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Abstract. We investigate closed rotating cosmologies to determine if rotation leads to
an enhancement of causal mixing proposed by Misner to guarantee the homogeneity of
such models. We conclude that rotation cannot lead to significantly more efficient mixing
than occurs in non-rotating models. Since arguments presented by Doroshkevich and
Novikov and calculations made by Chitre give very small probability of mixing in non-
rotating models, we therefore conclude that a plausible explanation of the homogeneity
of the universe cannot be found within the framework of classical General Relativity. Such
an explanation may lie in quantum effects on mixing near the singularity.

I. Introduction

We consider here the phenomenon of "causal mixing", first postulated
by Misner (1969 a) for the Mixmaster universe (a closed non-rotating
model). At any fixed time or volume epoch Ω near the singularity, the
Mixmaster universe can be specified by initial conditions β+, /?_ (shape
anisotropy) and /+, ^_ (expansion rate anisotropy). Chitre (1970) has
shown that for certain subsets of initial conditions some null-geodesies
will circumnavigate the corresponding universe and that a probability
for this can be computed since the Einstein equations lead to a natural
measure on initial conditions (/?+,/+). Doroshkevich and Novikov
(1970) and Chitre (1971) find that the probability of removing horizons
in any one direction is very low. That is, the possibility exists, but the
probability of such behavior is quite small.

In this paper we discuss models with rotation. The basic idea is that
in such models the rotation may move the mixing direction so that
effective mixing in many directions is possible. We shall show that rota-
tion leads to slightly more efficient mixing, but the improvement is in no
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case particularly striking. We conclude that rotation does not make the
removal of horizons in these models significantly more probable than
it is in non-rotating models. Rotation does not save the Mixmaster
universe.

The metric describing a rotating closed cosmology of Bianchi type IX
can be written (Ryan, 1970)

ds2 = -dt2 + R2(t)e2jβ(t}σlσj, (1.1)

where the time independent covariant vectors σi are invariant under the
action of the group of motions of Bianchi type IX. Hence, they obey the
curl relation

dσl = &ίjkσ
l Λ σk . (1.2)

The function R(t) describes the size of the universe, and the matrix e2β(t}

gives the anisotropy of the model. (We take βn = Q so e2β has unit
determinant.) A parametrization of βtj can be given in terms of the
following set of variables: (β+9 β_9φ999ψ). Here β+ and β_ are two
linear combinations of the eigenvalues of βtj (Misner, 1968):

β+ = -$β*, β- =(21^Γ1(J81-J82), (1.3)

where βί9 β29 /J3 are the eigenvalues of β in any order (βl + β2 + β3 = 0).
The angles φ, θ, ψ are the Euler angles of the rotation relating β{j to the
diagonal matrix with the same eigenvalues, (β — QτbO with b diagonal
and 0 - &z(φ) 3tx(θ) &z(ψ); see Ryan, 1970 or Matzner, 1971.)

We shall follow Misner (1967, 1968) and take one of the dynamic
equations of the system to be the T00 = G00 equation; we will at the same
time relegate the Tfe

fe = G\ (spatial trace) equation to secondary status.
The T00 — GOO equation reads

3(R/R)2 = iσ0.σ0 + ρg(Vg - 1) + T00 . (1.4)
Here

(The dot means time derivative.) The quantities ρg and Vg are defined

Qg = IR~\ vg = ± trace(e4' - 2e~2β

Because of the symmetry of Vg(β) under interchange of the labeling of
eigenvalues, Vα has triangularly symmetric equipotentials in the β+β-
plane. These approximate straight-sided equilateral triangles for large Vg .
One wall of each equipotential triangle cuts the negative β+ axis at right
angles, and in the triangular section including the negative β+ axis,

Fβ~ie-8^ (1.5)



Rotation in the Mixmaster Universe 175

In the corners of the triangle, the equipotentials curve outward to
infinity so the potential is bounded, Vg<l, along the β+ > 0 axis and the
two triangularly symmetric directions. (See Misner, 1969a, b; Matzner,
Shepley, Warren, 1970: "MSW;" Ryan, 1970.)

Still following Misner (1967), we obtain the

equations by the variation δ'βtj in the Lagrangian

J^ = R3[^σ σ — ρ (V — 1)— T0 ] (1.6)

(Specifically, one varies eff; the coefficients of δ'β = e~βδ(e2β)e~β give
the traceless spatial components of the field equations in the orthonormal
frame {dt, ωl = R~le^βσj}) Misner (1967, 1968) has shown that the
Einstein tensor components are correctly given by this variational
principle if one treats R as an externally given function of time. For fluids
and for general models containing collisionless radiation, Matzner (1970,
1971) has shown that R3 T00 is indeed the correct matter Lagrangian. [If
TOO is due to a fluid, certain conservation laws also have to be respected;
see Matzner (1970).] We find it useful to work directly in the "metric
coordinates" βγ = (/?+, /?_, φ, 0, ψ). We begin by translating the Lagran-
gian into this formulation (Ryan, 1970; Matzner, 1971):

/ 3 \ 2

^+sinh2(2]/3)/?_ ί—-

(1.7)

/ 2 \ 2

+ sinh 2 [3β + + (1/3)jS_] ̂ J - ρgίVg(β+9 /?_) -1] - Γ00

where any explicit appearances of the metric in T00 have been para-
metrized in terms of the βγ. (We assume no derivatives of the metric
appear in T00, and we also assume that other parameters entering T00

are treated as explicitly given functions of ί, as is R.) The σ', i = 1, 2, 3
are a set of inexact differentials:

σ1 = —cosφ dθ — sinφ sinθ dip , (1.8a)

σ2 = cosφ sin$ dip — sinφ dθ , (1.8b)

cr3 = dφ + cos# dip . (1.8c)

[The σ1 here may be taken as a coordinate realization of the σ' introduced
in Eq. (1.1) since they obey dσ1 = σ2 Λ σ 3 et. eye.]
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During the large anisotropy evolution of a universe model, the
influence of T00 on the anisotropy can be described by introducing
potentials due to the matter; one has (Matzner, 1970, 1971)

where si is a constant. The "walls" defined by Fmatter (i.e., the instan-
taneous locus of turning points) can be shown to move in such a way that
collisions of the system point with them are virtually impossible. One
"bounce" off the wall is the maximum allowed in the large anisotropy
region. (See Misner, 1968; Matzner, 1970, 1971 or Ryan, 1970.) Hence, so
far as the dynamical evolution is concerned, w<? may neglect T00 in the
Lagrangian during the large anisotropy regime. We wish to discuss the
Mixmaster phenomenon which perforce occurs during the large aniso-
tropy regime; hence, we drop Γ00 from now on.

II. Critique of the Non-Rotating Mixmaster

In the absence of momentum currents T0/, the T0ί = G0 l equations
require a diagonal metric, as is well known. One then takes φ = ψ = θ = 0,
and β + ,β- are the only two dynamic variables necessary to describe the
solution. A general feature of such models is the following relation
(Misner, 1967, 1968; Ryan, 1970; MSW, 1970). Define

Ω = ln(JR0/jR) (R0 constant) . (2.1)
Then

(dβ+/dΩ)2 + (dβ_/dΩ)2 < 1 . (2.2)

This equation also follows in rotating models from Eq. (1.4) (Ryan, 1970;
MSW, 1970).

Misner (1969 a) has described the Mixmaster behavior of non-
rotating models described by (1.1). Essentially, if β+9 β_ describing the
metric moves exactly in the direction of one of the corners of Vg, then
(a) such a motion can persist for a very long time since the potential Vg has
channels in the corner directions and is bounded in those directions, and
(b) if the motion persists sufficiently long in this manner, a photon has
an opportunity to completely circumnavigate the universe in the direction
where the metric coefficient is smallest (the 3-axis if the system point is
in the channel β+ > 1, β_ ~ 0). Chitre (1970) has shown that there exists
a set of initial conditions (of non-zero measure) for which the above
Kasner-like behavior persists long enough for the horizon to vanish.

Recently, however, Chitre (1971) has shown that the probability of
mixing is quite small in any particular model. Previously, Doroshkevich
and Novikov (1970) pointed out that it is extremely improbable that the



Rotation in the Mixmaster Universe 177

system point move in a way which removes horizons unless it enters the
channel during the small anisotropy phase of the model (Recall Ω
increases toward the singularity; we will use this inverted time sense
throughout the paper.) It is thus very improbable that the system point
will enter a second channel after emerging from one, and it is necessary
that horizons be removed in all directions for really effective mixing to
take place; hence, three "corner runs" are required. We will not explicitly
obtain this result for the non-rotating case, but because of the close
similarity in their Mixmaster behavior of the non-rotating models and
the non-tumbling, rotating models (defined in Section IV), we can
demonstrate this fact by quoting the results from Section IV. Because of
the small β_ motion in a region where the potential is approximately
harmonic [see Eq. (4.1)], there are small oscillations in β_ with frequency

ω_=4]/3e2(β+-βc}. (2.3)

The quantity βc is defined as the distance from the origin in the /?+, β_
plane to the point where two sides of the triangular equipotential of Vg

intersect if extended in straight lines. Now βc moves with dβJdΩ ~ 1
[Eqs. (4.6) and (4.7) below], so if the system point starts "chasing the
corner" at any sizable value of Ω, say Ω0, ω_ will be extremely small;
ω_oce~2Ω°.

In a suitably oriented coordinate system x, y, z on the model, the
equation for the z coordinate of a photon is (Chitre, 1970; see also
Section V)

dz/dΩ = 2}/3e2(β+-^. (2.4)

The model describes a closed universe, so z is interpreted as an
angular variable and Az = 4π describes a complete circumnavigation of
the universe. For the infinitesimal β_ analysis when the system point
moves in the channel, ω_ is an adiabatic invariant (Misner, 1969 a).
Eq. (2.4) then shows that circumnavigation will eventually occur after
precisely four oscillations in β_. If, however, the system is moving at a
finite angle λ to the channel direction, the system point β+ lags behind
βc, and one has in fact

while

where β+0 and βc0 are constants, and we have introduced the
dΩ

~ 1

and
dΩ

~ 1 behavior characteristic of free motion. But then it is clear
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that \dz converges; one has

Z J Z Ξ f —-—dΩ — — . (2.5)
o dΩ I — COSΛ

Hence, Az ̂  4π requires

when the right-hand side is small.
The meaning of Eq. (2.6) is that, if the system starts moving in the

direction of the corner but is far from the corner, complete circum-
navigation (and hence mixing) can occur only if the system direction
makes an angle \λ\ with the corner direction which satisfies (2.6).

We have a Hamiltonian system [see Eq. (3.4) below], and the para-
meter λ gives the direction of the momentum in phase space. All direc-
tions are a priori equally probable. Taking into account the 3-fold sym-
metry and the fact that it is λ2 which enters, the probability of approaching
one of the channels within an angle \λ\ is P = 6\λ\/2π; hence, the prob-
ability of satisfying Eq. (2.6) is

Suppose we have a corner run which began when βc = βc0 and which
persists just long enough for mixing to occur, i.e., for an interval
AΩ = Sπωl1. It is important to realize that βc0 must be of order ~3 or 5
since otherwise the large anisotropy discussion (particularly dβ/dΩ ~ 1)
will not hold. After the completion of this first corner run, the system
must move back into the center of the potential before beginning a second
such corner run. The minimum time for this to occur is ΔΩ = β+f, where
β+f is the value of β+ in the corner at the completion of the run:
β+f ^ Sπωlo Hence, AΩ for the completion of one run and the prepara-
tion for a second is

AΩ > 16πωlo,

where ω_ 0 is the frequency appropriate to the first corner run.
The value of the corner distance for the second run, βcί, is thus

βcι = βco + 16πωlo Hence,

ω_1 = 4]/3e~2βcl ^ 4]/3e-2(βc0 + 16πωlί°}.

Because the probability of entering a second corner is ocω1/2

[Eq. (2.7)], we see that if ω_ 0 is small (i.e., if the first corner run did not
begin very near the maximum of expansion), the probability for a second
and third mixing run are very small indeed. More precise calculations
verifying these estimates have been presented elsewhere (Chitre, 1971);
this argument was first presented by Doroshkevich and Novikov (1970).
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It has been shown in prior investigations (MSW; Ryan, 1970;
Matzner, 1970; Matzner, 1971) that rotation affects the dynamics of
β+ and /?_ very little during most phases of the evolution of a model.
Hence, we accept for our rotating models the above estimates from the
non-rotating models. We shall, however, suppose that one corner run
does occur and look for ways to make this single corner run effective. The
mechanism which presents itself as a candidate to improve the mixing
efficiency is the rotation. As has been mentioned by several authors
(MSW; Ryan, 1970; Matzner, 1970), rotation can turn the direction of
the mixing axis and thereby enhance the mixing so that perhaps only
one corner run will do, and the improbable second and third ones are not
needed. We shall see that in fact the enhancement due to rotation is
small.

III. The Rotating Type IX Models

With R3T00 deleted in J£, it is apparent that ψ is a cyclic variable;
fcy = constant (fiψ is the momentum conjugate to ψ) is a first integral of
the system. In addition, θ and φ appear only in the σl/dt terms, and these
have exactly the form of the angular velocity of an asymmetrical rotator
expressed in the "body frame". (See Goldstein, 1959, p. 134, but beware
of differences in Euler angle definition.) Hence, we might expect that the
total angular momentum ^2 (formed in the usual way from the Euler-
angle conjugate momenta) to be conserved; it is easy to verify that this
is the case:

2

is a constant of the motion for this system. Here fie and fiφ are the
momenta conjugate to θ and φ.

It can be shown that the initial values of T0ί determine an initial value
for /2; in fact, the T0ί are certain definite functions of fiφ, /θ, and /φ

and of R and βγ. Since, as we have noted, the matter terms affect the
dynamics very little, the equations (which we shall not write here)
relating T0ί and the fa should be read, subsequent to the initial instant,
as giving T0ί in terms of fa.

It is useful for the analysis of the Mixmaster behavior to introduce
the ADM Hamiltonian formulation (Arnowitt, Deser, Misner, 1962;
Misner, 1969b). This can be obtained by applying the ADM procedure
to the Bianchi type IX metric, with T00 = 0 to be consistent with our
conclusion that T00 does not affect the dynamics in the large anisotropy
regime. Alternately, one can introduce / = (dt/dΩ)3P. Then the action
principle becomes δ J IdΩ = 0. The momenta fa conjugate to βγ are
unchanged by this transformation. Introduce the Hamiltonian associated
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with /:

0.2)

Notice from Eqs. (1.4) and (2.1) that

h = 3(dΩ/dt)R\ (3.3)

where h denotes the numerical value of h; and ^h~l is a factor on the
right-hand side of the definition of h, Eq. (3.2). One can then show that
the equations of motion obtained from h are identical to those obtained
from the Hamiltonian system /y, βγ, H, where (Ryan, 1970)

-2 /20-2ri =
/ ί + τ /-τ sinh2(2l/3)/L

{ A~ rnSi
+ 3-

sinh2 [3j8+-(|/3)j8_] (3.4)

| 3 sin

H is the ADM Hamiltonian. We note that H = 2h. (We shall henceforth
drop the bar notation for the value of H.) We repeat that the /ιΎ here have
the same numerical value as the /y of the Lagrangian formulation of
Eq. (1.7), and hence, our statements about the constancy of ^ψ and of
/ι2 hold here also. [We did not deal immediately with the ADM formula-
tion because there is some difficulty in expressing the general Tμv in terms
appropriate to the method; Ryan (1970) has discussed this problem.]

IV. The Non-tumbling Mixmaster

In a special case of the rotating type IX models, the principal axes of
the metric rotate about a single fixed axis, which can be taken to be the
3-axis. The angles ψ and θ are permanently zero and only φ changes.
Neither the axis of rotation nor the direction of matter flow changes so
these models have been called non-tumbling in contrast to the general
rotating (tumbling) case where φ, θ, and ψ all change (MSW).

In such a model, there are two possible types of Mixmaster behavior.
One of the channel directions (β+ > 0, β_ ~ 0) corresponds to a shortened
axis which is the same as the rotation axis. The other channel directions
correspond to a shortened axis which is not the same as the rotation
axis. The two situations then can be specified by saying whether the
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mixing and rotation axis coincide (first case) or are different. In the
second case, the rotation turns the mixing direction, and this turning
mixing direction may lead to more effective mixing. We shall see below
that there is in fact only a slight improvement.

We first treat the case with mixing and rotation axes parallel; the
second case is taken up in Section VI. We suppose that the anisotropy
parameter /L is small, and fiφ is non-zero but small. The Mixmaster
behavior consists of motion which has the system point moving in the
β+β- plane toward the corner channel of Vg (here taken to be the channel
along the /?+ >0 axis). Along this axis the dominant terms in Vg for
β+M are (Misner, 1969)

e4β+ . (4.1)

With this approximation, one may now look for solutions in which
H ~ /ί+ this then implies dβ+/dΩ ~ 1. Hence, the potential term in H
has the form l2ρg(Vg - 1)R6 = (3 x 4)2R*e4β + ~4Ω /?2_, and the coefficient
of β2_ is approximately a constant. Based on this fact, Misner (1969)
discussed the case with fiφ = Q and β_ and /_ small. In the non-tumbling
model, we see that (at least for small β_) fcφ enters exactly as would the
centrifugal terms in ordinary Newtonian mechanics; the term involving
fiφ in H2 is (Ryan, 1970)

M 2)V 'sinh22j/3β_ 4β2_ '

The Hamiltonian equations for β_ and φ then resemble those for a
2-dimensional harmonic oscillator expressed in cylindrical coordinates.
The motion can be decomposed into two circular modes with β- = con-
stant and opposite values of fiφ. These can then be superposed to give
the resultant (in general, elliptical) orbit in terms of /?_, φ. We briefly
sketch the circular mode behavior.

In this case, /_ = 0, and the fiφ terms balance the potential terms in
the Hamiltonian equation for β_. Assuming β_ is small, one finds

, -2(β+-Ω)

- [ 2 x 3 x 4 ] R § '

Here β+ — Ω is a slowly varying quantity as we mentioned above.
So long as /?_ is small and so long as e~(β+ ~β) does not change much

in one period of the φ motion, Eq. (4.3) holds and gives the adiabatic
change in β2_ with the slow change in (β+ — Ω). Notice that the potential
remains central in the βrβd plane, so fiφ is exactly a constant of the
motion, regardless of whether the adiabatic approximation holds.
Eq. (4.3) is exactly the behavior predicted for the average behavior of
β2_ in Misner's (1969) non-rotating adiabatic discussion.
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We may also obtain the equation of motion for φ :

dφ = dH 1 /y

dΩ dfiφ ~ H 4β2_ '

From Eq. (4.3), we have

2+ (44)

Since φ enters the non-tumbling metric as 2φ [Eqs. (5.6) below], this
frequency is in agreement with Misner's previous calculation (1969) for
the /?_ oscillation frequency.

We may compute the equation of motion for β+ :

dβ+ =dH =fi+ 1 1 £ 1

dΩ dfi+ H ~ 2 [ 4 β 2 _ fi\ >2

+

 p-\ (4.5)

So long as β_ is small, dβ+/dΩ remains very close to unity. Note, how-
ever, that it differs from unity by terms of order β2_ .

We introduce the concept of the walls associated with Vg by defining
them to be the locus of points β'+ , where ί2ρg[Vg(βf

+ , /?'_) - 1] R6 equals
the instantaneous value of H2. Using the approximate form for Vg (away
from one of the corner directions) given by Eq. (1.5), the distance from the
origin of the β+β- plane to one of the walls of the potential is given
by βw9 where

(4 6)

Because of the equilateral triangular symmetry of the potential Vg9 if the
sides were extended as straight lines, they would meet in corners making
60° angles. The distance βc from such a corner to the origin is

βc = 2βw. (4.7)

Of course, the actual equipotential contour curves outward to form the
channel, but βc is a useful quantity. We note that e2βc=e+2Ω(H/]/3)RQ2,
so

(4.8)

this gives an extremely useful geometrical definition of ω_.
Now ω_ is an adiabatic invariant (Misner, 1969) so long as ω_ is

small. This is shown by comparing the motion of β+ with βc. We have
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already computed dβ+/dΩ; we now use Eq. (4.6) and βc = 2βw to compute

(4.9)

dΩ

where the equality holds to order (β3-). Hence, via (4.9), β+ — βc is an
adiabatic invariant and the motion can persist for a very long time.

We have now completed the study of the dynamics of these mixing
modes aligned with the rotation axis, and turn to the photon propagation
in these models.

V. Null Geodesies

Define tanφ = qί/q2, nt = qi/(qkqk)1/2, and (rc°)2 = g^n^p where qt

are the spatial momentum components in the {at, σ1} frame. Then
qhqk = constant, and the equations for photon motion in these non-
tumbling type IX models read

Λτn~ p-2β + (λ-nl\ r-
- sinh2J/3β_ sin(2φ + 2φ), (5.1)

n°R

dφ n3

+ sinh2]/3β_ cos(2φ + 20)]}

(Matzner, 1971).
Clearly from Eq. (5.1), a photon with q3 = q maintains this condition

as it moves. Hence, q3 = constant for such geodesies. It should also be
noted that if /?_ <^ 1 (i.e., if the model is mixing) then q3 ^constant
even if q3 φ q.

The momentum q (a contravariant vector) is

« = i°3t + ̂ i. (5.3)

The contravariant basis vectors ηa are the dual basis of the basis {dt, σ1}
of Eq. (1.1). We express the σ1 basis of Eq. (1.1) in terms of the coordinates
named x,y,z. The σ1 are then given by the substitutions θ^>x, ψ-^y,
φ->z into Eqs. (1.10). It is straightforward to obtain the contravariant
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basis ηt (see, e.g., Misner, Wheeler, Thorne, 1970):

(dy - cosxδj (5.4a)

cos 7
ί/2 = - sinzdx H — : - (dy - cosxdz) (5.4b)

η3 = dz. (5 Ac)

The spatial coordinate components of the momentum, q1', give

where af is defined by ηk = a{df.

In a non-tumbling model, one finds

0iι = e~
2β+lcosh(2]/3)β_ + sinh(2j/3)/?_ cos2<p] , (5.6a)

g22 = e~2β+ [cosh(2J/3)^_ - sinh(2]/3)/?_ cos2φ] , (5.6b)

g12 = e~2β+ sinh(2]/3)β_ sin2φ , (5.6c)

33 £>4 β+ 31 32 A /c fiΛ\

where the 3-axis is the rotation axis (Ryan, 1970).
Consider a photon with q3 = q and qA = 0, A Φ 3. Via Eqs. (5.1), (5.2),

and (5.5), we obtain XA = constant, A = 1,2, and

j _
_ \-1/2

at
so

dΩ dt dΩ

We recall that z is an angular coordinate; Az = 4π describes one complete
circumnavigation of the universe. [See also Chitre (1970) and Dorosh-
kevich and Novikov (1970).] One can continue the analysis as in
Section II to determine the probability P that the mixing will occur. We
shall not repeat the discussion here.

VI. Non-aligned Mixing Axis in Non-tumbling Models

We have so far discussed the situation when the system point is far
up the channel in the β+ direction, where /?33 = — 2β+ and the 3-direction
is the rotation axis. This has resulted in no essential change in the Mix-
master behavior of the model in particular, the rotation does not change
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the mixing direction since the rotation and mixing axes coincide. A
distinctly different situation in the non-tumbling models has the system
point moving in one of the two Vg channels which do not correspond to
the rotation direction; these two channels lie along the lines ^
= ±β+ The term involving fiφ in H2 then is

^Λ> ^ 12A2e~6(Ω~Ωo) (61)
sinh22|/3jg_ φ

where ΩQ is the instant when the channel motion began. Because of the

e-6Ω dependence, we see that the fiφ terms in the Hamiltonian must
eventually become negligible. We shall treat the case where they are not
negligible (i.e., before they become negligible) below, but here we assume
the fiφ terms are negligible so far as the dynamics is concerned. Then the
non-rotating analysis of Misner (1969) obtains for the small oscillations
in the channel.

The mixing direction and the rotation axis are now distinct, and
because the fiφ terms are not precisely zero, there is a slow rotation of
the mixing direction within the 2-plane orthogonal to the 3-axis. We
compute

dφ = 8H 9 φ

dΩ d/tφ ~ H ~ H ~ H ' ( ' )

If φ changes by an arbitrarily small amount after mixing begins, the
rotation will obviously have little effect on the mixing, and the non-
rotating analysis of Misner (1969) will be essentially correct. As the
system evolves up the channel, dφ/dΩ becomes small dφ/dΩocR6. This
corresponds roughly to dφ/dtccR3, by Eq. (1.4). If φ moved slowly
enough that the transverse directions, orthogonal to the mixing direction,
have time to equalize as the mixing direction turned, then rotation has
essentially no effect on the horizon evolution. We will therefore consider
the opposite case, dφ/dΩ ^> 1. We might in fact consider \dφ/dΩ\ > \dφ/dΩ\
and \dφ/dΩ\ > \dm3/dΩ\, which we show shortly are smaller bounds on
\dφ/dΩ\.

In any case, one cannot anticipate spectacular results from the
rotation. Ryan (1970) has considered the change in φ during any close
approach the system point makes to the β_ axis (where dφ/dΩ is largest).
He finds A φ ̂  π/2 in the large anisotropy regime, if the potential Vg is
neglected. His A φ is the angle between the incident and outgoing direc-
tions in such an encounter. Only the half of the motion with /?_ increasing
can contribute to mixing. Hence, we have (A φ)(mixing) = π/4. This is
sufficient to change a pancake direction from the 1-direction to the
2-direction [see Eqs. (5.6)]. However, a fairly simple test shows that this
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motion cannot have significant effect on the mixing process because the
large dφ/dΩ behavior does not persist sufficiently long.

Approximating both the cosine and n3 by unity, Eq. (5.2) gives

dφ

dt

where we assume /?+ < 0, β_ > 1. Introducing the factor dΩ/dt, we have

dφ

dΩ

(6.4)

= 0(ω_/2).

The last form holds if we have corner motion so — β+ 4-]/3β_ = 2\β\.
Recall again that typically ω_ ^ 1. Hence, in view of Eq. (6.2), the
requirement dφ/dΩ > \dφ/dΩ\ demands

H
or

ω_
H

12

(6.5)

(6.6)

The left side of Eq. (6.6) has precisely the form of the terms involving
fiφ which enter the large anisotropy H2. Now for large anisotropy, H2 is
the sum of positive terms. Hence, Eq. (6.6) is satisfied only if

1
48

(6.7)

Recalling the definition [Eq. (4.8)] of the adiabatic invariant ωl, we see
that the requirement (6.7) cannot hold indefinitely; in fact, if

the condition fails. That is, it fails when

(6.8)

with \βcQ\ the distance to the corner at the beginning of the corner run.
Hence, the motion can persist, if \dβ/dΩ\ ~ 1, only for a time

ω_
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In contrast, Eq. (5.7) shows a time AΩ ~ 8π/ω_ is necessary for circum-
navigation.

Of course, \β\ does not obey the \dβ/dΩ\ ~ 1 law while fcφ is non-
negligible. Instead, one has

dβ± _ fi +

dΩ ~~JΓ'

while φ satisfies Eq. (6.5). Hence,

dβ

dΩ

dβ2
sinh22j/3β_ H2 H2

dΩ

, ,
H2

If we let \β0 be the minimum value of \β\ (the value which makes the
right-hand side vanish) and Ω0 the corresponding time, then it is straight-
forward to show (β-βQ) = ^(Ω-Ω0)

2+Q(Ω-Ω0f. Hence, within a
very short interval, AΩ ~ 1, \β\ will begin moving with its free velocity
\dβ/dΩ\ ^ 1.

In view of the e~6Ω behavior of dφ/dΩ, it is apparent that there is no
effect from rotation on the photon trajectories after Eq. (6.7) is violated.
Because the rotation is sizable for such a brief interval, it can have no
large effect on the mixing.

VII. The General Rotating Mixmaster

Return to the Lagrangian for the general type IX solution, Eq. (1.7),
and suppose that all three Euler angles are changing; φ ή= 0, Θ ή= 0, ψ ή= 0.
We have already noted that the σl/dt defined by Eqs. (1.8), which appear
in the Lagrangian, correspond to the components of the instantaneous
angular velocity in the "body frame" of an asymmetrical rotator (whose
angular position is given by the Euler angles φ, θ, ψ). From this viewpoint,
the Lagrangian (1.7), neglecting the potential terms, describes an asym-
metrical rotator with time dependent principal moments of inertia:

/3 - 2R3 sinh22]/3/?_, 1^ = 2R3 sinh2(3β+ - ]/30_),

I2=2R3smh2(3β++]/3β_).

The time dependent moments of inertia are also dynamical variables in
the system; the potential Vg affects only the motion of the moments of
inertia. As we pointed out above, both ̂  and /2 are constants of the



188 R. A. Matzner and D. M. Chitre:

motion of this system. Since d(σ3/dt)/dφ = 1, d(σ1/dt)/dφ = — σ2/dt,
d(σ2/dt)/dφ = σl/dt, the Euler-Lagrange equation from <£ for φ (neg-
lecting the TOO terms) is

dt P dt} dt dt v 2 ιy

Because this expression is written in the "body frame" and since the
labeling of axes is arbitrary, we have immediately the two equations
obtained by cyclic interchange of indices. Let us suppose that the model
is in the Mixmaster mode and has \β_\ small, \β_\<ζ\β+\. It is then
apparent that /2 — Λ ? more precisely, if β+ > 1 (as it will be if the system
is moving in the direction of a corner channel with \β_\ small),

(73)V '

Hence, so long as \β_\ is small, Eq. (7.2) predicts the existence of an
additional integral of the motion fcφ = /3(σ3/dί). [Notice that the right
side of Eq. (7.3) grows as e3β+cce^Ω, but we show below that
(σ1/dt)(σ2/dt)ace"6Ω so the right side of Eq. (7.2) becomes small as Ω
increases.] Hence, there are three immediate integrals: fiφ, fiy, and /2.
Since fiφ is an integral, the analysis of the β_ and φ motion given in
Section IV above for the small β_ case follows exactly. More interesting
is the fact that now

is a constant of the motion. Thus, I2(σl/dt)2 +I%(σ2/dt)2 is constant.
Now /?!, as we saw from Section IV, changes very slowly oce~2(β+~Ω\
and hence, 73 όc#3 oce~3β and σ3/dtace3Ω. On the other hand,
/! ~/2oce3Ω. Hence, (σ1/dt)2 + (σ2/dt)2 ace~6Ω. If we suppose that fa is
small compared to /,2, then during the initial part of the corner run
evolution the rotation axis lies mostly in the 1-2 direction (in the "body
frame"). As the system evolves, the moments of inertia lv and I2 become
very large, and the net rotation axis swings to align with the 3-axis.
This process can result in a more effective mixing process, as the mixing
is carried out in the direction the mixing axis momentarily lies in. How-
ever, the mixing will be unaffected by the rotation once the mixing axis
aligns with the rotation axis. Furthermore, the decrease (σ1/dt)2

+ (σ2/dt)2 ace~6Ω is the same law we found for dφ/dΩ while investigating
the non-tumbling models with distinct mixing and rotation axes. In view
of the results of Section IV, we conclude that this mechanism will not
have enough time to produce results significantly different from those
obtained from the non-rotating Mixmaster.
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VIII. Conclusion

We have investigated both tumbling and non-tumbling rotating
models and found that in no case is the rotation important long enough
to affect mixing. We recall the small probability of effective mixing in
non-rotating models indicated in Section II above. We must conclude,
therefore, that mixing as described by the classical Einstein equations
is not likely to produce large scale homogeneity in the universe.

Near the singularity, where we know the classical relations cannot
hold, we hope the quantized theory may produce more likely mixing*
For instance, a quantum theory may produce enhanced amplitudes in
configurations corresponding to mixing.
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