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Abstract. The Wilson expansion of the field operator product A1(x1)A2(x2) m a v be
used to define composite operators which are local with respect to ̂ (xλ + x2) and depend
in addition on a vector η proportional to the distance x1—x2.ltis proved that the com-
posite operators are polynomials in η, for fixed η2 Φ 0, and that their dependence on η2

only involves powers of η2 and Igη2.

1. Introduction

The composite operators associated with the formal product
At(x) A2(x) of two fields may be conveniently defined as the operators C7

appearing in the Wilson expansion

k

A1(x1)A2{x2) = Σ

xί=x + ρη,

where the coefficients fj satisfy

% ^ P^^0. (1.2)Hm% 0̂, l im^^0.

In a recent paper [1] the expansion (1.1) was derived from general assump-
tions, and the operators C7 were shown to be local in x.

The operators C, depend on the vector x of the center-of-mass point
and an additional four vector η proportional to the distance of the
arguments xx and x2. The dependence on η is related to the directional
dependence of composite field operators. This can be seen by setting

* This work was supported in part by the National Science Foundation Grant
No. GP-25609.
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in (1.1). The Wilson expansion then takes the more familiar form

j \ j 7 (1.3)

where the composite operators CΊ depend on x and the direction
n = ζ/\/r-~ζ^ of the difference vector ξ.

The purpose of this paper is to completely characterize the ̂ -depend-
ence of the operators Cj9 using only the Wightman postulates [2]
together with the additional assumptions of Ref. [1]. In particular, it
will be shown that for fixed η2 φ 0 the operators Cj are polynomials in
η, as one should expect from renormaUzed perturbation theory. Moreover
we find that the dependence on η2 only involves powers oϊη2 and lg^2.

In this introduction we shortly sketch the proof of the main theorem
for the composite operators which appear in the expansion of A(x -f- ρη)
A(x - ρη). The rigorous treatment, as well as the generalization to the
product of two different operators, will be given in Section 2-7.

The local operators C, are recursively constructed by [1]

Pi(x> n, 0) - Λ(x + ρη) Λ(x - ρη)

Pj(χ, η, ρ) - fj(ρ) Cj(x, η) + PJ+1(x, η, ρ) (1.4)

For the Fourier transforms

H*>"' β) = -T^rf dηe>"P{χ,η, ρ)

(1-5)

we have
Pj(χ, u, ρ) ̂  fj(ρ) Cj(x, u) + Pj+1(x, u, ρ)

= i i m r ^ ( 1 6 )

Let Φρ, Ψα be eigenvectors of the energy-momentum operator with
eigenvalues pμ or qμ respectively. The energy-momentum eigenvalues r
of an intermediate state is related to p, q, u by
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Therefore
(Φp,P1(x,u,Q)Ψq) = 0 unless w 2 ^ 0 , w o ^ 0 . (1.7)

Dividing (1.7) by /i(ρ) and taking the limit ρ-»0 we find

(Φp9C1(x9u)Ψq) = 0 unless w 2 ^0, u o ^ 0 . (1.8)

Repeated application of this argument to the recursion formulae (1.6)
leads to

(Φp9Ck(x,u)Ψq) = 0 unless u 2 ^ 0 , UO^0 .

By linear superposition of the vectors Φp and Ψq we obtain

(Φ,Ck(x,u)Ψ) = 0 unless u 2 ^ 0 , UO^0 (1.9)

for arbitrary matrix elements. (For a rigorous formulation see Theorem 2
and Corollary of Section 3.)

The causality condition

lA(Xl)9A(x2)]=0 if (xi-x2)
2<0

implies

P1(x9-η9ρ) = P1(x9η9ρ) if */ 2<0. (1.10)

Dividing (1.10) by /i(ρ) and taking the limit ρ -»0 we get

C1(x,-η) = C1(x9η) if f ; 2 <0.

Using the recursion formulae (1.6) the relation

Cj(x9-η) = Cj(x9η) for ^ 2 < 0 (1.11)

follows by induction. This implies that the matrix element

f(η) = (Φ9 (Cj(x9 η) - Cj(x9 - η)) Ψ) (1.12)

vanishes for spacelike η,

/(ι/) = 0 if η2<0. (1.13)

The Fourier transform

f(u) = (Φ9 (Cj(x9 u) - Cj(x9 - u)) Ψ) (1.14)

vanishes for spacelike u

/(u) = 0 if w2<0 (1.15)
as follows from (1.9). Because of (1.13) the Jost-Lehmann-Dyson re-
presentation [4] may be used to write

f(u) =]dκ2$ du'σ(x9 u - u\ κ2) Δ(u\ κ2). (1.16)
o
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The spectral function σ(x, v, κ2) vanishes unless the hyperboloid
(u — v)2 = κ2 lies in the region u2 ̂  0 (where / may be different from zero).
Hence σ is non-vanishing only at the origin v = 0, and so

σ = I a'»'~»«(x9κ
2)dμί...dμmδ{v). (1.17)

m = l

With this result / becomes

f(μ)= Σ ] dκ2a'ί* »»(x9κ
2)dμι...dμmA(μ9κ

2). (1.18)
m = l 0

For u0 > 0 we have

(Φ,Cj(x,u)Ψ)= Σ fdιcV1- f t"(x,ιc2)3μi...5μmi+(f4ic2) (1.19)
m = l 0

since
f(u) = (Φ,Cj(x,u)Ψ) if M0>0. (1.20)

For u0 < 0 or u 2 < 0 both sides of (1.19) vanish. Hence (1.19) is valid for
all u except u = 0. Therefore

(Φ,Cj(x,u)Ψ)= Σ J i κ 2 β ' " Λ - ( x > κ 2 ) δ | l i . . . a μ i + ( « , κ 2 )
m=1

ίV° (1.21)

The Fourier transform of (1.21) with respect to u yields

{Φ,Cj{x,η)Ψ)=Yjηei...ηert«-e'(x,η2-iεη0), ε ^ + 0 . (1.22)

This is the statement that the matrix elements of the composite
operators C, are polynomials in η9 for fixed η2 φ 0. It should be noted that
the proof just outlined goes through under much weaker conditions.
It is not necessary to assume relation (2.15) of Ref. [1] which excludes
oscillations for ρ ->0. Instead the hypotheses of Ref. [1] may be formulated
in reference to a particular sequence ρn with

limρw = 0.
n-* oo

The Wilson expansion and the recursive construction of composite
operators then hold with respect to this sequence which suffices for the
derivation of (1.22).
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In Section 6 b it will be proved that the degree of the polynomial (1.22)
stays bounded when the states Φ and Ψ are varied. This shows that also
the operator Cj is a polynomial in η, for η2 Φ 0 given.

Finally we examine the dependence of Cj on η2. A characteristic
property of the composite operators is that they obey simple transforma-
tion laws under the scaling transformation

In order to obtain the scaling law we write the expansion (1.1) in the
equivalent form

A(x + ρη) A(x — ρη) = A x, -\ ση I A x, ση

= .Σ Si ( 7 ) Cj(x> <"f) + n +

According to the uniqueness theorem the operators Cj(x9 η) and Cj(x9 ση)
must be related by a transformation of the form [5]

Cj(x,ση)= Σ sJf(σ)Cf(x,η). (1.24)

The triangular, real k x k matrices

s(σ) = \\sir(σ)\\ ; ,/ = l , . . . , / c

satisfy the multiplication rule

s(στ) = s(σ)s(τ) (1.25)

as follows from the identity

£ sjr(στ) Cr{x, η) = C/x, στ»|) = £ sβ{σ) slf{τ) Cf{x, η).

Hence the matrices s(σ) form a fc-dimensional representation of the
multiplicative group of the real numbers. These representations are
well known, a normal form is given in Section 5. Here we only indicate
the general situation for k = 1,2. The scaling law of Q is

Cί(x,ση) = σc>Cί(x,η). (1.26)

After a sui table t r a n s f o r m a t i o n of Cί9 C2 (by a t r i a n g u l a r 2 x 2 matr ix)
t h e scaling law of C2 b e c o m e s e i ther

C2(x, ση) = σ^lgσC^x, η) + C2(x, η)) (1.27)
or

C2(xση) = σC2C2(xη). (1.28)
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In case of relation (1.27) C2 can be written as a linear combination of
Cί and another operator Q which satisfies a power scaling law

C2(x, η) = l g l / ^ + ififJoCiίx, i/) + β(x, i/), e-> + 0. (1.29)

The operator Q as defined by (1.29) indeed satisfies

Q(x,ση) = σeίQ{x,η). (1.30)
We further have

β(x,-ι/)=-β(x,ι/) if */2<0 (1.31)
and

β(x,w) = 0 unless w 2^0, wo^0 (1.32)

where Q denotes the Fourier transform with respect to η. (1.32) follows
from (1.9) and the corresponding property of the Fourier transform of

/

Cj(x,η) =

where the operators

and the conditions

N

Σ o

satisfy

Qΐ\χ,

η2 + iεη{

a power scaling law

It will be shown in general (Section 5) that after a suitable equivalence
transformation the C, are of the form

: ^ + 0 (1.33)

(1.34)

Qf)(x,u) = 0 unless w 2^0, w o ^0.

As in the case of the operators Cj the conditions (1.35) imply that the gy°
are polynomials in η, for fixed η2 Φ 0.

R

r=l

Due to the scaling law (1.34) the Tβί—Qr must be homogeneous in j/^f 2

of degree c — r. Therefore

Qf\x9 η) = (V-V2 + mo)cΠf\x, 0 e - + 0 (1.37)

where i7jw) is a polynomial in the components of

C=7r=7— (1.38)
}/-ηz + ιεηo

(1.33) and (1.37) state the final result that the ̂ -dependence of the com-
posite operators only involves powers oϊη2 and lg^2.
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The following sections contain a detailed and rigorous derivation of
this result, generalized to the product of two different fields. Causality
is used in Section 2 to show that the same functions /• may be used in
expanding A±A2 and Λ2Aί. This leads to a locality relation of the
composite operators for spacelike η. Analytic properties of the composite
operators in η are derived in Section 4 which follow from the support
properties of the Fourier transformations (Section 3). After a discussion
of the scaling law (Section 5) the ^-dependence is derived in Section 6
by an alternative method which does not make use of the Jost-Lehmann-
Dyson representation.

2. Locality

The general assumption and notations of Ref. [1] will be used
throughout the work that follows. A± and A2 denote linear combinations
of the basic fields Ol9...9Oe. In addition to Wightman's postulates
Hypothesis 3 of Ref. [1] will be assumed which implies that the operator
product AXA2 of two local field operators AUA2 has the Wilson ex-
pansion

£ ; 1(χ,fJ,ρ) in ^',(D0) (2-1)

The functions f} may be chosen to be real, they satisfy

= 0

(2.2)

(ρ)
lim ^ + # ^ 1 = 0 in <rx, for Φ,ΨeD0.

The operators Cj2 (x, /̂ ) are local in x for given ̂ . Another consequence
of locality can be derived from

Ax(x + ρη) A2(χ -ρη)=± A2{x - ρ f/) ^ ( x + ρη) (2.3)

valid in
S%(D0) for η2<0.

To this end we compare (2.1) with the expansion oΐA2Aί

k

x-Qtύ= Σ fj(e)Cj21(x,frHίΐl\(x9η9ρ) m 4%n(D0). (2A)
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For spacelike 77 (2.1) and (2.3) yield

A2(x + ρη)Aί(x-ρη) = £ fj(ρ) (± 1) C}2(x, -η)±Pk

ίϊί(x, -η, ρ)

in <rxη(D0), η2<0 (2.5)

which is equivalent to (2.4). According to the uniqueness theorem there
must be an equivalence transformation

±Cj2(x, -η)= £ ajrC'j21{x,η)
j ' = i

Σ hj(e)Cj21(x^) (2.6)

valid in ί^',φo) for >;2 < 0. The functions /} and /j are related by the
asymptotic expansion

Λ(β)= Σ <WHe)+M<?) (2 7)

An equivalence transformation for (2.4) which is valid for all η may be set
up by using (2.7) and defining

Cjί(x,n)= t ajrC'j21(x,η)

in ^ , ( D 0 ) .

Applying (2.7-2.8) to (2.4) we find

A2(x + Qη)A1(x-Qη)=Σfj(Q)Cj1{x,η) + Pi1{x9ηQ) in ^ ( A , ) (2.9)

as an equivalent form of (2.4). We thus have

Theorem 1. Asa consequence of causality the operator products AXA2

and A2Aγ may be expanded with the same coefficients fj

Aa(x + ρη)Ab(x-ρη)= £ fj(Q)qb(x9η) + P£b

+1(x9ηρ) in S%η(D0)



Composite Field Operators 115

For spacelike η the operators Cj2 and C21 are related by

C21{x,-η)=±C}2{x,η) in <^, η2<0. (2.10)

3. Support Properties

We begin with the derivation of some support properties for the
composite operator C1. For the time being we consider matrix elements
of Aa(x + ρη) Ab(x — ρη) and Clh{xη) between vectors Φ9Ψ EB.B denotes
the domain of all vectors which can be obtained by applying polynomials
of the basic fields Oj(f) to the vacuum where the Fourier transform of
the test functions / has compact support. Since such vectors are of
bounded energy-momentum it will be possible to establish support
properties in momentum space. It is sufficient to take vectors of the
special form

Φ = A'1(fι)...A'n(fn)ΩeB

where A'}, A'- denote basic fields Ox,..., Oc. We first express

φab(x, ηQ) = (Φ, Aa(x + ρη) Ab{x - ρη) Ψ) a,b = 1,2

by a Wightman function in momentum space. To this end we form the
Fourier integral

φa^x,η,ρ)=-7^τΓίdr1dr2e-i^+^-i^-^(Φ,Aa(r1)Ab(r2) Ψ)

(3.2)

with
v = rί+r2, u = ρ(r1-r2)

_ v u v u (3-3)

The Fourier transform of φab with respect to η becomes

φab(x, u, ρ)= 2 J dηeιηuφab(x, ηρ)

(3.4)
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inserting the state vectors (3.1) we obtain

•W{S1,...,Sn+m+1) (3.5)
with

n m

dp = d p ί . . . d p n , d q = d q ί . . . d q m , P = ~ Σ P p Q = Σ Qj
7=1 j = l

Sl=Pn> $2= -Pn-Pn-U -.-,Sn=P
ί J.Ό)

u

The Wightman function PF is defined by

<A^-pn)...An-Pi)Λa(rί)Ab(r2)Al(qί)...A^qm)}

= δ(P + υ-Q)W(Sl9...,Sn+m+1)

where translation invariance was used for separating δ(P + v — Q) [6].
A'j* denotes the Fourier transform of the adjoint Af(x)9 i.e.,

A'fi-pjϊ^A'jipj)*. (3.8)

According to (3.5-3.7), φ is a tempered distribution in u for given x.
Hence φ is a tempered distribution in η. In a similar way translation
invariance can be used to show that

gab(x,η) = (Φ, Cί*(x,»,) ¥0 Φ ^ G S (3.9)

is a tempered distribution in η only. The relation

(Φ,C?(x,η)Ψ)=\im±^-^
β-0 Jl{ΰ) ( 3. 1 0 )

may therefore be interpreted as a limit relation of tempered distributions
in η at any value of x

*" '" —\ i n cp ( 3 1 1 )

For the Fourier transforms φ and

•g""(x,η) (3.12)
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we obtain the relation

φ < " i X l < ρ ) in !TU. (3.13)

The support properties of φ follow from the support properties of the
Wightman function (3.7). We obtain

φab(x,u9ρ) = 0 (3.14)
unless

u + ρ(P + Q)eV+ (3.15)
for at least one vector

P + QEC. (3.16)

The compact set C is given by the conditions

P=-Σpj9 Q=+Σqj

Pj E supp/;, qj e suppqj

-P1EV+9 -pί-p2EV+,...,PEV+

-q1eV+, -qi-q2EV+,...,QEV+

(3.13-3.17) then implies that

gab(x, u) = 0 unless u E V+ . (3.18)

For if u φ V+ we can find a value ε > 0 such that

u + ρ(P + Q)φV+ for any P + QEC

provided ρ ̂  ε.
The result (3.18) can easily be carried over to the general case of the

operator Cf. To this end we form matrix elements of Pfb and Cf
between vectors Φ, Ψ of the form (3.1)

Φajb(x> u, ρ) = η^rldηe^φfix, ηρ)

0j"(x>«) = T Λ Γ ί dη e"*tf{x, η).

Using the recursion formulae

φfix, u, ρ) = fj(ρ) gf{x, u) + φf+ .(x, u, ρ)
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we obtain by induction that φ]h, g)h are distributions in «Ŝ ' with

gγ(x9u) = 0 unless ueV+ (3.21)
and

φajb(x9u9ρ) = 0 (3.22)

unless u satisfies (3.15-3.17) or u e V+. We summarize the results by the
following

Theorem 2. For given x and vectors Φ,Ψ eB the matrix element

g?{x, η) = (Φ, C?(x, η) Ψ) a, b = 1,2 (3.23)

is fl tempered distribution in η. Its Fourier transform with respect to η
vanishes unless u2 ^ 0, u0 ^ 0.

Using continuity in Φ and Ψ we obtain the following

Corollary. The Fourier transform glb(x, u) of

ga

k

b(x, η) = (Φ, Cf(x, η) Ψ) e ^

0,6 = 1,2, ΦeH, Ϊ Έ D "

wΐί/i respect to η vanishes unless u2 ^ 0, w0 ̂  0.

Proof. For Φ e β given, (3.24) is continuous in !F. Hence the statement
follows for all vectors ΦeB, ΨeH. Keeping now ΨeDo fixed and using
continuity in Φ the theorem follows.

4. Analyticity

In this section we establish some analytic properties of the composite
operators in the variable η. We first introduce linear combinations of
Cf2, C21 which are even or odd respectively for spacelike η

η)

η).

The signs are chosen corresponding to the signs in Eq. (2.9) and (2.10).
Matrix elements between vectors (3.1) are denoted by

gγ**{x9 η) = (Φ, q™(x, η) Ψ) = g}2(x, η) ± g)\x, η)

gfd(x, η) = (Φ, Cfd(x, f,) ψ) = g}2(x9 η) + g)\x, η).

For spacelike η

Cp»(x, -η) = C?™(x, η), ^ » ( χ , - η) =

if ?/2 < 0.
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gγen and g°dd have the support properties of Theorem 2 which imply the
following theorem on the analytic continuation of g\ \x9 η) in η (see for
instance Ref. 2, Section 2-3). ( } stands for the superscript even or odd.

Theorem 3. The matrix element

g^(x9η) = (Φ9q\x9η)Ψ) Φ, ΨeB

is the boundary value

flfj)(x,ι/1)= lim q\x,ηί-iη2) in Sf'Άl (4.4)
ί/2-^ + 0

of an analytic function Gγ(x,η) which is regular and bounded by a
polynomial inside the cone — Imf/ e V+.

The functions

Gf en(x, η) = G™n(x, - η) Gf d(x, η)=- G]dd(x, - η)

are analytic and bounded by a polynomial inside the cone Imη e V+.

lim Gj )(x,ηί-iη2)=±gij \x9 -η±)
-η2^ + 0 (4.5)

= 9ij)(^rji) far ηl<0.

G{j \x9 η) and Gj }(x, η) are analytic at spacelike η and continuations of each
other

Gj >(x, η) = G]}(x9 η) for η real and η2 < 0 . (4.6)

Remark. In the preceding theorem and the work that follows an
analytic function F(η) which is regular in + Imη e V+ is called bounded
by a polynomial inside this region if there exists a polynomial Pu(η)
depending on a four vector ueV+ such that

\F(η)\£\Pu(η)\

for any Re77 and + lmη=u + v with ueV+ fixed, veV+ arbitrary.
As a consequence of the Corollary to Theorem 2 we have

Theorem 4. Let w(η) be a function which is the boundary value

w(η±)= lim W(η1-iη2)

of an analytic function W(η\ regular and bounded by a polynomial inside
the cone — Im^ e V+. Then

w(η)Cf(x,η)

defines an operator in S^η(D0).

9 Commun. math. Phys., Vol. 24
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Proof. The matrix element

m(η) = jdxs(x)(Φ, C£b(x,η)Ψ); ΦeH, ΨeD0, se ^(R4) (4.7)

is the boundary value

m(η1)= lϊmQM(ηί-iη2)

of an analytic function M(η) which is regular and bounded by a poly-
nomial inside the cone — lmηeV+. Therefore the product w(η)m(η)
is well defined by

wθ?i) yn{η^) = lim W(η1 — iη2) M(ηt — iη2).

Since (4.7) is linear and continuous in Φ there exists a vector Ψ with

j dηu(η) W(η) m(η) — (Φ, Ψ).
The equation

j dx dη s(x) u(η) Cf (x, η)Ψ=Ψ ue Sf(R4)

defines a linear operator in ^χη(D0).

5. Scaling Law

We will make use of the fact that

Pab(x, Ά, Q) = Λa(x + ρη) Λb(x - ρη)

depends on ρ and η through the product ρη only. For every test function
t e £fγn we have

,,-M on Do, (5.1)

where tσ is the test function

tσ(x,η) = σ~4tU^\. (5.2)

(5.1) implies

Pa% Q) = Σ fj (—) c ; 5 w + p & i (*.> —) (5 3)

with
C ί(ί) = Cy fc(ίσ). (5.4)
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Since (5.3) is an equivalent form of the Wilson expansion the uniqueness
theorem implies the scaling law

or

#W= Σ sjr(σ)Cf(t)
J " = l

Cf(ση)= Σ sjr(σ)Cf(η)

(5.5)

(5.6)

with real coefficients sjr. Since the matrix elements of Cf between
vectors Φ,ΨeB are analytic for spacelike η the functions sjr must be
differentiable.

For the moment we restrict ourselves to the first k composite operators.
We write the first k equations of (5.6) in matrix form

Cab(ση) = s(σ) Cab(η) (5.7)

with

x o o ... o\ /CΫX
« s7? 0 ... 0

S =

Sk2 Sk3 ••• sk

C'ab „_

C ab
2

(5.8)

(5.9)
The multiplication law

s(στ) = s(σ) s(τ)

follows from the identity

s(στ) C(η) = C(στη) = s(σ) s(τ) C(η).
Accordingly s(σ) is a A -dimensional, real and differentiable representation
of the multiplicative group of the real numbers. Introducing new com-
posite operators

n

ί Γ = 0 for ?</
JJ J J (5.10)

) = s'(σ)C(η)
by a suitable triangular matrix T the matrices s can be transformed into [7]

s =

/'I

0

0

0

s2

0
(5.11)

ok /
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where each Sj is an Nj x JV, matrix of the normal form

/ i
' lgσ

ilg2σ

0

1

lgσ

0 . .
0 . .

1 . .

0

0

0

0
0

0

0

0

0

1

lgσ

1 1 2

T 8

0
1

lgσ

0

0

1

(5.12)

\(Nj-l)\

with real exponents Cj.
It is convenient to relabel the operators C according to the decomposi-

tion of sf into submatrices Sj

Cii> •••> CINI I C 2 i . . . C B l , . . . ,C B j V n (5.13)

(5.17) may then be broken up into relations

CU)(ση) = sj(σ)C{j)(η) (5.14)

with

The scaling law (5.14) can be used to continue the matrix element

tfk(x, η) = (Φ, C#(x, η)Ψ) Φ,ΨeB (5.15)

beyond the domain given in Theorem 3. Since both sides of

gji(x>°η)= Σ sjιv(σ)βjv(x>i)
l' = ί

are boundary values of analytic functions in η a similar relation holds for
their continuations

GJf(x, ση) = Σ sjlv(σ) Gf?(x, η) if - Ίmη e F + . (5.16)
v = i

For given η both sides of (5.16) are analytic in σ. Hence we find that (5.16)
holds for al] vaJues η and σ with

- \mη e V+ , - V+ . (5.17)
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This allows defining the further continuation

<#(*, η) = Σ SjivW GΫ U~) i f -lm-eV+. (5.18)

According to (5.12-5.14) the first operator of each subsequence satisfies
a power scaling law

Cn{x,ση) = σ*'Cn(x9η). (5.19)

We will show in general that every composite operator can be reduced
to operators satisfying power scaling laws. To this end we introduce new
operators Qjj by

Q%(x,η) = tj(η)σ£(x9η) (5.20)

where tj(η) denotes the matrix

tj(η)= lim Q/- [Λ/ \ )

= l im (]/ — (rj — iti

]/ — (η — in)2 is defined in ueV+ by continuing from spacelike η with
]/ — η2 > 0. According to Theorem 4 (5.20) defines an operator in
&Zη(D0). The scaling law of (5.20) immediately follows from (5.9) and
(5.14)

& %(x9η). (5.22)

The operators C*\ can easily be expressed as linear combinations of the

C"f)(x,η)= lim (l/ — η2 + i^o)~Cj Sj(]/ — η2 + iεη0) Q"j)(x, η) -
ε-* + 0

Combining the power scaling law (5.22) with analyticity we will determine
the general form of the operators βjf in the following section.

6. Composite Operators with Power Scaling Law

In the last section it was shown that composite operators either
satisfy the power scaling law (5.19) in η or can be written as linear com-
binations of such operators. We summarize the properties of these
operators Qjf which have been established so far. The subscripts j \ /
will be omitted throughout this section.
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(i) Qab(x, η) is an operator in S%η(D0).

(ii) The even and odd parts.

ρeven = ρl2 ± ρ21 Qodd = Q!2 ̂  Q21 (β J)

satisfy

Q°dd(x, -η)=- Qodd(x,η).

(iii) The matrix element

Φ,ΨeB (6.3)

satisfies the analytic properties of Theorem 3.

(iv) A power scaling law holds for the operator

x,η) (6.4)

and the continuations of the matrix element (6.3)

&)(x,ση) = σcG()(x,η) -lmηeV+, -lmσηeV+.
) F+, ίmσηeV+.

Using this information we will first investigate the 77-dependence of
the matrix elements (6.3).

6 a. Directional Dependence of Matrix Elements

The following theorem states that the function Gab is a polynomial in
η apart from a power off/2.

Theorem 5. The function Gab is of the general form

Gab(x, η) = (j/^?)' Πab U -y—] (6.6)

where Πab(x, ζ) is a polynomial in the components of the four vector ζ.

For the proof we first list some properties of the function

x,η) (6.7)

which immediately follow from the corresponding properties of G ( ).
Here / is a real number, (-η2)f denotes the continuation of the positive
values at spacelike η into the regions —lmηeV+ and lmηeV+.

(i) DΫ is analytic and bounded by a polynomial in — Im^/ e V+.
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(ii) The functions

Dfd\χ,η)=±D?d\x, -η) = (-η2YG«*(x9η) (6.8)

are analytic and bounded by a polynomial in Imη e V+.

(iii) For spacelike η the functions Df and Df coincide

Dγ(x9 η) =* Dγ(x9 η) if η real and η2 < 0. (6.9)

From property (i) we obtain (Theorem 2-8 of Ref. [2]) that D{

f

] is a
Laplace transform

Dγ(x, η i - iη2) = -JL-Je-'p(i.-'«>dγ+(x,p)dp (6.10)

provided η2eV+. From (ii) we find

^ (6.11)

with η2eV+. dγ± (x, p) are tempered distributions in 5 '̂p and have the
support properties

dγ+(x9p) = 0 unless peV+

d^- (x, p) = 0 unless peV- .

According to Theorem 2-9 of Ref. [2] the limits of (6.10) and (6.11) for
η2 -• + 0 are

lim Dγ{x, η x - iη2) = d\\ (x, η ±)
ηi^ + O J

t (6.13)

in «$ς

lim ^>(x, η i + iη2) = d(

fl(x, ηj

Our aim is to choose / such that D^ = D^ for η real and η2 + 0. To this
end we form

(6.14)
uί \ no d d t \

u(x, η) = D_c+i (x, η) =+i_ (x, η) = ,

2 ((/ - n )

= BA-n), Ha(η)=-Ha(-η) (6.15)
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with the boundary values

2 ' ± 2 ' *

The scaling law then takes the form

Hι(x9ση) = Hι(x9η)9 (6.17)

Hn(x9ση)=-Hn(x9η). (6.18)
σ

(6.17) implies that H^η) is analytic for timelike η and satisfies

Hι(x9-η) = Hι(x9η) if ^ F ± . (6.19)

For the proof we form
Hx(x9ση) (6.20)

with
ηeV+, σ = re-iφ, r>0, 0<φ<π.

Then σ?/ lies in the regularity domain

-Im(ση)eV+ .

Due to (6.17) the expression (6.20) is independent of σ which shows that
Hγ is regular atηeV+. Taking the limit φ ->0 and φ-+πoΐ (6.20) we find
(6.19). Combining (6.9) and (6.19) we get

/ζ(x, η) = Hτ(x9 η) if η real and /̂2 + 0. (6.21)

Similarly for Hn

Hn(x9η)=-HΠ(x9η) if ηeVl9 (6.22)

ifπ( x ? ^) = HU(X9 η) if ιy real and η2 φ 0. (6.23)

As a consequence of (6.21), (6.23) the boundary values from above and
below agree for all real η except η2 = 0:

Λ M = / > I + M - V M = o .f η2+Q ( 6 2 4 )

zl π(x, ŷ) = hn+(x, ?/) - Λπ - fe»/) = 0

Now we use the following lemma which is proved in the appendix.

Lemma. Let D(η) e / ( J R 4 ) be a distribution vanishing for η2 φ 0. Then
there exists an integer k such that ( — η2)kD(η) = 0. If D(η) is bounded in
the norm || | | r s any integer k > \s\ will do.
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As an immediate consequence we have, finally

(-, 2ΓM l M =o

(- ! ί 2 r π 4,(χ , ! j )=o

for some positive integers ml9 mn.
We next form

Ei(x, n) = (-η2)mι Hγ (x, η) = D™\ (χ9 η)
m ~ (6.26)

En(x, η) = (- η2raHn(x9 η) = D o d d

 c + 1 ( x 9 η ) .

We denote the boundary values by

eh±=d™\ elh±=d°dd

 f + 1 (6.27)

From (6.25) it follows

β ϊ + (w) = eτ_(w)I + V I ; i v/; ( 6 2 8 )

Hence

(̂+)(p) = β(")(p), (6-29)

where ( } stands for the subscript I or II. Since e(

+

} has support in V+ and
e(~} has support in F_ we get

e(±(p)=:0 unless p = 0. (6.30)

Therefore, the Fourier transform e{)(x,η) must be a polynomial in 77.
On the other hand the scaling law

Eι(x9ση) = σ2m^Eι(x9η)
(p.31)

£II(x,σf/) = <τ 2 m"- 1£ I I(x, f 7)
implies

(6.32)

5 i i M = α/-ί?2)2 m i I£iil*>- η

-n
Thus

η•χ,η) = E1[x,-i/_n_/

(6.33)
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and

11 ' (6.34)

This leads to Eq. (6.6) of Theorem 4 with

Π12 = ±(Eι±Eιι), Π21 = £(£,

6 b. Directional Dependence of the Operator

In the last section we have seen that every matrix element

(Φ,Qab(xη)Ψ) Φ,ΨeB

is a polynomial in . apart from a factor (]/ — η2)c. We proceed to

establish a similar property for the operator Qab. To do this we must
verify that the degree of the polynomial Πab is uniformly bounded for
all x and Φ.ΨeB.

The proof depends essentially on the following theorem, which is
proved in the article [8] by Simon (Th. 11) and in Ref. [9].

Theorem (uniform boundedness). Let D(oc;η) be a family of distribu-
tions in Sf{γ\) parameterized by α, and such that for every testing function
u(η) there exists a real number M(u) with

(6.35)

Then the family D(α; η) is uniformly bounded:

\SdηD(*;η)u(η)\£M\\u\\rt8 (6.36)

for some norm || ||Γ)S, finite number M, and every testing function u(η).

In order to use this theorem we construct A as in the last section and
indicate the dependence on Φ, Ψ9 x explicitly

4(x, ι/;Φ,!P)= lim * . (Φ,(6 e v e n(*,?7)-8 e v e n(*, -η))Ψ)

e - + o (]/ - η

2 + ιsηo)
c

Δu(x9η;Φ9 Ψ)= li n / 2 v + 1

(6.37)
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consider Δ{ faη Φ, Ψ) as a family of distributions parameterized by Φ
for fixed Ψ9 use the continuity in Φ (for fixed Ψ and testing function
u(x, η) e 6fχη) to bound the family for fixed u, then appeal to the uniform
boundedness theorem to obtain

-$dxdηu(x,η)Δ{)(x,η;Φ, Ψ)<^M{)(Ψ) \\u\\r(Ψ)>s(Ψ). (6.38)

By the lemma of Section 6 a this implies (since Δ{ > = 0 for η2 Φ 0) that

Finally, locality in x is used to remove the !F-dependence of m{ }(Ψ) and
so complete the task. The details are as follows.

For every ΦeB, and testing function u(x,η)e yχη

\dηdxΔ{){x,η\Φ,Ψ)u{x,η) ΨeB

is an inner product (Φ, Ψ) (because of Theorem 4) and is thus continuous
(or equivalently, bounded) in Φ:

\$dηdxΔ{)(x,η;Φ,Ψ)u(x,η)\<M(Ψ,u)\\Φ\\; (6.40)

thus by the uniform boundedness theorem (6.38) and (6.39) are established
and it remains only to remove the ^-dependence of ra( ̂ Ψ). To resolve the
last problem we choose the vacuum Ω for the vector Ψ. Then

implies
N{)(x,η)Ω = 0 (6.41)

where N() denotes one of the operators

) = ( - η2)™1 2 (C e v e n(x, η) - C e v e n(x, - η))
c + l

Nn(x, η) = ( - n2) " 2 (Co d d(x, η) + C°dd(x, - η))

(6.42)

Since iV(, is local in x relative to the basic fields Oj

lNn(x,η)Oj(y)}±=0 on Do if (x-y)2<0

the relation (6.41) necessarily implies [10]

Nn(x,η) = 0. (6.43)

Hence
(-η2)m"A()(x,η;Φ,Ψ) = 0 Φ,ΨeB (6.44)
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where m ( } is independent of x, Φ and Ψ. Thus the degree of Πab in (6.6) is
uniformly bounded for x and Φ,ΨeB

(Φ, Qab(x, η) Ψ) = Km {]/-η2 + isηo)
c Πab(x, ζ, Φ, Ψ)

η " + ° (6.45)

Smearing out in x and ιy with a test function of Sfχη and using con-
tinuity of the left hand side in Ψ for Φ e B given we can extend (6.45) to
vectors ΦeB, ΨeD0. Keeping ΨeD0 fixed and using continuity in Φ
we can further extend (6.45) to vectors ΦeH, ΨeD0. It is then not
difficult to verify that the coefficients of Hab represent matrix elements
of field operators.

We summarize the results of this Section in

Theorem 6. The operator Qfx has the general form

< ^ + 0 «=1

The coefficient Qab"μn(x) is an operator in S%(D0). Under ίnhomogeneous
Lorentz transformations Q^b^ •• μn follows the usual transformation law
of a tensor of rank n. The operators Qγ^ -^ a r e \oca\ re\atiυe to each
other and relative to the basic fields.

Combining this theorem with Eq. (5.23) we have as final result

Theorem 7. For η2 =f= 0 given, the composite operators Cj(x, η) appearing
in the Wilson expansion

Λa(x + ρη) Λb(x -ρη)= £ fj(ρ) Cf(xη) + Pk+ x(χ9 η9 ρ) (6.47)

are polynomials in the components of η/]/— η2. By a suitable equivalence
transformation the Wilson expansion (6.47) can be brought into the form

Aa(x + ρη)Ab(x-ρη)= £ £ fβ(ρ) C]b(xη) + R(xηρ) (6.48)
j=i ι=i

where the composite operators may be written as

, η) = Iim ( ) / - ^ + ( ε ^ o ) - o Sj(\/-η2+iεη0) Qft(x, η).

The Nj x Nj matrix Sj is given by (5.12). The general form of the operators
Qaji was stated in Theorem 6.
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Appendix

I: Proof of the Lemma, Section 6a.

Statement. Let D(η) be a distribution in £f'(R% with D(η) = 0 for
η2φ0, and with \dη D(η)u(η)<M\\u\\rs9 for each testing function
u{η) e 6f{RA). Then for each integer k > |s|, {η2f D{η) = 0.

Proof. || | | r s denotes the norm ||u\\rs= Σ sup\ηadζu\. Let ve £f(R)
a\<r η

β\<s

be such that v(y) = 1 for \y\ < \ and v(y) = 0 for \y\ > 1 since D vanishes
for η2 Φ 0, one has for real b > 0 and each testing function u that

J dη D(η) (η2)k u(η) = J dη D(η) {η2f u(η) v(η2/b). (A.I)

However, when k> s, we claim that given a real ε > 0 one may pick b > 0
such that W(η2)kv(η2/b)u(η)\\rs<ε/M; thus the right hand side of (A.I)
vanishes and the statement is proved. The claim may be verified as
follows: IIO?2)* u(η) v(η2/b)\\rs is a sum of terms of the form

sup\(ηι < u(η)) ((η2)^ φk>>) {η2lb))\b~k"

^ (sup\(ηι <u(η))\j(sup\(η2)k~k' g^ (η2/b)\) b~k" k + k"^s

each of which may be made arbitrarily small

supb~ f c" \{η2)k~k> g{k'Ί (η2/b)\ = bk~{k'+k'r) sup \{t)k~k> g{k'Ί ( ί ) | .
η t

Corollary. Since every distribution is bounded in some norm \\ \\rs it
follows that for every D(η)E £ff(R4) vanishing for η2 φ θ , there exists an
integer k with (η2)k D(η) = 0.

This corollary is sufficient for the purpose of Section 6a Section 6b
strictly speaking requires the stronger result (which may be proved
analogously):

Corollary. Let D(x;η) be a distribution in &"(R8) bounded in some
norm || | | r s and vanishing for η2 Φ 0; then (η2)k D(x, η) = 0 for k>s.
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