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Abstract. The dynamical meaning of the equations T1-^ = 0 is derived as a conse-
quence of the mathematical structure of Einstein's equations. A generalization of Lichnero-
wicz's analysis of the gravitational equations is proposed.

§ 1. Introduction

In this paper we discuss the problem of motion for a material continuum
in the framework of the general theory of relativity1.
On this subject there is already a very extensive literature [1 4-12]. The
aim of the present contribution is to show that the general structure of
the problem is intrinsically very simple.

To avoid unnecessary complications, we shall restrict our analysis to
those systems whose four-velocity field V1 and density μ are expressed
in terms of the energy-momentum tensor Ttj by the eigenvalue equa-
tion [13]

{Tij + μgJV^O (1.1)
with the normalization

0 , , . * " K > = - 1 . (1.2)

We prove that if we assume the validity of Einstein's equations

G l 7 =-feT ; i (1.3)

and impose certain consistency conditions for the initial and boundary
data of the gravitational problem, Eqs. (1.1), (1.2) are mathematically
equivalent to the divergence equations

7 ^ = 0. (1.4)

* Lavoro eseguito nel centro di Matematica e Fisica Teorica del C.N.R. presso
ΓUniversita di Genova.

1 Throughout the paper, Latin indices will run from 1 to 4, and Greek indices from
1 to 3, unless otherwise stated. The metric is assumed to be of normal hyperbolic type with
signature (+ + + - ) .

Partial derivatives will usually be indicated by a comma; covariant derivatives by
a double vertical stroke (like in Eq. (1.4)).
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We then indicate how this fact may be regarded as a general proof
that Eqs. (1.4) are the equations of motion for the given material con-
tinuum.

This result, although obtained under the simplifying assumption (1.1),
may be easily extended to more general cases, e.g. to the case when an
electromagnetic field is present.

However, we shall not discuss this generalization here.
In Section 2 we analyse the mathematical structure of Eqs. (1.3), and

prove the validity of several Lichnerowicz-type decompositions of these
equations under very weak conditions. The main results are stated at
the beginning of Section 2, and proved in Lemma 2.1 and Lemma 2.2.

In Section 3 we discuss the relativistic formulation of the problem of
motion, and use the material of Section 2 to obtain the desired conclusions.

Finally, in the Appendix, we indicate a general uniqueness theorem
for symmetric hyperbolic systems of partial differential equations.

This theorem is not very original — in fact, it is borrowed from ref.
[14] and adapted to the problem in study — and is reproduced here for
convenience of the reader.

§ 2. Mathematical Preliminaries

In this section we prove a general result concerning the mathematical
structure of Einstein's equations in the mixed initial and boundary value
problem.

In the space-time manifold ^ 4 , let Γ be a {Cί,C2)
2 congruence of

time-like curves filling a world-tube Ω. Let the hypersurfaces S - with
local equation /(x 1, x2, x3, x4) = 0 - and B - with local equation x 4 = 0 -
be the boundary of Ω and a spatial section of Ω respectively.

Finally, let V1 denote the field of unit tangents to the lines of Γ. To
the field V1 we associate two projection operators & and Jr, acting on
the vector bundle of Ω, and mapping every vector field A1 into the fields

0>(At)= -ViVjA
j, (2.1)

Jr(Ai) = {δ)+ViVj)Aj (2.2)

respectively tangent and normal to the lines of Γ.
By taking tensor products of copies of 0> and Jί, we can induce pro-

jection operators &® ••• ®Jί® ••• on every tensor bundle of Ω:

• ®Jί® '•- (Wίί-iή = {-ViΎjί)... {δ^+V^Vj) ... wji-j'. (2.3)

2 The notation Cn stands for "piecewise Cn"; the notation (Cm<Cn)(m<n) for "Cm,

piecewise Cn".
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In particular, in the space of symmetric tensors of rank 2, we have
the obvious relation

(the symbol ~ denoting interchange of the indices), so that we have
only three independent projections: SP®^, *#"®Jί and

In the domain Ω now consider the system

G y = - * Γ y (2.4)

together with a suitable set of initial and boundary data specified on B
and on S respectively.

Consider also the following systems

ij + k(τij - \ τgijy] = o,

ij + k{TiJ - \ Ύgli)~\ = 0 ,

(β)

LV ®J^ lRιj + k(Tij - \ Tgij)~] = 0,

We shall prove that, in the initial and boundary value problem, the
system (2.4) is mathematically equivalent to any of the systems (α), (β)
and (7), provided that the data on B and on S satisfy the consistency
conditions [15-4-18]

Gf=-kT? on β, (2.5)

(Gij + kTij)f,j = 0 on S. (2.6)

In particular, as far as the equivalence between Eqs. (2.4) and the
system (α) is concerned, our result reduces to Lichnerowicz's one [15 -r-17]
under the further restrictions

(i) the congruence Γ is normal,
(ii) the degree of smothness of Γ is not (C1? C2), but (C2, C4),

(iii) the problem is a pure Cauchy one (i.e. Ω = ^ 4 ) .

In a previous paper [18] we have already shown how the restriction
(iii) can be dropped. The fact that we can now drop the restrictions (i)
and (ii) too, is particularly worthwhile in the discussion of the problem
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of motion, as it enables us to identify the congruence Γ with the con-
gruence of stream lines of an arbitrary material continuum.

In order to prove our result, we shall follow an abstract method [13],
in which the tensor field Gυ + kTtj is replaced by an arbitrary symmetric
tensor field WVy For every symmetric field Wip we define the conjugate
field W* by

W* = Wtj - \ Wgi} W=gabWab. (2.7)

Eq. (2.7) implies

(W*)* = Wtj. (2.70

Lemma 2.1. Let V1 be an arbitrary time-like unit vector field, and let
Jί be the projection operator associated to V1 by Eq. (2.2).

Then, the contravariant components Wιj of any symmetric tensor field
may always be expressed in the linear form

Wij = Aij

pq,Λ
r®^(W*pq) + Bij

kW
kpVp (2.8)

the coefficients Λιj

pq and Bι\ being functions of the metric and of V1.
In particular

B'i^-iδiVJ+V'δi-V^). (2.9)

Proof By a proper choice of the local co-ordinates, we may always
require

V^γ^M / * V^γ^-jSl^ (2.10)

1/ 1/
at any given point of i^A.

A straightforward application of Eq. (2.3) shows that Eq. (2.10) implies

JΓ®JΓ(W*pίΐ)=Cpq

aβW*Λβ (2.11)

the coefficients Cpq

0Lβ being functions of the metric. Moreover

Wk

WkpVp- Wkpyp = - , 4 . (2.12)
l/~^44

Now, we have
β * (2.13a)

*=-\ (gaβW*«β - # 4 4 TF*44) (2.13b)

Eqs. (2.13a, b) may be easily solved for W*a4 and
Therefore, all the components W*ij may be expressed linearly in terms

of w**β a n d \y*t By £q, (2.7'), the same is then true of the components Wίj.
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By Eqs. (2.11), (2.12), this statement is equivalent to Eq. (2.8) in the
local frame in which Eq. (2.10) holds. Finally, in view of the tensorial
character of Eq. (2.8), the same conclusion is valid in every frame.

This proves the first part of Lemma 2.1. The proof of Eq. (2.9) may
be obtained by direct computation.

By Lemma 2.1, every symmetric tensor field Wij satisfying

is necessarily of the form

Wij = Bij

kμ
k (2.14)

withμk=WklVι.
Eqs. (2.9), (2.14) and our previous definitions imply the following algebraic
relations:

Wij) = O iff J^(μj) = 0, (2.15)

= O iff ^ V ) = 0, (2.16)

Wf = 0 iff μ> = 0(=>Wij = 0). (2.17)

Let us now go back to the world-tube Ω and to the vector field V1

introduced at the beginning of this section.
In the domain Ω, we consider a symmetric tensor field Wij of the

form (2.14) satisfying

W? = 0 on B, (2.18)

Wijf9j = 0 on S. (2.19)

Lemma 2.2. Let the symmetric tensor field Wιj e C1(Ω) satisfy Eqs.
ί2.14)5 (2.18), (2.19). Then, in the domain Ω, the following statements are
mathematically equivalent:

(I) WiJ = 0,

(II) ^ = 0,

am

Proof Obviously, the statement (I) implies all the others. The relevant

part of the proof is to show that (II)=>(I), (HI)=>(I) and (IV)=>(I).

(i) Assume (II). Eq. (II) is mathematically equivalent to

^ ^ ^ = 0 (2.20)

21 Commun math. Phys., Vol. 20
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as the matrix gίp + 2ViVp is non-singular for any time-like unit vector
field V1 (check). If we evaluate the covariant derivatives explicitly, and
make use of Eqs. (2.9), (2.14), we can write Eq. (2.20) in the form

j + Nikμ
k = 0 (2.21)

where

MΛ = BΛ + 2 V{ VpB\ = gίk V* - VAj- Vkdt

 j (2.22)

and the coefficients Nik are functions of gpφ qpqγ, Vp, Vp r.
Ve may regard Eqs. (2.21) as a system of partial differential equations

for the unknowns μk. Eqs. (2.18), (2.19) provide the initial data

μk = 0 on B (2.23)

(by Eq. (2.17)), and the boundary conditions

Bi\f,jμ
k = Mi\f,jμ

k = 0 on S. (2.24)

We shall now prove that the system (2.21), (2.23), (2.24) admits the
unique solution μk = 0.

To this purpose we notice that Eqs. (2.22) imply Mi\ = Mk\.
Moreover, for any time-like hyper surf ace φ(x1x2x3x4) = 0 satisfying

φ 4 >0, the matrix Φik — M^ψj is positive definite. In fact, by a proper
choice of the local coordinates, we may always require Vl = yl and
φ,i = aδ* (a > 0), at any given point x e Ω. In these co-ordinates we have,
by Eq. (2.22)

Φik)!)k = - 7 = ^ — (gik - 2gi4δί) λιλk = 7 7 ^ — (gaβλ
aλP - g^λ*λ*) > 0

unless /} = 0.
Therefore, by Sylvester's law, the matrix Φik is positive definite in

every frame of reference.
The previous properties show that the system (2.21) is symmetric and

hyperbolic (see Appendix). Also, recalling that the vector field V1 is (C, CΛ)
(by the prescribed properties of the congruence Γ), while the metric
tensor g{j is (C l 5 C3), we see that the coefficients Mt

j

k and Nik are respec-
tively (C, Cj) and C.

We can therefore apply the general uniqueness theorem stated in the
Appendix.

Taking Eqs. (2.23), (2.24) into account, we obtain μk = 0 in Ω, and
therefore, by Eq. (2.14), Wij = 0 in Ω.

This completes the proof that (II) => (I).

(ii) Assume (III). Then, by Eq. (2.15) and the first condition in (III)

μj = cVj (2.25)
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i.e., by Eqs. (2.9), (2.14)

Wij= ~c(2F i F J ' + gfi-/). (2.26)

Eq. (2.26) and the second condition in (III) imply

F j c ? j + 2 c F ^ . - 0 . (2.27)

Moreover, by Eqs. (2.18), (2.19), (2.26), taking Eq. (2.17) into account

c = 0 on J3, (2.28)

^(^°7, j) = c F V υ = 0 on S. (2.29)

Finally, by the time-like character of the vector field V\ we have

Vjφ,j>0

for any time-like hypersurface φ(x 1 x 2 x 3 x 4 ) —0 satisfying φ, 4 > 0 .

Using the condition V1 e (C, CJ, we see that we can again apply the
uniqueness theorem stated in the Appendix. This gives c = 0 in Ώ, i.e.,
by Eq. (2.26), Wij = 0 in Ω. Therefore also (III)=>(I).

(iii) Assume (IV). Then, by Eq. (2.16) and the first condition in (IV)

μkVk = 0 (2.30)
i.e, by Eqs. (2.9), (2.14)

WiJ=-{δk

iVJ+Viδk

3)μk, (2.31)

Eq. (2.31) and the second condition in (IV) imply

-(9iP+ Vi Vp) W";/j = (gίk + Vt Vk) VJμk

f/j + Hikμ
k = 0, (2.32)

the coefficients Hik being function of gpφ gpqn Vb VUr.
If we now differentiate Eq. (2.30) with respect to xj, we see that Eq.

(2.32) may be written in the equivalent form

ifc i υ iΛμ 0 (2.33)

with

Hik = Hik + V^Vklli + (gip + 2ViVv) F'{k^}.

The system (2.33) is again symmetric and hyperbolic, as may be
easily checked.

Moreover, Eqs. (2.17), (2.18), (2.19), (2.30), (2.31) imply the initial data

μj = 0 on B (2.34)

and the boundary conditions

f,j = 0 on S. (2.35)
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Finally, the coefficients of the system (2.33) satisfy the continuity
requirements stated in the Appendix. Therefore, by the uniqueness
theorem, we deduce again μk = 0 in £2, i.e., by Eq. (2.31), Wίj = 0 in Ω.
Thus, also (IV)=>(I), and the proof of Lemma 2.2 is complete.

We now consider the tensor field (defined in the domain Ω)

Wij = Gίj + kTij. (2.36)

Then, by the topological structure of Ψ^, Eqs. (2.18), (2.19), are iden-
tically satisfied, and are in fact to be regarded as consistency conditions
for the initial and boundary data of the gravitational problem [18].
Also, by Lemma 2.1. Eq. (2.14) is mathematically equivalent to

Jf ®JT{W*ij) =Jί ®JίlRίj + k(Tίj - \ Tgίj)] = 0. (2.37)

Finally, in view of the Bianchi identities, the equation Wιj

f/j = 0 can
now be replaced by Tij = 0.

If we collect all these facts, and apply Lemma 2.2, we obtain the result
stated at the beginning of this section, namely: the gravitational Eqs.
(2.4) are mathematically equivalent to any of the systems (α), (β) and (y),
provided that the initial and boundary data satisfy the consistency con-
ditions (2.5), (2.6).

§ 3. The Problem of Motion

Let T(j be the energy-momentum tensor of a material continuum
whose hystory is contained in the world-tube Ω introduced in Section 2.

Consider the eigenvalue equation

CΓtj + μgJV^O (3.1)

with the normalization

g..ψVJ=-\. (3.2)

We assume that the eigenvalue μ exists, and is real, positive and
non-degenerate.

In this case, the tensor Ti} admits a unique decomposition of the form

TiJ = μViVj^SiJ (3.3)
with

S0.7
J" = 0. (3.4)

We assume Vx e (C, Q), and identify the quantities μ, V1 and Stj with
the density, four-velocity and stress tensor of the continuum respectively.

The problem of motion consists of the determination of the density
μ and of the congruence Γ of stream-lines of the continuum, these being
world-lines having V1 for unit tangents.
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To achieve this goal we have at our disposal:

(i) Einstein's gravitational equations

G y = - f c T y , (3.5)

(ii) the state equations describing the physical structure of the con-
tinuum,

(iii) a suitable set of initial and boundary data.

We assume that the geometry of space-time inside Ω is uniquely
determined by (i), (ii), and (iii)

Under these conditions, the problem of motion is well posed and
physically acceptable. Our aim is to discuss its general structure.

To this purpose, we consider the projection operators 0> and Jί
associated to the vector field V1 by Eqs. (2.1), (2.2). In terms of these
operators, Eqs. (3.1) are mathematically equivalent to

0, (3.6)

μViVj (3.7)

while Eqs. (3.3), (3.4) imply

Jί®Jί{Tίj) = -Sij. (3.8)

One can easily check that Eqs. (3.6) are satisfied if anf only if the
timelike vector field V1 is an eigenvector of Tip irrespective of the value
of μ.

Therefore, Eqs. (3.6) define the four-velocity V1 in terms of TfJ , and
Eqs. (3.7), (3.8) define the density μ and the stress tensor Stj in terms of
V* and Ttj.

If we now use Eqs. (3.6)-ί-(3.8) and Lemma 2.1, we can express the
field equations (3.5) in the form

= O, (3.9)

= -kViVj, (3.10)

k{Tij - \ Tgij)-] = 0. (3.11)

Using the same argument as before, we see that Eqs. (3.9), (3.10)
determine V1 and μ in terms of the gravitational fields gij.

In this sense, Eqs. (3.9), (3.10) are mathematically equivalent to the
equations of motion for the given continuum, as they express the relevant
kinematical quantities in terms of the dynamical effects.

The reason why we do not assert that Eqs. (3.9), (3.10) are the equations
of motion is based on the fact that the equations of motion should in
principle be able to determine the evolution of an arbitrary infinitesimal
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portion δ of the continuum in terms of the dynamical effects generated
by the rest of the continuum and by the external sources.

Now, let ΩcΩ be the (infinitesimal) world-tube containing the
hystory of δ.

Then Eqs. (3.9), (3.10) express μ and V1 inside Ω' in terms of the
Einstein tensor Gi} inside Ω\ i.e. in terms of the dynamical effects
generated by δ itself.

In particular, if we neglect these effects by letting fc—>0 (i.e. G^ —>0)
in Ω\ Eqs. (3.9), (3.10) become identities, and do not determine the
evolution of δ any longer.

Thus we conclude

Theorem 3.1. The equations of motion for a material continuum of the
form (3.3) are completely characterized by the following properties:

a) they must be mathematically equivalent to Eqs. (3.9), (3.10);
b) they must remain non-trivial (i.e., they must not reduce to identities)

in the limit fc->0.

If we now apply to the system (3.9)-f- (3.11) the results of Section 2,
taking Eqs. (3.6), (3.7) into account, we see that Eq. (3.9) may be re-
placed by

JT{Tij

/f) = 0, (3.11)

while Eq. (3.10) may be replaced by

) = O. (3.12)

Eqs. (3.11), (3.12) are mathematically equivalent to the divergence
equations

T ^ . - O . (3.13)

These equations are surely non trivial in the limit fc-»0, as they are
perfectly meaningful even in a flat space-time (k = 0, Gtj = 0).

Therefore, in view of Theorem 3.1, we conclude.

Corollary 3.1. The equations of motion for a material continuum of the
form (3.3) are the divergence equations (3.13). More precisely, if we split
these equations into the system (3.11), (3.12), Eqs. (3.11) determine the
evolution of the four-velocity field V1 (and therefore the congruence of
stream-lines of the material continuum), while Eq. (3.12) determines the
evolution of the density.

The proof of all these assertions follows easily from the previous
arguments, and will be omitted.

This work has been performed while the Author was a scholar at the Dublin Institute
for Advanced Studies, School of Theoretical Physics.

The Author wishes to express his sincere gratitude to Prof. J. L. Synge and Prof. J. R.
McConnell for their warm hospitality.
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Appendix: Uniqueness Theorem for Symmetric Hyperbolic Systems
of Partial Differential Equations3

In the space-time manifold f̂ ., consider the linear operator

L = Aί~^~+B (A.I)
ax1

where A1 and B are real nxn matrices whose entries are functions of
(x xx 2x 3x 4).

We assume:

(i) all the matrices A1 are symmetric,
(ii) the matrix A[ φ9i is positive definite for any time-like hypersur-

face φ(x\ x2, x3, x4) = 0 satisfying φ , 4 > 0 (so that, in particular, AA is
positive definite).

(iii) AeiCXJ and BeC.

The first two conditions imply that L is a symmetric hyperbolic
differential operator.

Now, let Ω be the domain introduced in Section 2. In Ω consider the
field u = (u1,...,un), where the components uk are C1 functions of the
space-time co-ordinates.

We shall prove the following

Theorem A.I. The system

Llu] = Aiu,i + Bu = 0 (A.2)

admits the unique solution u = 0 in Ω, provided that the following con-
ditions are satisfied:

(I) u = 0 on B,
(II) ( u μ 7 , ; w ) ^ 0 on S.4

Proof. By setting u = eaχ4. v, we can write the system (A.2) in the
equivalent form

L[υ] = A{O^ + (B + a A4) v = 0. (A.3)

Using Eq. (A.3) and the condition (i) we obtain

2{v\L[υ]) = 2(υ\A%ύ + 2(^l ίB + α ^ 4 ] υ) = (^l^^)u + {v\Bv) = 0 (A.4)

with
B 2(

3 The material of this Appendix is a straightforward generalization of the results
shown in Ref. [14]; it is reported here for convenience of the reader. The notation, ter-
minology, etc., are the same as in [14].

4 The symbol (|) is used here to denote the usual scalar product in the Hubert space
1R", n a m e l y (u\v) = u ί v 1 + ••• + u n v n .
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By the conditions (ii), (iii), and the arbitrariness of α, we see that it
is always possible to require that the matrix B be positive definite in the

whole domain Ω.
Now, let Σ be any time-like section of Ω, with local equation

φ(x\ x2, x3, x4) = 0, φ, 4 > 0.
We integrate Eq. (A.4) in the domain Q) bounded by the hypersurfaces

B, S and Σ, and use Gauss theorem. This gives

- ϊ(v\A*υ)+ ^{v\AJv)fij+ l{υ\Ajυ)φ9j+ j J {υ\Bv) = 0. (A.5)
B S Σ 3)

The first term in Eq. (A.5) vanishes in view of the condition (I).
Moreover, by the conditions (II), (ii) and our previous arguments, all the
other terms in Eq. (A. 5) are necessarily non-negative.

Therefore, in order that Eq. (A.5) be satisfied, we must necessarily
have v = 0 in <2). By the arbitrariness of Σ, this implies υ = 0 in Ω, i.e.
u = eaχ4v = 0inΩ.
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