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Abstract. A new method of constructing the Superpropagators, i.e. the Fourier trans-
oo

forms of the expressions of the form £ cnA"F(x) is suggested. The method makes it possible
n = l

to derive by use of the same technique explicit analytic expressions for the Superpropa-
gators for a wide class of field theories - from strictly local up to essentially non-local.
The essence of the method is the construction of a differential equation for the superpropa-
gator which in general is of an infinite order. By use of the boundary condition at p2 = 0
we find the solution of this equation depending on one arbitrary real parameter. Simple
examples are given to illustrate the method.

I. Introduction

In the theories with the essentially nonlinear (non-polynomial)
Lagrangians (for example, in the chiral field theories) one encounters
the necessity of calculating the Superpropagators, i.e. the Fourier trans-

00

forms of the expressions of the form1 ]Γ cn[g2ΔF(x)]n. The same prob-
n= 1

lem holds for the polynomial nonrenormalizable field theories treated
by use of equivalence theorems. In the present paper a rather general
method of constructing the Superpropagators is suggested. This method
makes it possible to derive explicit analytic expressions for the super-
propagators for a wide class of field theories - from strictly local up to
essentially non-local - by use of the same technique.

The idea of the method originates in the earlier investigations of the
approximate linear integral equations for the Green's functions in non-
renormalizable theories [1—6]. In particular, the Edwards equations, the
Bethe-Salpeter equations and the integral equation for the simplest
superpropagator which corresponds to the expression

The notations are introduced below.
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have been extensively studied. To construct the superpropagators of a
more general form there have been proposed other methods than those
connected with solving the equations for the Green's functions [7-11].
However, as was shown in papers [5, 6], the superpropagator corre-
sponding to SF(x) e°2Dr(x} obeys some linear integral equation which was
solved in the Euclidean momentum space by reducing it to the dif-
ferential equation.

At this point it is important to note the following. The integral equa-
tion has a solution only if its kernel is made quadratically integrable
by suitable regularizations (e.g., a cut-off on high virtual momenta). This
regularization can be removed only after that the exact solution is de-
rived and renormalized. In the differential equation, to which we reduce
the integral one, the regularization can be eliminated from the very
beginning and in solving the differential equation there is no more
necessity to use any divergent expressions and ill-defined limiting pro-
cedures. The solutions derived in such a way are exactly the same as
those obtained in [8-11] and depend on one arbitrary constant2.

A generalization of the method of Refs. [5, 6] applied earlier to the
investigation of the simplest superpropagators makes it possible to derive
the linear differential equation for the superpropagator of a general form.
This method seems to us to be simpler and more general than that of
[8-11] because it allows to find the analytic expressions for the super-
propagators for a wider class of field theories.

2. Superpropagator and 5-matrix

We will study the neutral scalar field with the Lagrangian 3

where

U(φ)=Σ^-φn

9 <5μ=-^-, x2 = jc 2 -x§. (2.2)
n = l n' VXμ

We meet the problems of this kind in the theories with a partial sym-
metry. Consider for example the theory with the Lagrangian

m2

)2, J*?M= - — φ2 . (2.3)

2 This ambiguity will be discussed in detail in what follows.
3 Our analysis can be applied to the fields with spin and isospin without difficulties

of principle encountered.
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Here φ(x) = φ[.ψ(x)'] and ψ(x) is chosen in such a way that

(so, we may assume that ψ = j f ( φ ) dφ). The Lagrangian <gs = — \ (Sμ\p)2

is obviously invariant under the group of one-parameter transformations
of the field φ generated by the replacement ψ-+ψ + C but <£M is non-
invariant. This can be illustrated by a simple example

(l-g2φ2)-ί, gψ = aγcsm(gφ) , gφ = sm(gψ). (2.4)

The replacement ψ-+ψ + C defines the nonlinear transformation of φ:

gφ->gφco$Cg + ]/l-g2φ2sinCg.

The Lagrangian &M apparently is not invariant under this transfor-
mation :

m2

[sin2(#t/;)cos2C# + ^sin2(#ι/;)sin2C0 + sin2C#] .
m2

ψ->v + C 2tf2
γ * ^y

Note, that the Lagrangian U(φ) deduced above is not normal ordered
and in general : U(φ): is not simply connected with U(φ) [10]. However,
the normal-ordered Lagrangian is more convenient for practical calcu-
lations. As we do not consider the problems of equivalence of theories
described in various field variables so we use this simplification.

m2

Sometimes (see, for example, [8]) the term — φ2 is inserted in

the Lagrangian «5?0. As a result, the superpropagator is expressed in
terms of AF(x) (instead of DF(x)). A generalization of our method to this
case will be considered in the next paper. In what follows a general case

m2

with JS?0 containing the term — φ2 will be investigated up to Eq. (3.6),

all the subsequent formulae being valid only for the case m = 0.
The S-matrix in the interaction representation has the form

S = l + χ r s n , (2.5)
n = l

a=-S<rx1...Pxa T{:V[gφ(x1) ]:...:U[Sφ(xJ]:}. (2.6)
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Let us consider the term of second order in /

72 °°

S < Kχιί/4χ2 Σ ^+

Z nι,M 2 = 0 nl n2 '

It is not hard to check that

*)= Σ "+"' "*"2 [g2Λ f (*)]•. (2.8)
« = o π:

where w0 = 0 by definition and

It appears that the calculation of F^n2 for arbitrary nγ and n2 is reduced
to that of F^j

oo j .2

F(2)/ v\_ V n Yn2 A (\ Y\n (1 1fYl
^ 0 0 ( x ) — L^ j~ 19 ΔF\x)j (/.1UJ

To prove this we use the recipe which will be systematically applied
hereafter. We put4

^-=φ-l), n=l,2, . . . (2.11)

and continue the function ι (z) from the integer z = n to the whole com-
plex z-plane. This continuation is unique for the class of functions which
satisfy the Carlson's conditions (see e.g. [12]): 1) υ(z) is a regular func-
tion in the halfplane Re z ̂  0; 2) |φ)| < M exp(4|z|) for Re z ̂  0, A > 0;
3) \v(iy)\<M Qxp{(π — ε) |y|}5 — oo<j;<+oo, ε>0. These conditions
on ι (z) (not on un !) are not very restrictive because the ratio un + 1/un

depends on n more smoothly than un. For example, if un~(nl)a then

M+1 (n + l)α and continuation of the i -function, v(z) = (z + 2)α, satis-

fies the Carlson's conditions for all a; but, generally speaking, it is not
so for that of the function (n !)α. It is clear that

»n + m = 1, (2.12)

and the functions vm(z) are uniquely defined and regular at least for
Rez^O. Thus,

*) = «*«*+ Σ^(^- l )^ 2 (^- l )- fe 2 ^FWΓ (2.13)

4 It is assumed here that un φ 0 (« = 1,2 ...). However, if for example u2 „ = 0, u2 „+1 Φ 0

then it is possible to use the same recipe for ύn = u2n+ί.
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Let us now introduce the operator which will hereafter by system-
atically used

<VΞ0 2/T> δgι g2" = ng2", δg2{g2" f(g2)} = g2"(δg> + n)f(g2)
9 (2.14)

and construct the functions of this operator

m-l

»»(^-l)= Σv(δa>-ί + k) (2.15)
fc = 0

which is possible due to the regularity of the function v(z). Using the
properties (2.14) of the operator δg2 it is easy to show that

i.e.,

F™n2(x) = unίuH2 + υnί(δβ2- ί)υΛ2(δβ2- l)F$(x). (2.16)

The latter relation is derived in x-representation, nevertheless it may be
used in momentum representation in that domain of the parameter g2

where F(^(p2} is an analytic function of g2 5.
To clarify the practical use of Eq. (2.16) we would like to mention

the following. In the most general case the function F($(p2) can be
expanded in a series of powers of (g2)anlnkg2 and it is necessary to
calculate an action of vm(δg2 — 1) on such terms. To do this it is more

convenient to represent them as lim -r~r(#2)α"+ε. Then
ε-*o as
Λfc

-{vm(an + ε-l)g2(an+ε]}
ε^O

~2an1~/c ^2= v™(an-l)g2an+ ••• +vm(an-l)g2an\nkg2

This trick makes it possible to find the expression of the function

We would like to stress that if the singularity in g2 at g2 = 0 (non-
integer a or fcφO) is taken into account then at once there arises the
actual necessity to know the value of the interpolating function v(z) in
the noninteger points. The necessity of imposing the Carlson's conditions
follows from the considerations of the simple case un = l. Indeed, it is
obvious that F(2^n2 = F(Q^ but a continuation of v(n) from the integer
points is, in general, not unique. In fact, we have v(z)= 1 +/(z)sinπz

5 It is known [1, 6, 8] that momentum representations of the superpropagators have
a singularity in g2 at g2 = 0. So the relations written above are not applicable to this point.

6 In the simplest cases it is possible to obtain an analytic form of F(

n

2)

n2(p2) using (2.14)
without expanding Ftf^p2) in powers of g2 and Ing2 (see examples considered below).
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where /(z) is an arbitrary function regular in the right halfplane. Since
in this case the superpropagator F$ contains the terms ~g2nlng2 (see
[1]) then, for example, the expansion of the function F$ has the terms
of the form

and we get additional (extra) terms (- l)nπf(n- I)g2n. The Carlson's
conditions make it possible to eliminate such terms and thus it is natural
to employ them in a more general case as well.

3. Equation for the Superpropagator

In this Section we will construct the equation for the superpropagator
in the momentum representation. To simplify the notations we put

u2 = nl cn9 i.e., we write down F($ in the form

*$(*)= Σcn[jg2AF(x)γ, (3.1)
n = l

and pass to the Euclidean metric by substituting x0->ix0, Po-^ipo7-
Assuming the theory to be somehow regularized we find in the momentum
representation

; ΔP(x)= J - g - ' p ^ + p2)-1 (3.2)

where x2 = x2 4- x2,, P2 = P2 + Po ^ *s convenient to substitute the dimen-
sionless variable g2p2 for the variable p2. The function F($(x) depends
only on the dimensionless combinations g2/x2 and g2m2. From this and
Eq. (3.2) it follows that F(p2) can be represented in the form

) = g4F(g2p2,g2m2). (3.3)

To construct the equation for F(p2) we use the recipe considered in
detail in the previous Section. Putting

cn + l/cn = R(n-ί), n=l,2, . . . (3.4)

and assuming the existence of the unique analytic continuation of8

R(n) to the complex z-plane it is easy to show that F($ obeys the equation

) + g2AF(x) R(δg2 - 1) F$(x) . (3.5)

7 More detailed considerations how to use the Euclidean metric in solving linear
equations in nonrenormalizable theories can be found in the papers [2-6].

8 We recall that R(z) is assumed to satisfy the Carlson's conditions (see Section 2).
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In the momentum representation this equation is of the form

^ r d4q F(q2)

Using the relation

and setting δp2 = p2 -r— 3- , δm2 = m2 — — ̂  we derive the equation for F:

(3.6)

The integro-differential Eq. (3.6) is rather complicated, so hereafter
we suppose m = 0. Then Eq. (3.6) reduces to the more simple integro-
differential equation

Using the relation

2

where F(ξ) = F(g2p2,0), ξ= 4 and acting on the both members of

Eq. (3.7) by δξ(δξ + 1) we derive the differential equation for the function
F(ξ}9

{δξ(δξ + ί) + ξR(δξ+ί)}F(ξ) = 0; δξ^ξ — . (3.9)

In general, this differential equation is of infinite order. Nevertheless,
it can be easily solved by use of the Frobenius method [13]. To this end
we note that the characteristic values of Eq. (3.9) which determine the
behaviour of solutions for small ξ coincide with zeros of α(α + 1) and
poles of the function #(α + 1)10. Thus, we can choose the linear inde-
pendent solutions which behave for small ξ as follows: ξ°, ξ'1 and ξa\

9 To derive this equation more rigorously it is necessary to introduce a regulariza-
tion in (3.6)-(3.8). This does not influence the considerations and the results obtained, so
we omit the discussion of this problem (for the details see [6]).

10 All the subsequent considerations are valid only if the solutions are determined by
the convergent series of positive powers of ξ.
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where α, is defined by the condition [-R(αί + I)]"1 =0. Since R(z) is
regular for Re z ̂  0, then α, < — 1 and the solutions corresponding to
the characteristic values αf are more singular for small ξ than the free
propagator ξ~l. Choosing the behaviour which is not more singular for
small ξ than that of the free propagator we conclude that the super-
propagator is a linear combination of two solutions corresponding to
α = 0 and α= — 1. To construct these solutions we use the Frobenius
method [13]. To the characteristic value α = 0 there corresponds the
power series solution

which is normalized by the condition ^(0)= 1. For ξ<0 this solution
is proportional to the difference between the imaginary part of the
superpropagator

c2F1(ξ) (3.11)

and the imaginary part of the free propagator q πg2δ(p2) (Eq. (3.11) can
be directly calculated by the Cutkosky rule [14]). The solutions cor-
responding to other characteristic values are also searched in the form

(3.12)

For α = 0 the solution is exactly the same as written above, but for α = — 1
the solution (3.12) does not make sense as the denominator in the recur-
rent formula (3.12) vanishes for α= — 1. To construct the solution cor-
responding to α = — 1 we employ the Frobenius method as developed
for the finite order equations. To this end we put α0(α) = (α f 1) and
differentiate (3.12) with respect to α:

ca n = 0 aa n = 0

As α -> — 1 this expression determines the solution which is linearly
independent with (3.10):

™ dF(α,£)

(3.14)

6 Commun. math. Phys., Vol. 24
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where

~ (3.15)

The solutions corresponding to other αf can be constructed by an
analogous procedure. However, we neglect these solutions because they
are more singular for £->0 than the free propagator. The solution (3.14)
is real for ξ > 0 and is defined in the entire complex £ -plane (i.e., /?2-plane)
with a cut — oo < ξ < 0. A discontinuity across the cut is — 2πί R(Q) F1 (ξ)
and being properly normalized it coincides with the imaginary part of
the superpropagator. So we arrive at the final expression for the super-

propagator 0.16)

where A = ,, \, and B is an arbitrary real constant u.
(4π)2

Now the problem of determining the asymptotic behaviour of the
solution (3.16) as £->oo arises. In general this problem is rather com-
plicated. However, if R(z) has a simple form the asymptotic behaviour
can be derived by use of standard methods. For instance, for many
theories of the physical importance R(z) is a rational function

R(z) = Pp(z)/Qq_2(z)

where Pp and Qq _ 2 are polynomials of degree p and q — 2, respectively.
Then Eq. (3.9) takes the form

[_δξ(δξ + 1) Qq_ 2(δξ) + ξPp(δξ + 1)] F(ξ) = 0 . (3.17)

Factorizing the polynomials Pp and Qq-2

we easily find that the solutions of Eq. (3.17) are linear combinations of
the Meijer G-functions [16]

Gm" (-1)"
+1 — m — n

a...a p , where 0 < m:

11 One can try to fix this constant by requiring the minimal singularity for |f|-»oo
(or on the light cone) [6,11]. This requirement is reduced to the condition ReF(p2)/ImF(p2)
->0 as p2-> — oo (see [6]) which is very suitable for calculations. However, it is possible
that, in calculating higher orders in the constant /, B in (3.16) will appear to be fixed by
the unitarity condition (cf., e.g. [15]), so the final choice of B can be made only after the
detailed investigation of higher orders.
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The asymptotic behaviour of these functions has been completely inves-
tigated by Meijer [16] and by using his results we can solve the boundary
value problem for Eq. (3.17). The Meijer G-function can have an essential
singularity at ξ -> oo or be polynomially bounded. Thus, even within this
simplest class of theories all types of asymptotics (localizable, non-
localizable and essentially nonlocal) can be obtained [17].

So far in constructing the superpropagator we used only the boundary
conditions at ξ -» 0 and derived the solution depending on one arbitrary
constant. However, the differential Eq. (3.9) is equivalent to the integro-
differential Eq. (3.6) only if F(ξ) vanishes at infinity. As it can be seen
from the examples considered in the next section, in localizable theories
the superpropagator does not vanish at infinity (in fact, it grows expo-
nentially) and therefore in this case we will treat the differential Eq. (3.9)
with the boundary condition at ξ->0 as an extension of the integral
Eq. (3.6) which has a solution even when the integral Eq. (3.6) has no
solution (cf. the theory of extensions of the symmetric operators [18]).
Any choice of the parameter B (see Eq. (3.16)) is equivalent to some
boundary condition at infinity, the most natural one being given in
footnote 11. The same results can be obtained by introducing some
regularization removed at the end of calculations or by the analytic con-
tinuation in the coupling constant g2 (see for the detailed discussion Ref.
[6]). So we may say that the transition to the differential equation is the
convenient method for regularizing nonrenormalizable theories in mo-
mentum space without any reference to co-ordinate space. This approach
makes it possible to avoid the problems connected with the regulariza-
tion of the nontempered distributions.

4. Examples and Discussion

1. Consider the superpropagator (3.1) with cn = 1. In this case R(z) = 1
and Eq. (3.9) for F(ξ) reduces to the Bessel equation. Normalizing the

a2

solution in such a way that F(p2) ~ — as p2 -»0, we find

F(P

2)= - - T T / r W(21ί) + CJ1(2l/ί)}, (4.1)
loπ |/ς

where Λ^ is the Neumann function, Jl is the Bessel function and C is
an arbitrary constant. The function F has a logarithmic branch point in
g2 at g2 = Q and an essential singularity at p2->oo. As p2-» + oo the
superpropagator (4.1) vanishes, but when p2-> — oo + iO it grows for any
choice of C. Nevertheless, the parameter C can be chosen so that
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ReF(p2 + ίθ)/ImF(p2 + iθ) 2 _^_ >Q (in accordance with the remarks of

the previous section).
If g2 is changed in sign the integro-differential Eq. (3.6) has the unique

solution satisfying the boundary condition at ξ = 0 and vanishing for

where t=

This solution exponentially vanishes as |£|-»oo in any direction in the
complex ξ -plane except for the cut — oo < ξ < 0 where it falls off with
oscillations (the imaginary part oscillates too). Note that the super-
propagator (4.2) has been originally derived by Okubo [1], who however
has not found the physically acceptable expression (4.1).

2. Consider now the exponential superpropagator: c n =l/n!, R(z)
= (z + 2)~1. It is not difficult to show that in this case

, - 1, -2)} .

The superpropagator (4.3) grows as p2 -» oo in all directions in the com-
plex p2-plane and its imaginary part is positive for p2 < 0. (The condition
Re F(p2 + z'Oyim F(p2 + iO) j ? 2 _ > _ Q >0 is fulfilled for C = 0.) Reversing the

sign of g2 we get the following solution

F(P2) = Γ G g § ( ξ | 0 , - l > -2) where ξ = ~ ~ (4.4)

vanishing as ξ^> + oo. On the cut this solution exponentially grows and
its asymptotics is of the localizable type. The same expression has been
previously derived by the present authors and Arbuzov (see [5, 6]). In
a different way the superpropagator (4.3) has been obtained by Volkov [8].

3. The next one is the case of Cn = n\, R(z) = z + 2. Here Eq. (3.9)
reduces to the confluent hypergeometric equation. The solution is

where

, 2; £0 + V(3, 2; ξe~iπ) + Cφ(3, 2;-ξ)} (4.5)

00 w 4- 2 7n

4,(3,2;z)=Σ ^-^ (4.6)
n=0 L nl
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is the confluent hypergeometric function, and

1 p* °°

γ,(3,2;z)= — + lnz 0(3,2; z)+ — - £ --rψ(n+l)?. (4.7)
zz z π=0 L n .

The branch of logarithm is so chosen in Eq. (4.7) that Inz is real for
z > 0. The asymptotic behaviour of φ(3, 2; z) and φ(3, 2; z) is well known
[19]. The solution (4.5) for any C vanishes like ξ~3 as ξ-> oo in the right
halfplane, but it grows exponentially in the left halfplane. For the
reversed sign of g2 we get the unique solution φ(3, 2; ξ) which vanishes

like £~3 as £->oo in the whole complex ξ-plane κ= — — 2~|. Thus, in2
16π

the case of nonlocalizable theories for negative g2 one can construct
solutions vanishing as p2 -> oo which makes it possible to define the super-
propagator in x-space as well.

4. As a matter of fact, one can investigate as many examples as one
wishes choosing growing or vanishing coefficients cn. For cn^->co the

series (3.1) is obviously divergent, however our approach requires no
preliminary summation of this series which produces the well-known
ambiguity (one can add any arbitrary function with zero asymptotic
expansion). If cn grows more slowly than (n I)2 it is possible to obtain the
unique (up to the parameter B) solution determined by the series (3.14).
If cn grows faster than (nl)2 the series (3.14) diverge, the differential
equation having an essential singularity at ξ = 0 and a regular singu-
larity at ξ = oo. In this case the solution cannot be represented as a power
series (3.14) and expansions of another type are required to solve the
equation. The corresponding solutions are essentially non-local [17]. If
cn ~ (n )2 tnen both ξ = 0 and ξ= oo are regular singularities but, in
addition, there arises a singularity on the circle \ξ\ = const (i.e., on the
"unitary limit"). The method described above seems to be useful tool in
investigating all such superpropagators and we hope to do this later.

We are indebted to N. Bogoliubov, D. Blokhintsev, A. Tavkhelidze, A. Efremov,
V. Ogievetsky and M. Volkov for helpful discussions and the interest in the work.
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