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Abstract. The Wilson expansion of the field operator product 4, (x,) 4,(x,) may be
used to define composite operators which are local with respect to +(x, + x,) and depend
in addition on a vector # proportional to the distance x; — x,. It is proved that the com-
posite operators are polynomials in #, for fixed #? #+0, and that their dependence on #?
only involves powers of #2 and Ig 11‘2.

1. Introduction

The composite operators associated with the formal product
A (x) A,(x) of two fields may be conveniently defined as the operators C;
appearing in the Wilson expansion

k
Ai(xy) Ay(x,) = Z fj(Q)Cj(x’n)+Pk+1(x9rlaQ), (1.1)
j=1 :

X;=x+en, XxXp=x—¢n, >0,
where the coefficients f; satisfy

lim fj+1(Q) =0, Py y(x,1,0) -0. (1.2)

e 70 BT
In arecent paper [[1] the expansion (1.1) was derived from general assump-
tions, and the operators C; were shown to be local in x.

The operators C; depend on the vector x of the center-of-mass point
and an additional four vector # proportional to the distance of the
arguments x, and x,. The dependence on 7 is related to the directional
dependence of composite field operators. This can be seen by setting
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in (1.1). The Wilson expansion then takes the more familiar form

k . 6
A9 dste= = 1 0/ EG xS 0

where the composite operators C; depend on x and the direction
n=¢&/)/ — & of the difference vector &.

The purpose of this paper is to completely characterize the n-depend-
ence of the operators C;, using only the Wightman postulates [2]
together with the additional assumptions of Ref. [1]. In particular, it
will be shown that for fixed > % 0 the operators C; are polynomials in
11, as one should expect from renormalized perturbation theory. Moreover
we find that the dependence on 52 only involves powers of n? and lgn?.

In this introduction we shortly sketch the proof of the main theorem
for the composite operators which appear in the expansion of A(x + gn)
A(x — gn). The rigorous treatment, as well as the generalization to the
product of two different operators, will be given in Section 2-7.

The local operators C; are recursively constructed by {1]

Py(x,n,0) = A(x + on) A(x ~ on)
Pi(x, 1, 0)= fi(0) C;(x,n) + P;11(x, 1, 0) (L4)

. P'(x, 71, Q)
C~ = g PR .
A )

For the Fourier transforms

~ 1 ,
Pi(x,u, @)= Wf dne'™Py(x,n, )

) (1.5)
Ci(x,u) = Wj dnel™ Cy(x, n)
we have . . 5
Py(x,u,0)= fi(0) C(x,w) + P, ,(x, u, 0)
ISj(xa u5 Q) (16)

€ e.1) = tim %0
o) = lim =

Let @, ¥, be eigenvectors of the energy-momentum operator with
eigenvalues p, or g, respectively. The energy-momentum eigenvalues r
of an intermediate state is related to p, g, u by

r= w=u+gop+gq).

20’
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Therefore .
(®,, Py(x,u,0) ¥,)=0 unless w?>>=0, wy=0. 1.7

Dividing (1.7) by f,(¢) and taking the limit ¢ —0 we find
(®,,Ci(x,u) ¥,)=0 unless u?=0, uy=0. (1.8)

Repeated application of this argument to the recursion formulae (1.6)

leads to 3
(®,, Ci(x,u) ¥,)=0 unless u*>>=0, u,=0.

By linear superposition of the vectors @, and ¥, we obtain
(®, Ci(x,u) ¥)=0 unless u>=0, wu,=0 1.9)

for arbitrary matrix elements. (For a rigorous formulation see Theorem 2
and Corollary of Section 3.)
The causality condition

[ACxy), AGxx)]=0 if (x;—x,)* <0
implies
Pi(x, —n,0)=Py(x,n,0) if 5*<0. (1.10)

Dividing (1.10) by f;(¢) and taking the limit ¢ —0 we get
Cilx, —=)=Cy(x,n) if n*><0.

Using the recursion formulae (1.6) the relation

Ci(x, —n)=Cj(x,n) for n*<0 (1.11)
follows by induction. This implies that the matrix element
f @) =(2,(C(x,m) — Ci{x, —m) ¥) (1.12)
vanishes for spacelike 7,
fp)=0 if 5*<0. (1.13)
The Fourier transform
fw)=(2,(Ci(x,u)— Ci(x, —u)) P) (1.14)

vanishes for spacelike u
fw=0 if u*<0 (1.15)
as follows from (1.9). Because of (1.13) the Jost-Lehmann-Dyson re-

presentation [4] may be used to write

fu)= dezjdu’a(x,u—u’, k2) AW, k). (1.16)
0
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The spectral function o(x, v, x2) vanishes unless the hyperboloid
(u —v)* =2 lies in the region u? = 0 (where f may be different from zero).
Hence ¢ is non-vanishing only at the origin v =0, and so

o= z atrtm(x, k%) 0, 1 O() . (1.17)

m=1

With this result f becomes

M o©
fw= Zl (j) di? a-tm(x,k%)0,, ..., Au, k). (1.18)

For uy,>0 we have
M

(@, Cilx,u) P) = Z [ dicattm(x,6%) 0, ...0,, A (ux?) (1.19)
0

since . "
fw)=(@,Ci(x,u) ¥) if uy>0. (1.20)

For uy <0 or u? <0 both sides of (1.19) vanish. Hence (1.19) is valid for
all u except u =0. Therefore

(2, C(x,u) Y)= Z jd;c atrtm(x, k%) 0, .6umA~+(u, ©2)
m=l (1.21)

N
+ Y bN(x, k%) 0y, ... 0,, 6u).
n=1
The Fourier transform of (1.21) with respect to u yields

R
(2, Ci(x,n) )= Z Moy Mg 18 (X, n?—ieny), e—+0. (1.22)

r=1

This is the statement that the matrix elements of the composite
operators C; are polynomials in #, for fixed n* # 0. It should be noted that
the proof just outlined goes through under much weaker conditions.
It is not necessary to assume relation (2.15) of Ref. [1] which excludes
oscillations for ¢ —0. Instead the hypotheses of Ref. [1] may be formulated
in reference to a particular sequence g, with

Jim, ¢,=0.
The Wilson expansion and the recursive construction of composite
operators then hold with respect to this sequence which suffices for the
derivation of (1.22).
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In Section 6b it will be proved that the degree of the polynomial (1.22)
stays bounded when the states @ and ¥ are varied. This shows that also
the operator C;is a polynomial in #, for #* & 0 given.

Finally we examine the dependence of C; on 5°. A characteristic
property of the composite operators is that they obey simple transforma-
tion laws under the scaling transformation

n—on.

In order to obtain the scaling law we write the expansion (1.1) in the
equivalent form

Alx+on) A(x—on)=A <x, + % cn) A(x, - % gn>
(1.23)

o

k
= Z f}(%) Cilx, on)+Pk+1(x, on, Q).

According to the uniqueness theorem the operators C;(x, ) and C(x, o)
must be related by a transformation of the form [5]

Ci(x,an)= Y, s;;(0) Cp(x,7). (1.24)

i'=1
The triangular, real k x k matrices
s@)=ls;y@)I ji=1L..k
satisfy the multiplication rule
s(o7) =s(0) s(t) (1.25)
as follows from the identity

Y. 5;7(@7) Ci(x, )= Ci(x, o) = Y 5;1(6) 5,5(7) Cje(x, 1) -
7 i

Hence the matrices s(o) form a k-dimensional representation of the
multiplicative group of the real numbers. These representations are
well known, a normal form is given in Section 5. Here we only indicate
the general situation for k =1, 2. The scaling law of C, is

Ci(x,om)=0C,(x,1). (1.26)

After a suitable transformation of C,, C, (by a triangular 2 x 2 matrix)
the scaling law of C, becomes either

Cy(x, on)=0"(Igo C (x, n) + C;(x, 1)) (1.27)
or
C,(xon)=0°C,(x7n). (1.28)
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In case of relation (1.27) C, can be written as a linear combination of
C, and another operator Q which satisfies a power scaling law

Cylx,m)=1g)/ —n* +ienoe Cy(x, M)+ Qx,n), &—>+0. (1.29)
The operator Q as defined by (1.29) indeed satisfies

O(x,on) =0 Q(x,1). (1.30)
We further have
O(x, —n)=—0(x,n) if n*<0 (1.31)
and .
Q(x,u)=0 wunless u*=0, uy,=0 (1.32)

where Q denotes the Fourier transform with respect to 7. (1.32) follows
from (1.9) and the corresponding property of the Fourier transform of

Ig)/ —n* +ien,.
It will be shown in general (Section 5) that after a suitable equivalence
transformation the C; are of the form

N
Cilx, n) = ZO (g)/ —n* +ieno)" QP (x,n) e—>+0  (1.33)

where the operators Q" satisfy a power scaling law

QP (x, o) =0 Q(x, ) (134)

and the conditions

0x, —) =0 (x,n) if #*<0 (1.35)
Q~§"’(x, u)=0 unless u?>>=0, uy,=0. ’

As in the case of the operators C; the conditions (1.35) imply that the Q¢
are polynomials in #, for fixed n* # 0.

R
OV, =Y My, T (x,n* —ieno) . (1.36)
r=1

Due to the scaling law (1.34) the T2 ¢ must be homogeneous in }/' —n?
of degree ¢ —r. Therefore

QP (6 m)=(/ =1 +iengf I (x,0)  e=>+0  (137)

where I1{" is a polynomial in the components of

n
I R 1.38

V- n* +ieng (1.38)
(1.33) and (1.37) state the final result that the #°-dependence of the com-
posite operators only involves powers of n* and 1gy2.
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The following sections contain a detailed and rigorous derivation of
this result, generalized to the product of two different fields. Causality
is used in Section 2 to show that the same functions f; may be used in
expanding 4,4, and 4,A4,. This leads to a locality relation of the
composite operators for spacelike 7. Analytic properties of the composite
operators in # are derived in Section 4 which follow from the support
properties of the Fourier transformations (Section 3). After a discussion
of the scaling law (Section 5) the n-dependence is derived in Section 6
by an alternative method which does not make use of the Jost-Lehmann-
Dyson representation.

2. Locality

The general assumption and notations of Ref. [1] will be used
throughout the work that follows. A; and 4, denote linear combinations
of the basic fields Oy, ...,0,. In addition to Wightman’s postulates
Hypothesis 3 of Ref. [1] will be assumed which implies that the operator
product A; A4, of two local field operators A,, A, has the Wilson ex-
pansion

k
A1(X+Q’1)A2(X—Q’1)= Z L(Q)C}Z(xan)+Plc131(xan9Q) ln ‘spxlr](DO) (21)
Jj=1

The functions f; may be chosen to be real, they satisfy

11m f}+ 1(@) — 0
>0 filo) 22)
¢, P12 , ) :
Z)irr(} ( k“f(fg;” 0¥ =0 in ¥, for ®,¥eD,.
- k

The operators C}*(x, ) are local in x for given 5. Another consequence
of locality can be derived from

Ay(x+eon Ay(x —on) = £ A;5(x — on) A;(x +on) 23)
valid in
S!(Dy) for n*<0.

To this end we compare (2.1) with the expansion of 4, 4,

k
Ayx+emAx—em =Y f{@CP m+Bii(xn,0) in (Do), 24)
J=1
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For spacelike # (2.1) and (2.3) yield

k
A;(x+on) Aix—en)= ). fi@(£1) C}?*(x, =) £ Py (x, =1, 0)
j=1
in ‘yxln(DO) H '72 <0 (25)

which is equivalent to (2.4). According to the uniqueness theorem there
must be an equivalence transformation

Jj
ilez(xv —'I)= Z ajj’C}Zl(x>’1)

=1
k
+ P2 i(x, —n,0) =P (x,m 0+ Y hi@Ci*(x,n) (2.6)
=1
. hi0)
a;;+0, lim-—Z
o =0 fi(0)

valid in #,(D,) for n? <0. The functions f; and fj are related by the
asymptotic expansion

=0

29

file= % a;;fi@+ho). 2.7

i=i

An equivalence transformation for (2.4) which is valid for all # may be set
up by using (2.7) and defining

CZl(x ’1 Z a C'ZI(X,H)

Jj=1
k
Pk+ 1(x7 ", Q) I:?l—ll (x7 n, Q) + Z k_)(Q) C;Z l(x’ 1’,) (28)
j=1
in  &,(Dy).

Applying (2.7-2.8) to (2.4) we find
k
Ay(x+on) Ay(x—on)= Y. fil0) C}'(x,n) + P2 (x,n@) in F,,(Dy) (2.9)
Jj=1

as an equivalent form of (2.4). We thus have

Theorem 1. As a consequence of causality the operator products A; A,
and A, A, may be expanded with the same coefficients f;

k
Ax+on) Ayx—en)= Y, fio) Ci*(x,n) + Pl (x,ng) in F;,(Do)
j=1

(@ab=1,2).
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. 12 21
For spacelike n the operators C; “ and C;* are related by

Cit(x, —m)=+C}*(x,n) in &, n*<O0. (2.10)

3. Support Properties

We begin with the derivation of some support properties for the
composite operator C,. For the time being we consider matrix elements
of A,(x + on) A,(x — on) and C5°(xn) between vectors @, ¥ € B. B denotes
the domain of all vectors which can be obtained by applying polynomials
of the basic fields O;(f) to the vacuum where the Fourier transform of
the test functions f has compact support. Since such vectors are of
bounded energy-momentum it will be possible to establish support
properties in momentum space. It is sufficient to take vectors of the
special form

O=Ai(f) ... A(f) Qe B o)
¥=A1(gy) ... Au(9,) Qe B '
where A, A} denote basic fields Oy, ..., O.. We first express
¢ (x, n0) = (P, A(x +on) A,(x—on) ¥) a,b=1,2

by a Wightman function in momentum space. To this end we form the
Fourier integral

1 _, I ~ ~
¢ab(x9 f, Q) = W,{ drl er e Bt ientry rz)(¢’ Aa(rl) Ab(rZ) ql)
) (3.2
= g fdudve™ =0 (p, 4,(r,) Ay(r,) P)
with
V=rytry,  u=g(r—71y)
v v (33)
T2 T 297 P2 297
The Fourier transform of ¢** with respect to # becomes
~ 1 .
¢ (x,u, 0) = Gar [ dne™ ¢ (x, ne)
(3.4

1

= Wj dve*ixv(Q ffa(rl) /fb(rz) ¥)
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inserting the state vectors (3.1) we obtain

~ 1 . ~ o
¢ab(x’ u, Q)= Wjdp dqe—lx(Q_P)fl(pl)"'fn(pn) gl(ql)gm(qm)

WSy, s Sutmer) (3.5)
with

dp=dp,...dp,, dq=dq,..dq,, P=- Y p, Q=Y g;
j=1 j=1

S1=pm S2=_pn—pn—1""’sn:P

(3.6)
S - P+Q L
n+1— 2 2Q
Sn+2=Q’ Sn+3=q2_"'_qms'--,Sn+m+1=—ql'
The Wightman function W is defined by
CAF(= o). A (= py) Aulr) Ay(r3) A{(q)- - An(d)) 47

=46(P+v—-Q) W(S,, oo Spima1)

where translation invariance was used for separating 6(P +v— Q) [6].
A’* denotes the Fourier transform of the adjoint A% (x), i.e.,

A (—p)=Aip)*. (3.8)

According to (3.5-3.7), ¢ is a tempered distribution in u for given x.
Hence ¢ is a tempered distribution in 5. In a similar way translation
invariance can be used to show that

g,n=(2,Ci’(x,n) ¥) & PYeB (3.9)

is a tempered distribution in n only. The relation

4 Ay(x—
(@, C(x, n) ¥) = lim (2, A,(x+om) Ax—en ¥) &, for &, ¥eB
=0 f1(0) (3.10)

may therefore be interpreted as a limit relation of tempered distributions
in 7 at any value of x

ab
e, = lim LM g 3.1
g*(x,n)= lim 7.0 " (.11)
For the Fourier transforms ¢ and
1 .
g (x, u) = fdne™g®(x,n) (3.12)

(2m)?
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we obtain the relation

*ab
(%, 1) = lim 2% % @)

¢=0 f1(o)

The support properties of ¢ follow from the support properties of the
Wightman function (3.7). We obtain

7. (3.13)

% (x,u,0)=0 (3.14)
unless
u+oP+Qev, (3.15)
for at least one vector
P+QeC. (3.16)

The compact set C is given by the conditions
P=—-%p;, Q=+2Zg;
pjesuppf;, q;€suppq;

_ — — (3.17)
-p,eVy, —pi—peV,,...,PeV,
-q.€V., —q,—q:€V,,..,QeV,
(3.13-3.17) then implies that
§°(x,u)=0 unless ueV, . (3.18)

Forifu ¢ V, we can find a value ¢ > 0 such that

u+oP+Q)¢V, forany P+QeC

provided g <.

The result (3.18) can easily be carried over to the general case of the
operator C4°. To this end we form matrix elements of P{* and C{°
between vectors @, ¥ of the form (3.1)

$5°(x,n0) = (P, P{*(x,n0) ¥)
g3 (x, n) = (D, Ci*(x,n) ¥)

N 1 .
P (x,u, 0)= 20 J dne™¢sb(x, no)

(3.19)

1 .
~qb — inu qb
A fdne™gi(x,n).

Using the recursion formulae

¢2°(x, u, ) = fi(0) G2 (x, u) + P22 1 (x, u, 0)
~a . 8(x,u, 0) (3.20)
gjb(x, u)= 2}1_{13 _—fJ(QT__
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we obtain by induction that qg‘}”, g4" are distributions in %, with

§%(x,u)=0 unless ue?, (3.21)
and .
ab(x, u, 0) =0 (3.22)

unless u satisfies (3.15-3.17) or u e V. We summarize the results by the
following
Theorem 2. For given x and vectors @, ¥ € B the matrix element
g5° ¢, ) =(2,C(,m) ¥)  a,b=1,2 (3.23)
is a tempered distribution in n. Its Fourier transform with respect to n
vanishes unless u* 20, uy = 0.
Using continuity in @ and ¥ we obtain the following
Corollary. The Fourier transform §2°(x, u) of
g (x,n)=(®, CG*(x,n) ¥)e &, (324
a,b=1,2, ®ecH, PYeD, '
with respect to n vanishes unless u> =0, uy = 0.

Proof. For @ € B given, (3.24) is continuous in ¥. Hence the statement
follows for all vectors @ € B, ¥ € H. Keeping now ¥ € D,, fixed and using
continuity in @ the theorem follows.

4. Analyticity

In this section we establish some analytic properties of the composite
operators in the variable . We first introduce linear combinations of
C}?, C?* which are even or odd respectively for spacelike #

Csv e (x,n)=C}2(x,n) £ C}(x, 1)
C9¥(x, )= C}*(x,n)F C}(x, 7).

The signs are chosen corresponding to the signs in Eq. (2.9) and (2.10).
Matrix elements between vectors (3.1) are denoted by

g5 (x, m) = (@, C7**"(x, 1) ¥) = g;*(x, ) £ 97" (x, m)

4.1)

- “4.2)
g5 x, 1) = (@, C3*(x, 1) ¥) =g} (x, 1) F g3 (x, ).

For spacelike #

C}even(x’ _ 1,,) — C;ven(x’ 1,,)’ g;ven(x, — 11) = g;ven(x, "I) (4,3)

Cp¥(x, —m)=—C3*(x.m),  g°%x, =)= —g3*(x,n) if n*<0.
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g5 and g3°® have the support properties of Theorem 2 which imply the
following theorem on the analytic continuation of g§ )(x,7) in # (see for
instance Ref. 2, Section 2-3). ) stands for the superscript even or odd.

Theorem 3. The matrix element
95 (x,m)=(®,C’(x,n) ¥) &, PYeB
is the boundary value
9506, 1) = nzliflgo G (x,ny —iny) in &, (4.4)
of an analytic function G{)(x,n) which is regular and bounded by a

polynomial inside the cone —ImneV,.
The functions

G (x, ) = GE(x, —1);  G¥¥(x, )= — G4 (x, — )
are analytic and bounded by a polynomial inside the cone Imne V.
_J§?+0G§’(x,n1—iﬂ2)=ig§ (x, —ny) @5)
=g$(x,n,) for ni<O.
G$)(x, 1) and G\’ (x, n) are analytic at spacelike n and continuations of each

other )
GO (x,n)=G(x,n) for n real and n*<0. (4.6)

Remark. In the preceding theorem and the work that follows an
analytic function F(n) which is regular in F Im# e V. is called bounded
by a polynomial inside this region if there exists a polynomial P,(r)
depending on a four vector u € V, such that

IF ()] = [P,

for any Rey and F Im#n =u+ v withu e V, fixed, ve V, arbitrary.
As a consequence of the Corollary to Theorem 2 we have

Theorem 4. Let w(y) be a function which is the boundary value
win) = lim W, —in,)
n2—>+0
of an analytic function W (n), regular and bounded by a polynomial inside

the cone —ImneV,. Then

w(n) C5* (x, 1)
defines an operator in &, (Dy).

9 Commun. math. Phys., Vol. 24
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Proof. The matrix element
m(n) = | dx s(x) (P, C(x,n) ¥); PeH, YeD,, se (R, (4.7)

is the boundary value
m(n,)= lim M(n, —in,)
n2—+0
of an analytic function M () which is regular and bounded by a poly-

nomial inside the cone — Im#ne V,. Therefore the product w(n) m(y)
is well defined by

win)m(ny) = Hm W, —ins) M, —in,).

Since (4.7) is linear and continuous in @ there exists a vector ¥ with

[ dnu(n) W () min) = (&, P).
The equation

[ dxdn s()uln) CP*x, ) ¥ =¥  ue P(Ry)

defines a linear operator in %;,(D,).

5. Scaling Law
We will make use of the fact that

Pab(xa n, Q) = Aa(x + Qﬂ) Ab(x - Q?])

depends on g and 7 through the product g5 only. For every test function
te 4., we have

P*(t, 0) =P (t,, %) on D,, (5.1
where t, is the test function
t,(x, ) =0"% (x, g—) . (5.2)
(5.1) implies
& oo (e e
Poeo= Y £ 2) e+ ret (r ) 53)
=N\ e c
with

Cahfe) = CP(t,) (54)

J
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Since (5.3) is an equivalent form of the Wilson expansion the uniqueness
theorem implies the scaling law

J
Ch)= Y s;/(0) CP(@) (5.5)
=1
or
j
Ci*(am)= ). s;;:(0) Ci*(n) (5.6)
=1
with real coefficients s;;. Since the matrix elements of C$* between
vectors @, ¥ e B are analytic for spacelike # the functions s;; must be
differentiable.
For the moment we restrict ourselves to the first k composite operators.
We write the first k equations of (5.6) in matrix form

C*(an)=s(a) C*(n) 6.7
with
s;7;, 0 0 ..0 ceb
521 522 O cen O Cgb
s=| 0 e | (5.8)
Sk1 Sk2 Sk3 -+ Skk P
The multiplication law
s(o7) =s(o) s(t) (5.9

follows from the identity
s(o7) C(n) = C(otn) =s(o) s(z) C(n) -

Accordingly s(c) is a k-dimensional, real and differentiable representation
of the multiplicative group of the real numbers. Introducing new com-
posite operators

C=TC T;=0 for j<j
C'(on)=s'(e) C'(n)

by a suitable triangular matrix T the matrices s can be transformed into [ 7]

(5.10)

s; 1 0
0] s,

§'=| — . (5.11)
0jo0o - 0

9%
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where each s ;isan N; x N; matrix of the normal form

1 o o0 . . . 0 0 o
lgo r 0 . . . 0 0 0
1
—lg*¢ lgo 1 . . . 0 0 o
2
=g% . - 16512
1 0 0
Igo 1 0
g% o L,
5~ e = 1
N, —1)! 2 lg°c lgo 1

with real exponents c;.
Itis convenient to relabel the operators C;according to the decomposi-
tion of s’ into submatrices s;

CitssCinys Coeee 5 Cyy, .., Gy, (5.13)
(5.17) may then be broken up into relations
Ciiy(on) =s4(0) Cj(n) (5.14)
with
/Cyy
Co=| :
CJ'Nf

The scaling law (5.14) can be used to continue the matrix element
gn,n=(2,Ci(x,n) ¥) &, ¥eB (5.15)

beyond the domain given in Theorem 3. Since both sides of

1
gitxom= 3 su(0)gir(x,n)
=1
are boundary values of analytic functions in # a similar relation holds for
their continuations
l

G¥(x,om)= Y. s;p(0) GE(x,n) if —ImneV,. (5.16)
1

=

For given 1 both sides of (5.16) are analytic in 6. Hence we find that (5.16)
holds for all values # and ¢ with

—ImneV,, —ImoyeV,. (5.17)
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This allows defining the further continuation
’ n n
qulb(x, n)= Z Sj1(0) Gja,b (x, ;) if — Im;e V.. (5.18)
U'=1

According to (5.12-5.14) the first operator of each subsequence satisfies
a power scaling law

le(x, 0'11)=0'CjCj1(x, n). (519)
We will show in general that every composite operator can be reduced

to operators satisfying power scaling laws. To this end we introduce new
operators Q% by

eh(x,m) =) CEh(x, m) (5.20)

where t;(n7) denotes the matrix

t j(”l)

1
lim () —n*+ie ‘w(———)
e N T (5.21)

{ .

= lim ()/—@n—iu)*) s<—~—)
S, V= (= s V=~

|/ —(n—iu)* is defined in ue V, by continuing from spacelike 7 with
V —n%?>0. According to Theorem 4 (5.20) defines an operator in
Fn(Do). The scaling law of (5.20) immediately follows from (5.9) and
(5.14)
Qh(x, on) =0 Q¢ (x,n). (5.22)

The operators C/ can easily be expressed as linear combinations of the
03
Cixn)= lim (1) —n*+ieno)™ s,/ —n* +ieno) Qi (x 1)

Combining the power scaling law (5.22) with analyticity we will determine
the general form of the operators Q4} in the following section.

6. Composite Operators with Power Scaling Law

In the last section it was shown that composite operators either
satisfy the power scaling law (5.19) in n or can be written as linear com-
binations of such operators. We summarize the properties of these
operators Q4 which have been established so far. The subscripts j,[
will be omitted throughout this section.
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(i) Q°°(x,#) is an operator in F, (D).
(ii) The even and odd parts.
Qeven=Q12iQ21, QOdd=Q12$Q21 (61)
satisfy
o (x, =) =Q7"(x,n) .
0, = — @) T 2

(iii) The matrix element
g 0 =(2,0x,n) ¥) &, ¥YeB (6.3)

satisfies the analytic properties of Theorem 3.
(iv) A power scaling law holds for the operator

QV(x, an)=0°Q"(x,7) (6.4)
and the continuations of the matrix element (6.3)

GO(x,on)=0°G(x,n) —ImneV,, —ImoneV,. 65)
GO(x, on) =06°G(x, 1) ImyeV,, ImoneV,. )

Using this information we will first investigate the n-dependence of
the matrix elements (6.3).

6a. Directional Dependence of Matrix Elements

The following theorem states that the function G*® is a polynomial in
n apart from a power of 2.

Theorem 5. The function G is of the general form

G(x, 1) = ()/ = ) I1°° (x, l/%) (66)

where I1*°(x, {) is a polynomial in the components of the four vector (.

For the proof we first list some properties of the function
DY(x,m)=(—n*) G(x,n) (6.7)

which immediately follow from the corresponding properties of G' .
Here f is a real number, (—#5?)” denotes the continuation of the positive
values at spacelike # into the regions — Imn eV, and Imne V..

(i) DY is analytic and bounded by a polynomial in —Imne V..
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(ii) The functions
D5 (x, n) = £ DF (x, —m) = (= G*** (x, 1) 68)
are analytic and bounded by a polynomial in Imn e V...
(iii) For spacelike # the functions D, and D ; coincide

DY(x, n)=D(x,n) if n realand n><0. 6.9)

From property (i) we obtain (Theorem 2-8 of Ref. [2]) that D} is a
Laplace transform

1 ) e
DY(x,ny —iny) = W[ e~ ipm=ind 40 (x, p)dp (6.10)
provided #, € V. From (ii) we find
ls(f)(x,'h + irlz) (2 )2 je—lp(ﬂ1+lﬂz) d() (x p) dp (6.11)

with 7, € V. d} (x, p) are tempered distributions in &'p and have the
support properties

ci(fl (x,p)=0 wunless pe I? 6.12)
d-(x,p)=0 unless peV_.

According to Theorem 2-9 of Ref. [2] the limits of (6.10) and (6.11) for

n,— +0 are
'lzlgll D( (x, 1 —iny) =d' (x,m,)
(6.13)
= WV‘“’”‘ dP.(x,p)dp in ¥,

hm DY(x, 1, +in,) = d$- (x,1,)

n2—+

(2 i fe‘””“d‘)(x p)dp in ¥, .

Our aim is to choose f such that D} = D) for # real and #? #0. To this
end we form

Geven(x, ’,’)
Hi(x, ) = D" (x, 1) = ———.
I(x V]) - (X ’1) (l/_—’z)c
(6.14)
G*%(x, 1)

Hn(xﬂl) D r+1(xa’7)_" l/——‘)H_l

Hm)=H(-n, Hyn)=—Hy(—n) (6.15)
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with the boundary values
hIi _ dev:n , h“’ L= dodd . (616)
+

_ﬁ_,+

2’7 2

The scaling law then takes the form

Hy(x, an) = Hy(x,7), 6.17)

Hy (s, on) = = His, ). 6.18)

(6.17) implies that H;(y) is analytic for timelike # and satisfies

Hi(x, —n)=H(x,n) if neV,. (6.19)

For the proof we form
Hy(x, on) (6.20)
with
nevV,, o=re’’®, r>0, O0<¢<m.

Then o7 lies in the regularity domain
—Im(en)eV, .

Due to (6.17) the expression (6.20) is independent of ¢ which shows that
H, is regular at n € V... Taking the limit ¢ —0 and ¢ — = of (6.20) we find
(6.19). Combining (6.9) and (6.19) we get

Hi(x,n)=H(x,n) if n realand n*>+0. 6.21)

Similarly for Hy
Hy(x,n)= —Hy(x,n) if neVy, (6.22)
Hy(x,n) = Hy(x,n) if n realand #%+0. (6.23)

As a consequence of (6.21), (6.23) the boundary values from above and
below agree for all real  except n* = 0:

Al(xa 11) = hl+(x> 11) - hI*(x’ ’1) =0

if 112 +0. (6.24)
Ay(x, 1) = hy 4 (x, ) — by - (x, 1) =0

Now we use the following lemma which is proved in the appendix.

Lemma. Let D(n) e y'(R,) be a distribution vanishing for n* 0. Then
there exists an integer k such that (— %) D(y) =0. If D(y) is bounded in
the norm || ||,, any integer k > |s| will do.
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As an immediate consequence we have, finally

(=n?)™ Ai(x, ) =0

(6.25)
(=)™ Ay(x,n) =0
for some positive integers my, my;.
We next form
Ey(x,n)= (= n*" Hy (x, 1) = D" (x,)
i (6.26)
Ey(x, )= (—n*)y™ Hy(x, 1) = D:ll]d_ﬂ (x,m).
2
We denote the boundary values by
e+ = dewj‘i Lo = d:id_ o+l o (6.27)
1 2 1 2
From (6.25) it follows
ey () =e;-(n) (6.28)

ens(m)=ey_(n).

éHm=e5p), (6.29)

where () stands for the subscript I or II. Since ey has support in V., and
e(, has support in V_ we get

é5(p)=0 unless p=0. (6.30)

Hence

Therefore, the Fourier transform e ,(x,n) must be a polynomial in #.
On the other hand the scaling law

El(xa 077) = ozm‘El(x, '7)

. (6.31)
Ey(x, on)=0>"n" " Ey(x, )
implies
)= (/= (v )
1 (6.32)
Ey(x,n)=(/— n?)? " Ey (x’ VLZ ) :
-n
Thus
Hy(x,n) =E, (x, %)
Vi=n (633)

1 n
I{II(x> ’1) = l/:ﬂz EII (x, = 7’2 )
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and

6=/ E; (5,

(6.34)

G4t =/ =P [ . )
This leads to Eq. (6.6) of Theorem 4 with

H12=%(E1iEn)a H21=%(E1$En)~

6b. Directional Dependence of the Operator
In the last section we have seen that every matrix element

(@,0%(xn)¥Y) &,¥eB

is a polynomial in apart from a factor (J/ —n?)". We proceed to

— ,12
establish a similar property for the operator Q“°. To do this we must
verify that the degree of the polynomial IT°° is uniformly bounded for
all x and @, ¥ € B.

The proof depends essentially on the following theorem, which is

proved in the article [8] by Simon (Th. 11) and in Ref. [9].

Theorem (uniform boundedness). Let D(o;n) be a family of distribu-
tions in & (n) parameterized by a, and such that for every testing function
u(n) there exists a real number M (u) with

|f dn D(o; ) uln)l < M(u). (6.35)
Then the family D(a;#) is uniformly bounded:
|f dn D(e; ) u(n)l < M |ull,, (6.36)

for some norm || |, o finite number M, and every testing function u(n).

In order to use this theorem we construct 4 as in the last section and
indicate the dependence on @, ¥, x explicitly

e=>+0

: 1 even __()even _
Ay(x,n; D, ¥)= lim *VW(‘D,(Q (x,n)— Q% "(x, — 1)) ¥)

1
. =1 odd odd _
A5 @ 1) =l < e (80 Gom) + 02 n)()6¥’3)7)
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consider A4 (x,n; ®, ¥) as a family of distributions parameterized by @
for fixed ¥, use the continuity in @ (for fixed ¥ and testing function
u(x,n) € %, to bound the family for fixed u, then appeal to the uniform
boundedness theorem to obtain

1
TM’HI dx dnu(x,n) A,(x,n; D, ) M (V) [ull, ), 5wy - (6.38)
By the lemma of Section 6a this implies (since 4, , =0 for n? % 0) that

M2y 4(\(x,n; @, ¥)=0. (6.39)

Finally, locality in x is used to remove the ¥Y-dependence of m,(¥) and
so complete the task. The details are as follows.
For every @ € B, and testing function u(x, n) e <,

jd?’[ dx A()(x,ﬂ;CD, ‘P)u(x,n) YeB

is an inner product (&, ¥) (because of Theorem 4) and is thus continuous
(or equivalently, bounded) in @:

If dndx A¢\x,n; ®, ) ulx, n)| < M(¥,u) | D]l ; (6.40)
thus by the uniform boundedness theorem (6.38) and (6.39) are established

and it remains only to remove the ¥-dependence of m (). To resolve the
last problem we choose the vacuum Q for the vector ¥. Then

) ) (—’12)"'"(9)4()(36, n;0,¥)=0
implies
N, n) Q=0 (6.41)

where N, denotes one of the operators

Mo =(=m)™ * (C™ 0o =6 =)

Nalx,m)= (=) 2 (C™(x, )+ C(x, — 1)
(@, Ny (x, ) )= (=n*y"0 =D 4)(x,n; D, P).
Since N, is local in x relative to the basic fields O;
[N, 0;(]s=0 on D, if (x—y?*<0
the relation (6.41) necessarily implies [10]

Niy(x,n)=0. (6.43)
Hence
(-—112)'"(>A()(x,11;d>, Y)=0 o,¥eB (6.44)
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where m, , is independent of x, @ and ¥. Thus the degree of I1°” in (6.6) is
uniformly bounded for x and &, ¥ € B

(®,07(x,n) ¥)= lim () —n* +ieno) I*(x,(, D, ¥)

(=

V —n*+ien,
Smearing out in x and 5 with a test function of ., and using con-
tinuity of the left hand side in ¥ for @ € B given we can extend (6.45) to
vectors @€ B, ¥ € Dy. Keeping ¥ € D, fixed and using continuity in ¢
we can further extend (6.45) to vectors @€ H, ¥ e D,. It is then not
difficult to verify that the coefficients of H*® represent matrix elements

of field operators.
We summarize the results of this Section in

(6.45)
&, YeB; degrlI’®<N.

Theorem 6. The operator Q4 has the general form

Qe )= lim_ (/= n* +ieno) s S Cur L Q00

n=1 o (6.46)
n

B |/ —112+i8110 '

The coefficient Q4i#(x) is an operator in &.(D,). Under inhomogeneous
Lorentz transformations Q3**+*» follows the usual transformation law
of a tensor of rank n. The operators Qi"*~*#» are local relative to each
other and relative to the basic fields.

Combining this theorem with Eq. (5.23) we have as final result

Theorem 7. Forn? =0 given, the composite operators C i(x, n) appearing
in the Wilson expansion

h
A x+on) Ay(x—on)= Y, fi(0) C:(xn)+ Py 1(x,m,0) (647)
i=1

are polynomials in the components of 11/[/——112 . By a suitable equivalence
transformation the Wilson expansion (6.47) can be brought into the form

Aleronat—en= 3 0 Chen+Reme) (645)

where the composite operators may be written as
Ciple,m) = lim (1/—n? +ieno)™ s,()/ —n? +ieno) QEf(x. ).

The N; x N; matrix s; is given by (5.12). The general form of the operators
4P was stated in Theorem 6.
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Appendix
I: Proof of the Lemma, Section 6a.

Statement. Let D(y) be a distribution in &'(R*), with D(n)=0 for
n2#+0, and with jdn Dn)u(n) <M ||u|,,, for each testing function
u(n) e S (R*). Then for each integer k > |s|, (n*)* D() =0.

Proof. || |,, denotes the norm |lul,,= ) suply*diul|. Let ve #(R)
laj<r M
1Bl <s
be such that v(y)=1 for |y| < 3 and v(y) =0 for |y| > 1; since D vanishes

for n2 40, one has for real b > 0 and each testing function u that

| dn D(n) (n*)* u(n) = | dn D(n) () uln) v(n*/b). (A1)

However, when k > s, we claim that given a real ¢ > 0 one may pick b >0
such that |(#?)* v(n?/b) u(n)|l,; < &/M; thus the right hand side of (A.1)
vanishes and the statement is proved. The claim may be verified as
follows: ||(2)* u(n) v(n?/b)||,, is @ sum of terms of the form

sup|(n' iy u(m) ((1*)~* g (n?*/B)) 6™
< (sup ' dy u()l)sup ¥ g (/D) b7 K+ k'S5
each of which may be made arbitrarily small

supb™ | * g* (n? /b)| =b* " T sup [(0F T g7 (1))
n t

Corollary. Since every distribution is bounded in some norm | ||, it
follows that for every D(n) e &'(R*) vanishing for n* + 0, there exists an
integer k with (n*)* D(y) =0.

This corollary is sufficient for the purpose of Section 6a; Section 6b
strictly speaking requires the stronger result (which may be proved
analogously):

Corollary. Let D(x;n) be a distribution in &'(Rg) bounded in some
norm | |, and vanishing for n? +0; then (n?)* D(x, %) =0 for k > s.
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