμo(k,σ,v) (2.7)
R5

where ^ is the eigenvalue of Hκ v corresponding to Φ.
The wave operators Ω+(Φ) are defined [3, 6] by the relation

Let £+(Φ) be the projection of & onto ^ ± ( Φ ) . Then Ω+(Φ) satisfy [3,6]
the following relations:

QΪ(Φ)β ± (Φ) = l ,

O ± (Φ)flϊ(Φ) = £ ± ( Φ ) , (Z8)

exp \it(HKt Ό-ηJ]Ω±(Φ) = Ω± (Φ) exp [/ίfί0], ί e 1R1.

From (2.5) it also follows [3] that

u- lim Uta*(f1)...a?ι(fdU*E+(Φ)
ί-Too (2.9)

= Ω±(Φ)a*(fi) . <(fι)Ω%(Φ)

forall/ 1,...,/ IeL^(Πl 4), / = 1 , 2 , . . . .
Let us introduce the operators

P ρ = J ρ(fc, σ, v) α*(fc, σ) αv(fc, σ) dμo(
fc» σ

?

 v)
R5

and define the family of spin-momentum distribution observables & to
be the set [3] of all self-adjoint operators

A = Em,nPβ (2.10)

for all finite m and n and all real functions ρ which are essentially
bounded with respect to μQ; here Em n denotes the projection of ^ onto
3Fm n. Then the following theorem has been proved [3].



Asymptotic Observables 137

Theorem 2.1. The W*-algebra SΆ(G) generated by G is maximally
abelίan and any Λe 91(0) when restricted to !Fmn is given by

AΨm,n = κmJkuσu...,km+n9σm+n)Ψmfn, (2.11)

where αm „ is a Borel measurable function on ]R4 ( m + π ) and is symmetric
under permutations of the first m and of the last n four-variables. The
function αm „ is also essentially bounded with respect to the product
measure μx(m+n).

Since by definition A corresponds to a finite number of particles,

{ J (2.12)

exist [3]. The *-algebra generated by Θ will be denoted by 5I0(#)
Note that Theorem 2.1 states that the spin-momentum distribution

observables G form a complete set of observables.
The interaction density Hj κ(x) is chosen to be [3] a polynomial

( 2 1 3 )

consisting of products of bilinear forms in ψ or its space derivatives as
left variables and ψ or its space derivatives as right variables, all taken
at time t = 0;ψ and ψ are the well known configuration representation
fields with ultraviolett cut-off K.

3. The Asymptotic Behaviour in Time of the Heisenberg-Picture Spin-
Momentum Distribution Observables

In this section we intend to show that the operators Ω+(Φ) are
physical wave operators [1] with respect to the family G of observables,
by proving that the Schrδdinger free state e~itHo Ψ is the incoming and
outgoing physical asymptotic state (with respect to G) of the Schrδdinger
interacting states

for ί-» + oo, respectively. As we have mentioned in the introduction, this
will be possible only if we introduce in <F'± (Φ) = 3F± (Φ) — [Φ] (where
[Φ] is the one-dimensional subspace spanned by Φ) the renormalized
inner product

< ^ < φ ) . > (3.1)

which represents a wave-function amplitude renormalization ([9], p. 112)
with

Λ(Φ)= -21n |<Φ|Φ O i O >| , | |Φ|| = ||ΦOfOll = 1 (3.2)
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The implicit assumption is that, for the given cut-offs K and υ, Λ(Φ)
is finite. Then the asymptotic condition, which represents the criterion
for Ω+(Φ) to be physical wave-operators with respect to Θ, is a conse-
quence of the following theorem (cf. [1]).

Theorem 3.1. Suppose that Φ is an eigenvector of Hκ v, and that |Φ> <Φ|
is the projection onto Φ. Then for any A e 21(0) with only a finite number
of non-zero components (A | J^> n) in the subspaces 3Fmn the following is true,

w-lim(E±(Φ)-\Φ}

= e~A™ (E±(Φ)-\Φ> <Φ\)Ω±(Φ) AΩ%(Φ)(E±(Φ)-\Φ> <Φ\)

where A(Φ) is defined in (3.2).

Let us denote by Em>n = χ{imn)} (N+l9N^) the projection onto J^m w.
We shall establish first the theorem for observables of the form
EmnPρi... Pρι. This will be achieved in a few stages, by proving in the
process an auxiliary theorem and three lemmas.

Before proceeding with that proof we note that (3.3) does not hold
if E+(Φ) is retained in place of E+(Φ) - |Φ> <Φ| since for A =
m + n > 0, we have

w-l_im|Φ> <Φ| eiH«>vt Em n e-
iHκ^ |Φ> <Φ|

ί-> + 00

= <Φ\Em,nΦ)\Φ)<Φ\

\Φ) <Φ| Ω±(Φ)Em>nΩt(Φ) \Φ) <Φ|

Furthermore, because of the in general non-zero renormalization con-
stant A(Φ\ the statement of Theorem 3.1 cannot be valid if we include
elements A of 9I((P) with infinitely many non-zero ( ^ J ^ J components.
This can be easily verified for the case of the identity operator 1 e 9Ϊ((P),
since in that case the left-hand side of (3.3) is identically equal to E+(Φ)
- |Φ> <Φ|, while the right-hand side is e~Λ(φ) (E±(Φ)- |Φ> <Φ|).

Theorem 3.2. Let ρ(k,σ,v\ v = — 1 , + 1 , be two non-negative and
essentially bounded,

bv = ess-sup ρ(k, σ, v) < oo , (3.4)
a e R1, k e R3

Borel measurable functions on 1R4. Write

< = S'Mn j(fc, σ): (r ~ J } K- < ρ(k, σ, v) ̂  ^ 1 , r=ί,...,M, (3.5)
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where {Sι

M:/= 1,2,...} /s any subdivision oflR* into disjoint Borel sets

Sι

M of diameter smaller than M~K If χr

v

ι denotes the characteristic function

of Δr

v

ι, then

EmnPρ = s-lim Σ Σ Σ
M - > c o v = - i r = i / M v /

ίΛe prime rcexί ίo ίfte summation sign indicates that the terms for
which μ(Ar

v

ι) = 0 should be omitted. Furthermore, there is a constant C(m, n)
independent of M such that

- Σ Σ Σ'^7K-<(^')«v(^))||^C(m,n). (3.7)
v = - i r = i i MV v̂) J\\

Proof. We easily compute that for arbitrary

where <5(vJ) is zero for ' ^ m , v = - 1 and for j ^ m + 1, v = + 1, and it
is one otherwise. Applying this result to

QM = Σ Σ Σ'^<(Wv^v(^) (3.8)
v = Ί r

we can easily see that for any simple function Φm,n^^m,n built from
characteristic functions of intervals in iR4(m+"> and for arbitrarily chosen
constants C\

{ Σ ί dμ(kί,σί)...dμ(km+n,σm+n)

X

μ(Δv) AQ

J X v Z ( ^ ? σ/)I * « , „ ( * ! , σ l 9 . . . , ^m+n, σ m + B )
+ )
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where the summation Σ" does not include any of the sets Ar

v

ι in which
Φ * π is almost everywhere constant in (^σ^ezl^ when all the other

variables are kept fixed. If we take Cr

v = — — - then
M

and we get the estimate:

2 +1 m+n

— Σ KΣ ί | Φ ί . . ϊ f » . l ^ X < m + ">

iVl v = - l j = l ]R4(m + n)

| |Φm,J { / £ " f χr

v\kp σ3) \Ψmj)2 dμ* <»+»>}*
ιui j ( 3 9 )

J £(kp σj) \Ψm

2

Since the family of all simple functions of J ^ M is dense in &m%ni we
conclude from the above inequality that \\Em>n(Pρ- QM) Ψm>n\\ is not
larger than the expression in the square bracket on the right-hand side
of (3.9). In the limit M->oo the measure Σ" μ(Ar

v

ι) tends to zero, and
r,l

therefore the aforementioned expression in (3.9) also converges to zero.
Since Ψmn was an arbitrary vector in <Fm%n and the family of all simple
functions Φmn built from characteristic functions of intervals on ]R4(m+w)
is dense in Φm^ this establishes that (3.6) is true.

To prove (3.7) note that the right-hand side of the inequality (3.9) is
bounded by

2

M
+ 1

Consequently, C(m, ή) can be chosen to be any constant larger than
3(m + n) (b_ί + b+ί). Thus we have established Theorem 3.2 completely.

Let us remark that the proof of Theorem 3,1 would be simpler than
it actually turns out to be if the limit in (3.6) were a uniform limit rather
than a strong limit. However, it is quite easy to see that the convergence
in (3.6) is not in operator bound, since the term Σ" in the procedure
cannot be made arbitrarily small independently of the chosen Φmn.
Simple examples can be constructed where for given ε > 0, Ψmn and M,
that term exceeds ε for some normalized Φmn.

In order to complete the proof of Theorem 3.1, we have to know the
asymptotic behaviour in time of UtEmn £7*. This is essentially derived in
the following two lemmas.
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Lemma 3.1. For any eigenvector Φ of Hκ v

w-limE±(Φ) UtEOfOU*E±{Φ) = e-ΛwΩ±{Φ)EOiOΩ%{Φ) (3.10)
t~* + 00

where Λ(Φ) is the wave-amplitude renormalization constant defined in (3.2),
and E00=\Φ0f0y(Φ00\.

Proof. According to (2.7), the restriction of Hκ v to ^+(Φ) has the
same spectrum as Ho -\-ηl has on #". This spectrum obviously consists
of a point spectrum which contains only the eigenvalue η corresponding
to Φ, and of the absolutely continuous spectrum [m0 + η, + oo).

An arbitrary vector Ψ from 3F± (Φ) can be uniquely decomposed into
the sum Ψ{η) + Ψac, where

)Φ (3.11)

and Ψac belongs to the absolutely continuous subspace of the restriction
(HKV\^+(Φ)). This implies that for any Ψxe& the Radon-Nikodym
derivative h(λ) of {Ψ1 |£fκ>v ψ a c > with respect to the Lebesgue measure
exists. Hence, by the Riemann-Lebesgue lemma,

= J" e~lλth(λ)dλ
— oo

converges to zero where ί-> + oo. Thus for any Ψγ

To establish (3.10), note that by carrying out the above decomposi-
tion for arbitrary Ψu Ψ2 e #+(Φ) we obtain

Thus in view of (3.12), we can write

lim < y 1 | t / f £ o o i o > | i > | 2 >

(3.13)

= e-ΛW<Ψ1\Ω±E0t0Ω*Ψ2}

which is the required result (3.10).
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Now we want to extend the result of Lemma 3.1 to the projector
Emn for m + n>0, with E±(Φ) replaced by E+(Φ)- |Φ> <Φ|. To do this,
note that if hu h2,... is an arbitrary orthonormal basis in L2

μ(\R4\ then
Emn can be written in the form

mn

Em,n= Σ «ffiJ - aϊ(KJa*ΛhPm+1) - « i i ^ J£o,o

(3.14)

( Λ )

where the infinite sum is the strong limit of its finite partial sums. It is
easy to see from Lemma 3.1 and (2.9) that for each term in (3.14) we have

w-\imE±(Φ) Utάt(Rtl)... attihjJEo^a.^hjJ ... a^K) U*E±{Φ)

Φ)afQiiι)... at^hjJE^a^ihjJ ... ai(hh)Ω%(Φ).

For example for m = 1, n = 0 we have

E±Uta*(K)EOtOa(h)U*E±

and the desired result is a consequence of the facts that the existence of
the weak limit of a product follows from the existence of the weak limit
of one of its factors and of the uniform limit of the rest of its factors, and
that if one factor converges uniformly to zero and the rest of the factors
stay bounded uniformly in t then the uniform limit is zero.

Now we note that since [3, 5, 6]

it follows that (3.15) is also true if we replace E± (Φ) by {E± (Φ) - |Φ> <Φ|}.
Therefore, each term in the summation in (3.14) satisfies Lemma 3.1 with
E±(Φ) replaced by {E±(Φ)~ |Φ> <Φ|}.

After proving the next lemma it will become easy to see that Emn,
0, also satisfies Lemma 3.1 when we replace E+(Φ) by

{E±(Φ)-\Φ}(Φ\}

in (3.10).

Lemma 3.2. For any Ψ e ^+ (Φ) orthogonal to Φ and for any ε > 0,
there exists an N(ε) and T(s) such that

Σ \<^{hPι)...atι(hPmJΦ0i0\U*Ψ>\2<ε (3.16)

for all \t\ ^ T(e).
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Proof. We shall prove (3.16) explicitly only for m = l , rc = 0, i.e.,
prove that

Σ \<anhp)φo,o\U*Ψ>\2<s (3.17)
p^N(ε)

for all \t\ ̂  T(ε) and Ψ e {£+ (Φ) - |Φ> <Φ|} # \
Differentiating and then integrating in ί each term in (3.17), we obtain

that the sum in (3.17) is equal to

Σ \<an

+ Σ ί -£r\<aΐ(hp)Φ0,0\U*ψy\2dt'.
±T(ε) a l

(3.18)

The second term in the expression above is equal to
t

p^N(ε) ±T(ε)

• df <f | e ί ( ' H - [ ί ί / > κ > t ) ,α*( e - i ω t ' hp) £ 0 > 0 , ai(eimr ^

Using the notation in Ref. [3], we may write

(3.19)

Hence, by applying the Schwarz-Cauchy inequality in /2(oo) and ob-
serving that

^y]2 =\\Euoe
iH°' e- Ψ\\

and in view of the fact that for any ¥", Ψ"

(Ψ'\ίHI:K,υ,a*(e-iω'hp)E0,0 a^e1""hpj]_ Ψ")

+ <<f"|αf( e-
i ω '/ I p)Φo,o>

we get that (3.19) is in absolute value bounded by

ί dt'\\ψ\\ Σ Σ
±Γ(.)

v, Σ \(Φo,o\\v{x)Vj{x)hpa.{x',i)d
\ p = l l \ R3

't)d3 xe-l

for all N(ε).

(3.20)
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Now let us write

and

$e-ikxF(x,t)d3x.
IR3

Since e ιωthί, e ιωth2,... constitute an orthonormal basis in L2(IR3), we
easily see that

IR3

dx(ΦOfO\v(x) Vj'{x) e-itH«>» Ψ} ft (*, t)

= Σ ω{k)F(k,t)β.J(k,σ)e-«

= \ω(k)\βΛ){k,σ)F{k,t)\2dk

dk

"^ <m

1R3

where

hPxj(x, t) = {&/*, σ) hp(k, σ) *<[»<*>'-*•*] dμ(k9 σ).

Taking into consideration the fact that βa.{K σ) vanishes [3] for |fc| > K,
we obtain that (3.21) is bounded by

IISΊI Σ Σ

where

J [ J \F(k, t')\2 dk]*df (3.22)
±τ(β)

(3.23)

Consider now vectors Ψ from the linear manifolds &± (Φ) spanned
by all vectors of the form

af(fi).- *?(/J**i(/«+i) -. fl?i(/»+»)Φ (3.24)

for all m + n ̂  1, and all / l 5 . . . fm+n e <g%(IR4) which are such that

{k: k2 = κ2} n sup/jit, σ) = 0 . (3.25)

It is quite evident that ^+(Φ) is dense in #+(Φ)θ [Φ].
All the vectors Ψ e &+ (Φ) obviously belong to the absolutely con-

tinuous spectrum of the restriction of Hκv to ̂ ( Φ ) , and for each such
Ψ there is an λψ such that EHκ>v Ψ = !F for A ̂  A .̂ Hence, employing the
spectral theorem and denoting by φψ{λ, x) the Radon-Nikodyn derivative
of (V *(x) Φo 0 | £ f κ υ ψy with respect to the Lebesgue measure, we can
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write (3.23) in the form

λ ψ λψ

I uXV yXj J c ψψyA^^X) UAγ J c ψψ\^29 •*/ *̂/^2

K3

 a . ° ° (3-26)

where

v μ ' ) = f φ*\" " , , 1 ^ 1 " ' " , x I r

2(jc) dA" ίix. (3.27)

The interchange of order of integration required in deriving (3.26) can
be easily justified by Fubini's theorem, since we are integrating on
compact domains.

The assertion that the expression in (3.21) can be made smaller than
any ε > 0 if T(ε) is chosen appropriately large, becomes an obvious truth
if ]/τΨ(t) is integrable in t on R1. Since τΨ(t) is evidently continuous, we
infer that ]/v(i) is integrable on IR1 if τΨ(t) decreases at infinity faster
than | ί | " 3 , i.e., if τΨ(λ) is at least three times differentiate. We verify
that this is always so when Ψ e 0>+ (Φ) for the special case Ψ = α*+ (/) Φ.
The general case can be treated in the same manner.

By definition, for such Ψ

where fλ(k, σ) = f(k, σ) when ω(k) ^ λ, and fλ(k, σ) = 0 when ω(k) > λ.

7°i 7 <e~itH«>» V;*{x) Φ0>01 IHI)K>V, a*(e'iωtfj] Φ} e~^ dt,
o

the second term on the right-hand side of the above relation may be
written as

Σ i(- I/-1 δVVj Jdt J dx' (e-itH«>» Vj,*(x) Φ0,0\Vj,{xr) Φ>

f = i ° »3 /3 28)

•!>(*) J e^k)t-k*βaj{Kσ)fλ{Kσ)dμ{hσ).
\k\^κ

Taking into account (3.25) and the fact that f(k, . ) G ^ J ( R 3 ) , as well as
the uniform convergence with respect to t of the above improper Riemann
integral, we easily infer that the expression in (3.28) is differentiable any
number of times with respect A, and therefore τ y (0 = = 0( | ίΓ r ) for any
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The above considerations establish the fact that for any given Ψe^+ (Φ)
and any ε > 0 there is a T(ε) for which the sum in (3.19) is in absolute
value smaller than ε/2 for all \t\ > T(ε) and for arbitrary JV(ε). From this
result and (3.18) we easily deduce that (3.17) holds if for fixed T(ε) we
choose N{ε) in such a manner that the first sum in (3.18) is smaller than
ε/2. Hence, (3.17) holds for Ψ e Θ>± (Φ). Since 0>± (Φ) is dense 9?± (Φ) θ [Φ],
the result can be immediately extended to arbitrary Ψ e # + (Φ) ortho-
gonal to Φ.

This completes the proof of Lemma 3.2 for E1>0. As was earlier men-
tioned, the proof for the general case Emn runs along the same lines.

In view of (3.15) and the remarks preceding Lemma 3.2, we can infer
from Lemma 3.2 that

w-lim(£ ± (Φ)- |Φ> <Φ|) UtEmtHU*(E±{Φ)- |Φ

= e-Λ(E±(Φ)-\Φ>(Φ\)Ω±(Φ)Em,nΩ*±(Φ)(E±(Φ)-\Φ)(Φ\).

Now we shall return to proving Theorem 3.1 for an element of 9lo($)
of the form A = EmnPρi... Pρι. First, we observe that the case m = n = 0
is immediately taken care of since in that case both sides of (3.3) vanish
identically. Hence, let us take m + n > 0 and, assuming that

t ^ tn9 ; = 1, . . . , / , (3.30)

let us consider the identity

E'± υtEm,nPβi... Pβι U*E'± - Ω± EmJeι... PgιΩ% E'± e~Λ

t)

where E'± = E± (Φ) - |Φ> <Φ| and

R1(M)=-e-ΛE'±Ω±EmJPβι...Pβ-QV...Q<β)Ω*±E'±, (3.32)

(3.33)

R3(M, t) = E'± U,Em>n [Pβi... P β I - Qfi>... β S ] U*E'± . (3.34)

In view of Theorem 3.2, i?x(M) converges strongly to zero when
M-> oo. For fixed M, R2(M, t) converges weakly to zero when ί-> + oo,
since (3.29) holds and from the form of each Q$, as given in (3.8), we
immediately infer by using (2.9) that

w-lim Ut βfc>... β g U* E'± = Ω± ρ<i>... β « Ω*± E'
t> + ±
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the last of the above relations is an immediate consequence of the fact that

Thus in order to show that the expression in (3.31) converges weakly
to zero when ί-> + oo, it is sufficient to show that for any Ψί,Ψ2e 3F± (Φ)
and any ε > 0 there is a T(ε) such that

\(Ψ1\R3(Mft)Ψ2}\<ε (3.35)

for all \t\ > T(ε) and arbitrary M = 1,2,... . For that we need the following
lemma.

Lemma 3.3. For given Ψl9Ψ2e #"+ (Φ), given Emn, and any ε > 0, there
is N(ε) and T(ε) such that

Σ \<i\t^n(QιQQ$Q!ϊ!)
+Pm + n>N(ε) (3.36)

fa^ o|fli(ΛPl) - . *-i(Λpm J U*Ψ2y\

is smaller than ε for all |ί| > T(ε).

Proof. The proof is a straightforward application of Lemma 3.2.
Using the Schwarz-Cauchy inequality in /2(oo), we get that (3.36) is
majorized by

II EmJPβl ...Pβ-Q$... βjg) EmtH Ut Ψ, ||

Σ \<Ψ2\U?ιaί(hpi)...aϊ(hPmJΦ0>0>\2\*

The first factor can be majorized by

\\(Pβl...Pe-Q<ύ)...Q(ΰ)EmJ\\Ψ1\\

which is independent of ί, and which, according to (3.7), can be majorized
in its turn by a constant independent of M. The second factor in (3.37)
can be made, by Lemma 3.2, arbitrarily small by choosing N(ε) suf-
ficiently large. Hence Lemma 3.3 is established.

In order to establish (3.35), it only remains to observe that in view
of (3.30)

•a*(\)... atAh^JΦo.o) <*o.ol«i(*„).•• «-i(^Pm+J U*Ψ2>\

S Σ ll«'illl|y2lllMΛpI) ..α-i(ΛΛBJII
Pl + +Pm + nSiV(ε)

• \\EmJPβί - . Pβι-Q& . - 0S)βf(^i) - α i ί ^ , J*o.oll

can be made arbitrarily small independently of t.
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Thus, the proof of Theorem 3.1 for elements of 2lo(0) of the form
EmnPQχ... Peι has been completed. Since any element of 2lo(0) *s a finite
linear combination of elements of this type, Theorem 3.1 has been
established for all A e 2lo(0).

Consider now any element A of 2lo(0). By recapitulating the proof
of Theorem 3.1 [3], we easily establish that the following statement is
true (observe especially (3.12)).

Lemma 3.4. For any given A e 21(6?) and Emn there is a sequence
AuA2,...eSΆQ(Θ) such that

^ (3.38)

and a constant C for which

MA-AJE^JSC, 1=1,2,.... (3.39)

For any Ψ1,Ψ2e ίF'±{Φ) we can write

<Ψ, \(UtEm<nAU* - e~Λ Ω± EmynAΩ*±) Ψ2)

^\<Ψ1\Ω±Em,H(A-ΛdΩ*±Ψ2y\

+ \(Ψ1\(UtEm<πAιU*-e-ΛΩ±Em,nAιΩ*±)Ψ2y

where, in view of (3.39), R(l, t) can be estimated in the following manner:

R(l, t) = | < f 11 UtEmJA - Ad U* Ψ2}\

= Σ liyillll^llK^-eii^JII
pi + -+p-.*-Si _ ( 3 4 1 )

•UA-Aι)at(h1)...a*.ι(hPmJΦo,o\\ + \\(A-Aι)EmJ \\Φ2}\

Σ

According to (3.38), the first term in the right-hand side of (3.40) can be
made arbitrarily small by choosing / sufficiently large. The second term
converges to zero when t -• oo since Aι e 2ίo((P). Finally, from (3.39), (3.41)
and Lemma 3.2 it follows by means of an adequate choice for K that
R(l t)<s for all / if t is sufficiently large. Thus, (3.3) holds for any finite
linear combination of such elements of 2Ϊ(0). Hence, Theorem 3.1 has
been established.

4. Conclusion

In the preceding section we have established that for any Ψ e 3F'± (Φ)

= <#+ ( Φ ) θ [ Φ ] there are vectors Ψo+ιe!F such that the distribution of
spins and moments in the interacting Schrodinger states e~

ιtHκvΨ±
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approaches asymptotically for ί-> + oo the distribution of spins and
in

momenta in the respective free Schrόdinger states e~iHot Ψ°£\ If we
require that ψ± be normalized with respect to the inner product <• | ) r e n

on 3F'±{Φ) and that Ψ*± be normalized with respect to the Fock space
inner product < | X then

in

Ψ±=e~MΦ)/2Ω+ ΨT. (4.1)

Hence the transition probability amplitude from e~iUκ>otψ + to
e-iHKtVt ψ i s

<*F_\ψ+y r e n-<o_(Φ)Ψ^]Ω+{Φ)ψ i ny = < Ψ Π S ( Φ ) r ? > (4.2)

where we have introduced the scattering operator

Φ). (4.3)

We note that the wave-function amplitude renormalization does not
affect the S-operator. However, S(Φ) is unitary on & if and only if
&+ (Φ) ΞS #L (Φ) (cf. Reί [8], Section 2).

We have seen in Ref. [3] that the ground state Φκv of Hκv exists
for any κ<oo and integrable v(χ\ but we know neither whether it is
unique or whether Hκv has some other eigenvalues besides EKyV. Since
we have to allow for the possibility that there are more than one linearly
independent eigenvector Φ of Hκ v, we seem to have to envisage the
possibility that there are not only more than one S-operators (4.3) which
would describe transitions in #±(Φ), but also that there should be an
S-operator describing transitions from Ψ+ in #+(Φi) to some Ψ_ in
#1(Φ2), where Φ 1 1Φ 2 . However, a meaning could be given to such
transition probabilities only if Λ(Φ1)^Λ(Φ2). Furthermore, a theory
which would possess two or more mutually orthogonal eigenvectors
ΦX,Φ2,. . ofHκv seems to have redundancies at least as far as scattering
measurements of spins and momenta axe concerned: for any ψ e £F we
would have two or more interaction states Ω ± (Φ^ ψ, Ω ± (Φ2) Ψ9... which
would have the same asymptotic distribution of spins and momenta
when t—> + oo.

Finally, we should allow for the possibility that there are vectors
Φ e #~ which are annihilated by all av ± (/), but which are not eigen-
vectors of Hκ v. It is fairly obvious that for such vectors Theorem 3.1
cannot possibly hold in general since already for £ 0 0 we shall not have

(e-iB*'»'Φ\E0%Q e~iH^1 Φ> = O " ^ Φ|£ 0 > 0 e'irtt Φ>= e ^ ( φ ) , (4.4)

i.e. we have no non-zero limit when t-* + oo. In fact, if Φ belongs to the
absolutely continuous spectrum of Hκv, then the limit of (3.4) as ί-> T oo
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will be zero. However, only if we include in © [3] all vectors annihilated
by a±(f) and choose Φ l5 Φ2 ... to be an orthonormal basis in ©, can we
prove (cf. [5], Theorem 4) that

On the other hand, if Φ is an eigenvector oϊHκv, then the asymptotic
behaviour of any e~ίHκvt Ψ e ^+(Φ) is that of a state of free non-
interacting particles. Hence, in that case Ω±(Φ) correspond to channels
in which all particles are asymptotically free. It seems plausible to assume
that if Φ is not an eigenvector Hκ v then we are dwelling in a channel
in which not all particles are asymptotically free, i.e., for which Ho is not
the channel Hamiltonian.
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