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Time Development of Quantum Lattice Systems
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Abstract. The time development of quantum lattice systems is studied with a weaker
assumption on the growth of the potential than has been considered previously.

I. Introduction

The problem of describing the time development of a statistical
mechanical system has not yet been treated satisfactorily. In the algebraic
approach to statistical mechanics, it has often been assumed that time-
translations correspond to automorphisms of the algebra of quasi-local
observables [1]. This assumption has been justified in a few very special
cases [2-4], but is not true in general. In particular, it has been shown
to be invalid for the ideal Bose gas and BCS models [5]. Indeed, it would
be rather surprising if such an assumption were generally valid because
it would imply that even those states which are not physically realizable
have a well-behaved time development. Therefore, it would seem desir-
able to study the time-development in a simple case without this assump-
tion. In this paper we consider the time-development of a quantum
lattice system. Our assumptions about the growth of the potential are
less restrictive than those of Robinson [2], which imply that time-
translations correspond to automorphisms of the algebra.

A lattice system is one which is parametrized so that it can be iden-
tified with Zv, the space of v-tuples of integers. A Hubert space, Jjf(x\ of
finite dimension, N, is associated with each lattice site x in Zv. The Hubert
space

JT(Λ)= (X)^(x)
xe A

is associated with each finite region A in Zv. The algebra of local ob-
servables for A, 21 (Λ), is simply the algebra of bounded operators on
2? (A). If ΛI CA2, one can identify every A in ^(A^) with the operator
A®IΛ2\Λl in 2ί(y42λ where IΛ2\Λί is the identity on J^(A2\A1). Then one
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can define the algebra of quasi-local observables, 21, as the norm closure of

u
91 is a C*-algebra. Translations of the lattice correspond to commuting
automorphisms gx of 21. The Hamiltonian, H(A\ associated with the
finite region A is a self-adjoint operator on J4?(Λ) which can be written
in terms of a potential Φ as :

H(Λ)= X Φ(X) (1)
XCΛ

where Φ(X) is a translation-invariant1 self-adjoint operator on
satisfying Φ(φ) = 0.

We say that a sequence, (Λn\ of finite regions tends to GO if for every
finite A C Zv there exists an N such that n ̂  N implies Λn D A ,

The time-development of lattice systems seems to be closely related
to the rate at which the potential grows as X increases. For example,
suppose that there exists a ξ > 0 such that

where N(X) is the number of lattice sites in X. Then it can be shown
[6, 7] that

limeitH(A)Ae~itH(A) = gtA

exists for all real ί and local A in 21, and defines a strongly continuous
one-parameter group of ^-automorphisms of 21. We will consider poten-
tials which satisfy the weaker condition

| |Φ| |= X | |Φ(X) | |<oo. (2)
XBQ

A state on 21 (ΛL) or 21 is a positive linear functional, /, which is
normalized so that

/CO = 1

where / is the identity. We will be particularly interested in the Gibbs
states which are defined by

for all A in 'Ά(A).

1 See [6], p. 15.
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II. Time Evolution of the Gibbs State

First consider the time-development of the system in a finite region
A. Let

AA(ξ}=e~ξH(A}AeξH(A} (4)

where A is in 91 (A\
ξ is a complex number,

and
H(A) is given by (1).

Since H(A) is bounded, AΛ(ξ) is in 9ί(/L). Thus, when ξ = —it, (4) defines
an automorphism of 91 (Λ) which describes the time development of the
system in the region A.

Now when /l-»oc, (4) is not necessarily well-defined. Therefore, we
consider instead the expectation values of products of operators in the
Gibbs states, (3). That is, we consider the limit as Λn->oo of

ρ A » ( A ί ( ξ ί ) . . . A k ( ξ k ) )

in the region:

®k={(ξι...ξά:βι<β2<-<βk<βι + l} (6)
where ξj = βj— ίtj.

The distinguished boundary of &k is the set

e(®ύ = {(ξ, ... £*): ft = ft = βj<βj+l = βk = β, + l

for some j, 1 ̂ j :g k}.

The following theorem shows that (5) has well-defined limits when
An-*CQ.

Theorem 1. Let ρAn and &k be defined by (5) and (6) respectively, and
let (Λn) be any sequence -»oo. Then there exists a subsequence (Ωn) and,
for every k and Aλ, ...,Ak in 91, a function FAίf_Ak(ξl ... ξk) such that

a) When A1...Ak are local, i.e. in 91 (/10) for some finite A0,
QΩn(Aί(ξί)... A(ξk)} converges uniformly on the compact subsets of &Jk to

FAί...Ak(^-^}
b) f Ά i . . . A k

 l'5 analytic in 3)k.
c) ^Ai...Ak is continuous in&k.

d) ^....^i.-.^l^n M i l l in®k.
i = l

e) The expressions FAlι_Ah are linear separately in each A{. The last
two conditions imply that when B\-^Ai in norm then FB\ Bl

k~~^FAί Ak

uniformly in ξl ... ξk.
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Before proving Theorem 1, we consider some properties of QΛ.

Theorem 2. For each choice ofk9Al9...Ak consider ρA(A1 (ξ^... Ak(ξk))
as a function f(ξi ... ξk) of k complex variables. Then

a) / is analytic in Q)k.
b) / is continuous and bounded in 2k.

c) \f(ξι ... ξk)\ ^ II \\Af\\ in

δ
d) -m - ^2N(Λ0)\\Φ\\ Π Mill in ^k-

i = l
w/zβrβ ®k is defined by (6), ||Φ|| is defined by (2), and A0 is a finite region
chosen so that A1 ... Ak are in 21 (Λ0).

Note that the bounds in (c) and (d) are independent of A.

Proof. It is easy to see that f ( ξ ί ... ξk) is actually an entire function
and remains bounded on 3)k, so that (a) and (b) are satisfied. To prove
(c), we first show that it is sufficient to consider the maximum of
\f(ξι ... ξk)| on e(^k}. To do this, we exploit the fact that/depends only
on differences and make the change of variables.

ωj=ξj+1-ξj = aj+iηj (j= 1 . . ./c-1).

Then oίj > 0 and £ α7 < 1. Now by fixing k - 2 of the ωj (j Φj0) one can

apply the usual principle of the maximum2 to / considered as an analytic
function of one variable in the region

JO Z-ί j

j * 70

to show that it approaches its maximum modulus when ocjo = 0 or
Σ %j = l Then since all but one ω; were arbitrary, f ( ξ 1 ... ξk) approaches
j

its maximum when either

or

In the latter case one can repeat the argument by considering
f ( ζ ι »ζk)\ξk = ξl + ι as a function of k — 1 variables. Continuing this
process, one finds that at each step |/| approaches its maximum either
when

2 If a function is holomorphic and bounded on a strip, then the supremum of its
modulus on the strip is equal to the supremum of its modulus on the boundary.
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under the assumption βj+ί = = βk = β± -f1, or when βj — βj+1

Thus f(ξ1 ... ξk) approaches its maximum on e(2k). To estimate |/|
there we use the formula

ΎrB
^ I|C|| (8)

which is valid on finite dimensional Hubert spaces whenever B is a
positive operator. On e(£$k) one has

J

Then using (8), cyclicity of the trace, and the properties of the norm, one
immediately gets

\ f ( ξ 1 . . . ξ k ) \ ^ \ \ A 1 \ \ . . . \ \ A k \ \ , (10)

which proves (c). To prove (d) note that

f — -
dξ

Proceeding as in the proof of (c) one gets

d

• (ID

-/
Now

Σ [*(*)>

Therefore

X X
X 6 /lo X 9 X

= 2\\A\\N(ΛΌ)\\Φ\\

(12)

which proves (d).
We now prove Theorem 1.
Proof. Let A1 ... Ak be in 3ί(^0)

 an(i let /„ be the analytic function
corresponding to ρΛn(Al(ξί)... Ak(ξk)) as in Theorem2. Then the func-
tions /„ and their derivatives are bounded uniformly in n. Therefore the
sequence (/„) is equicontinuous and one can apply the Arzela-Ascoli
Theorem3. Thus for each choice of fc, Aί9... Ak, (An) has a subsequence

3 See Appendix.
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(Λn,) such that (/„>) converges on every compact subret of &k to a con-
tinuous function FAl_tAk(ξ1 ... ξh). We want to show that this sub-
sequence can be chosen independently of fe, Al ... Ak. Let X be a count-
able, dense subset of 91. Then

0 {B,...B,:BimX}
k = l

is countable. By the usual Cantor diagonalization procedure one can
find a subsequence (Ωn) of (An) such that QΩn(Bΐ(ξ1)... Bk(ξk)) converges
for all k and B1 ... Bkm X. Now let Aί ... Ak be arbitrary local elements
of 91 and choose Bt in the dense set X so that

\\Aj- Bj\\^ ) Π ϋ β i l !

Since ρβn converges on X®X® - ®X one can find an N such that
n, m ̂  JV implies

It: V ~ i V = l / ' • • ^ R V ^ / C / / ^ V ^ l V ^ i / • • ' -^/cV^fc// ! O / L 1 '
^1/C ~r i

Then n,ml§.N implies that

+ ρΩ"(β1fe)(/l2-β2)(ξ2)...Λ(4))

+ ...+ρΩ"(B1(ξι)- βfc(4))

-•..β

0 "((A1-B1)(ξ1)A2(ξ2)...Ak(ξk))\

gε for all ^ ... ξk in any compact subset of <2>k.
This proves part (a). Since the (ρΛn] are linear in each A( and uniformly

bounded, the limit is also linear and bounded by

^...^...^i^n M i l l -
ί = l

Now let AI ... Ak be arbitrarily elements in 91 and let (B") be a sequence
of local elements converging to At. Then boundedness and linearity imply
that one can choose N so that whenever n, m ̂  N
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for all ξί ... ξk in &k. Therefore the functions (FB» B» ) converge uni-
formly on compact subsets of @k to a limit FAl ,Ak which satisfies,
(b), (c), (d), and (e).

The functions FAl Λl are, of course, related to the Gibbs state on 91.
Ά 1 . . . Ah 7 "

In fact one can identify the following quantities with the Gibbs state
on 91:

a) FA(ξ) = FA(0) for all ξ.
b) F A i . . . A k ( Z i ••• W for each flxed £ι ••• 4 such that & ... ξk is in

c) ^4ι...^k(ίι ••• £k) f°r ea°h fiχed £ι ••• 4 when lim AΛ(ξ) exists for
Λ->oo

all local A in 91.
The translation invariance of the potential has been used only in the

proof of part (d) of Theorem 2. One can actually drop this requirement
if (2) is replaced by

H Φ L = Σ H Φ P O I I < o o for a l l* in Z v.
XB x

Non-translationally invariant potentials have been discussed by
Brascamp [8].

It is also interesting to note that a result analogous to part (a) of
Theorem 1 has been proved for the case of dilute quantum continuous
gases [9].

III. Representation in a Hubert Space

We have already noted that the algebra of quasi-local observables
at non-zero time, ί, is not necessarily identical to 9ί, the algebra at time
t — 0. Therefore we wish to consider a larger algebra, W, defined as the
free algebra of polynomials generated by

{(^iiMfinSI, ttmR}. (13)

Elements of W are denoted by

^((Λίi), (A29 ί2) ... (Ak, tk)) = &(Ai9 tt) ,

and conjugation is defined by

<P*((Aι, t,} ... (Ak, tk)) = <P((At, tk) ... (4*, ίj) . (14)

^ is a ^-algebra, but not a C*-algebra. Indeed, we have not even defined
a norm on all of Uf. Nevertheless, we will show that one can construct a
representation of ̂  on the algebra of bounded operators of some
Hubert space. This construction is completely analogous to the usual
Gelfand-Naimark-Segal (GNS) representation [10] for C*-algebras. The
15 Commun. math. Phys, Vol 20
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only difference is that the GNS construction uses the completeness of the
algebra to prove that the image operators are bounded, while we must
use special properties of the Gibbs states to show this4.

We now define a functional on *W which can be used to implement
the construction of the GNS Hubert space. Let

σ((Al,tJ...(Ak,tJ) = FAί...Ak(-iti .-itJ (15)

and extend σ to all of W by linearity. Parts (a) and (b) of the following
theorem show that σ is the analogue of a state on W.

Theorem 3. Let *W and σ be the free algebra and functional defined in
(13) and (15). Then σ has the following properties:

a) σ is positive, i.e. σ(^*^) ;> 0 for all & in W.
b) σ(/, ί) = 1 where I is the identity in W and t is in R.
c) \σ(^*(A,t),^2)\^\\A\\ [σ(^*^)σ(^2*^2)]*.
d) <7(G4lf t,) ...(Ak, tk)) = σ^A,, t, +τ) ... (Ak, tk + τ)).

Proof. To prove (a) consider only those ^(A^ ί for which all A{ are
local, i.e. in some 5l(Λ0). Then

) = linιTr(Bn*βn)/Tr(Q*Cn)«-* σo

where

Then part (e) of Theorem 1 implies that σ is positive for all .̂ Parts (b)
and (d) are trivial. To prove (c) we again need to consider only local At.
Let πn(A) be the image of A in the usual GNS representation of
defined by ρΩn. Then

lim [βΩ»(»ι*»ι)QΩn(»2*n — >• oo

&2) \\B\\2.

We now sketch the construction of our representation of 'W. Details
are similar to those of GNS [10] or Wightman [11]. Let

Γ is a left ideal in if. Let $ = if/Γ be the quotient space of ̂  with Γ
and define

= σ(^*^2). (16)

A similar representation of field operators has been given by Wightman [11].
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Then (16) defines a positive definite inner product on $ and one can
complete $ to a Hubert space ffl. Define a ^-representation of W
in #e by

>2). (17)

Part (c) of Theorem 3 implies that π(^) is a bounded linear operator
on ffl since

= sup

If / is the identity in ̂  then α = ψ(ί) is a cyclic vector for π. One can
summarize these results in the following theorem:

Theorem 4. Let σ be a positive linear functional on W satisfying
conditions (a) and (c) of Theorem 3. Then there exists a ^-representation,
π, of ϋ^ in the bounded operators of some Hilbert space, Jjf, and a cyclic
vector, α in ffl such that:

a) σ(0>) = <α, π(^)α>.
b) {π(^)α : & in W} is dense in J^.
c) \\π(A,t}\\^ \\A\\.

Of has been constructed so that time-translations form a one-
parameter group, G = {gfτ}, of automorphisms of ̂  with

Therefore, every appropriately bounded5, positive linear functional, σ,
which is invariant under time-translations, i.e. σ(gτ0

>)=σ(0>), can be
used to define a representation of G on a Hilbert space.

Theorem 5. Let σ be a linear functional on i^ satisfying conditions
(a), (c), and (d) of Theorems. Let ffl, π, and α be as in Theorem4. Then
there exists a unique continuous unitary representation U(τ) of R in ffl
such that:

a) C7(τ)α = α.
b) U(τ)π(0>)U(-τ) = π(gτ0>).
c) σ((Aί,t1)...(Ak,tk))

= <α,π(/!1)[/(ί2-ί1)πμ2)... U(tk- ί^Jπμ^α).
d) {^(n(At\ C/(τί))α: A f in 21, τ f in Λ, ^ is α polynomial in π(Ai)

= π(Ah 0) and C/(τf)} is dense in J^.

5 Condition (c) of Theorem 3.

15*
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Proof. The proof of (a) and (b) is identical to that of a similar theorem
for C*-algebras6. We merely note that U(τ) can be defined by

)) α = π (&(At, tt -f τ))α .

Parts (c) and (d) then follow easily from Theorem 4.

IV. Translation Invariance

The functionals considered so far need not be translation invariant.
In this section we show that there exists a translation invariant functional
which has the same time-development as σ, the functional which describes
the time-development of the Gibbs states.

First we digress to show that the spaces which we use are compact.
Let $ be the space of linear functionals on W which satisfy

k

and put on $ the weak topology. Then $ is homeomorphic to the space
M, defined by

where α labels all possible choices of k, Aίt ... Ak, t1; ... tk

and M has the usual product topology. Then since M is compact, $
is also compact in the weak topology. Thus, any closed subset of £ will
be compact.

Now define

> = > t i ) ) ,1β,( io)

where gxAt is defined by the automorphism of 31 corresponding to
translation by x in Zv. Since ||̂ ^1|| = \\A\\, σx is in S. Let JΓ be the closed
convex hull of {σx : x e Zv}. JΓ is a closed, and therefore compact, sub-
set of δ.

For every x in Zv, define a mapping gx on JΓ by

^^ = ffjc+y. (19)

See Ref. [6], p. 147.
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gx has the following properties:
a) gxtf = jίT.
b) gx is commutative, i.e. gxgy = gygx.
c) gx is linear.
d) gx is continuous.
Thus, by the Markov-Kakutani Theorem 7, there exists a functional,

σ, in JΓ such that
gxσ = σ for all x in Zv ,

i.e. σ is translation invariant.
Since σ satisfies the hypotheses of Theorem 3, so do all elements of

tf. For example, if ω = ^λtσXι, then

g Σ^M(τ*Λ)*(^.)] σ[(τx,^2)*(τxι^2)]}* \\τx,B\\
i

= Σ [VΛ*^)]* [̂ ,(̂ 2*^2)1* IIBII
I I B I I

Therefore, σ defines a representation (>f, π, α) of "W according to
Theorem 4, and a representation, U(τ) of the time-translations according
to Theorem 5.

Appendix

Theorem A.I (Arzela-Ascoli, [12]).
Let (fk) be a pointwise bounded, equicontinuous sequence of real-

or complex-valued functions on a separable metric space M. Then (fk)
has a subsequence which converges to a continuous function g pointwise
on M and uniformly on every compact subset of M.

Theorem A.2 (Markov-Kakutani, [13]).
Let K be a compact convex subset of a linear topological space 3C.

Let 2Γ be a commuting family of continuous linear mappings which
map K into itself. Then there exists a point p in K such that Tp = p for
all Tin^:
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7 See Appendix.
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