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Abstract. Suppose that a group of automorphisms of a von Neumann algebra M,
fixes the center elementwise. We show that if this group commutes with the modular (KMS)
automorphism group associated with a normal faithful state on M, then this state is left
invariant by the group of automorphisms. As a result we obtain a "noncommutative"
ergodic theorem. The discrete spectrum of an abelian unitary group acting as automorphisms
of M is completely characterized by elements in M. We discuss the KMS condition on the
CAR algebra with respect to quasi-free automorphisms and gauge invariant generalized
free states. We also obtain a necessary and sufficient condition for the CAR algebra and a
quasi-free automorphism group to be ^/-abelian.

Introduction

Let A be a C*-algebra, σt a one-parameter automorphism group
of A, and φ a σ^-invariant state on A. The state φ is said to satisfy the
Kubo-Martin-Schwinger (KMS) boundary condition for β>0 if to
each x, y £ A, there corresponds a function F(z) holomorphic in the
strip: 0<Imz<j8 and bounded on Oίg lmzrgβ with boundary values

= φ(σt(x)y) and F(t + iβ) = φ(yσt(x)) .

This condition was first introduced into the "algebraic approach"
in [5]. Since that time a great deal of work has been done on the boundary
condition. We refer the reader to references [1, 6, 7, 9, 21].

The KMS condition seems to say a good deal about the structure
of the algebra involved. For instance it was shown in [17] using Tomita's
theory [20] that to every faithful normal state φ on a von Neumann
algebra M there exists a unique one-parameter automorphism group
(the modular automorphism group) σf satisfying the KMS condition
for j8 = l. The structure link here is that M is semi-finite if and only if
σf is inner [17]. More recently in [18] it was shown that if one has a
β-KMS state, ψ, and a y-KMS state, φ, on a C*-algebra A, β Φ y, then
the corresponding representations πφ and πφ are disjoint, provided one
representation is of type III.

The research of R.Herman was supported in part by NSF Grant GP-11475.
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In this paper we turn to the question of automorphism groups of
a von Neumann algebra M which commute with the modular auto-
morphism group associated with a given normal state on M. This
situation has been considered, for example in [15] and [8]. Under
minimal conditions we find that the given state must be invariant under
this new automorphism group. This allows us to obtain a "non-commu-
tative ergodic theorem".

In § 2 we analyze completely the discrete spectrum of an abelian
unitary group inducing an automorphism group of M, in the case that
a cyclic and separating vector for M is left fixed by the unitary group.
We show that the discrete spectrum is intimately connected and in fact
solely dependent upon "eigenvectors" in the algebra. Results obtained
here extend those in [15] and [8].

As a concrete situation we choose the CAR-algebra, discusses such
things as KMS, gauge invariant generalized free states and various
notions of asymptotic abelianess in time. As a consequence we find it
is possible to settle a problem of R. Kadison. Our results here partially
overlap with those in [10].

Finally we interpret a result of Powers [12], vis a vis the KMS-
condition.

By the KMS-state, we shall mean a state satisfying the KMS con-
dition for /? = !.

The second named author would like to express his thanks to Pro-
fessor H. A. Dye for the kind hospitality extended to him at UCLA.

§ 1. Automorphisms Commuting with Time Evolution

In this section we shall discuss automorphisms commuting with the
modular automorphism group, σf, arising from a KMS state φ on a
C*-algebra.

We shall show, in § 3, how to construct the CAR algebra sί(3tf)
a quasi-free automorphism satisfying the KMS condition for a gauge
invariant generalized free state (see ahead for definitions). If one chooses
ffl — J2?2(Rn) then it is clear from this construction that it is possible to
find such an automorphism which commutes with the automorphism
induced by space translation.

Let φ be a normal faithful state on a von Neumann algebra M.
Define Mφ = {x e M\φ(yx) = φ(xy] for all y e M}. Then it is known that

For a KMS state φ on a C*-algebra A if we write Mφ we mean
M = πφ(A)" and 2£ is the center of M. πφ is the cyclic representation
induced by φ. We show in § 3 that it is possible to have Mφ = ̂  and
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it is this case that will be of interest to us in this section. The existence
of a state φ on a von Neumann algebra M such that Mφ = & settles in
the negative a problem made by R. Kadison at the Baton Rouge
conference; to the effect that for every normal state ψ on a von Neumann
algebra M, Mφ contains a maximal abelian subalgebra of M.

To decide when Mφ = 2£ we have

Proposition 1. Lei Abe a C* -algebra ana suppose φ on A is a KMS
state. Then Mφ = 2£ iff every positive linear functional ψ^φ, which is
invariant under σ? is a KMS positive linear functional

Proof. Since ψ^φ. We may consider φ to be a normal state on
M = πφ(A)". By the invariance of ψ, there exists [17] heM+ such that
ψ = hφh. If Mφ = % then φ is clearly a KMS state.

Conversely every element h e M* O^h^I gives rise to ιp = hφh^φ
where ψ is invariant. However if φ is a KMS state then ψ = kφk with
k 6 2£ by [18]. Since ψ <, φ k = h and so Mφ = %.

Lemma 1. Let M be a von Neumann algebra and φ a normal faithful
positive linear functional on M with modular automorphism group σf . //
σ is another automorphism of M, let ιp = φ° σ. Then σf, the modular
automorphism group of ψ is given by

Proof. Clearly ψ is normal and faithful. Thus there is a modular
automorphism group σf. If x, y e M suppose FXty(z) is a bounded function
analytic in and continuous on the strip O^Imz<l with boundary
values :

FXty(t) = φ(σT(x) y); FXtV(t + i) = φ(yσ?(x)) .

Then

OO) = 9 ° <>(σ~ '

Similarly Fσ(x}>σ(y}(t + i) = ψ(yσ~ίσ<t>σ(x)). So that Fσ(x) >σ(y) is the relevant
function assuring the KMS boundary condition for φ with respect to
σ - 1σfσ. The lemma then follows by the uniqueness of the modular
automorphism.

We now can prove

Theorem 1. Let M be a von Neumann algebra and φ a normal faithful
positive linear functional on M with modular automorphism group σf.
Let σ be another automorphism of M leaving the center ^ofM elementwise
fixed. Then the following two statements are equivalent.
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(i) φ is σ invariant i.e. φ°σ = σ.
(ii) σ commute with σf t e R.

Proof. (i)=>(ii): By the lemma σf 0<τ, the modular automorphism group
associated with φ ° σ is given by

Then the assumption (i) together with the unicity of the modular auto-
morphism group yields the desired result.

(ii)=>(i): Since σ and σf are assumed to commute, one obtains via
lemma that σf = σf where ψ = φ ° σ. Thus ψ being σf -invariant is σf -
invariant. According to Theorem 15.2 of [17] there exists h, a positive
self-adjoint operator affiliated with Mφ such that

Here we have assumed that we are on the representation space 3tfφ

and thus φ is given by ωξo. We have seen in [18] that σf is given by

Since σf = σf it follows that x = h2itxh~2it and h is thus affiliated with 2f.
Suppose hή=I. Then there exists fcφO, positive, ke& such that hk

is bounded and h2k2 > k2 or h2k2 < k2. Then

but

This contradiction shows h = I and ψ = φ.
We also have the following addition to

Theorem 2. Let φ and ψ be faithful normal states of a von Neumann
algebra M. If σf and σf are the modular automorphism groups of M
associated with φ and ip respectively, then the following are equivalent:

(i) ψ is σf -invariant;
(ii) φ is σf '-invariant;

(iii) σf and σ% commute for s, t e R;
(iv) φ and ψ commute, (φ + ίψ and φ — ίψ have the same absolute

value [17]).

Proof. The equivalence (i)<^>(iv)<^>(ii) is shown in [17]. The equiv-
alence of (ii) and (iii) follow from Theorem 1 if we take σjf for that σ.
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To conserve the notation to be introduced we state Theorem 3 for
^-abelian systems [4]. Clearly it can be stated for SR-abelian systems
as well [3].

A group ^ is said to be amenable if there exists an invariant mean
over ^ viz; a state η on C(^), the continuous functions on ,̂ such that
n{f(θ)} : = = η { f ( h g ) } = η { f ( g h ) } for a fixed h e 0. We consider the system
{A,σ} consisting of a C*-algebra A and an automorphism group {σg}.
We suppose that g -» σg is a homomorphism of ̂  into the automorphism
group of A such thatg-*ψ(σg(x)) is a continuous function for each linear
functional ψ e A*. $ is assumed to be locally compact and amenable.
Then [A, σ} is said to be ^/-asymptotically abelian if for each x, y e A
and φ a state on A

As shown in [4] we can now define a map εη of A into the center of the
double dual. If we deal with a invariant state φ one can clearly define
the map εη as a map of nφ(A) into the center of M = nφ(A)". We note
that in this case, φ(x) = (πφ(x) ξj £φ) and there exists a strongly continuous
unitary representation g-+ Uφ(g) such that

If o)ξ is faithful, it is a standard argument to show that εη extends to a
normal faithful projection of M onto the fixed points subalgebra M^
of M, fixed under the automorphism x-+ Uφ(g)xUφ(g}~1. The fact that
{A, σ} is ^-asymptotically abelian says then that M^ g 2£^ the center of M.
We remark that this latter condition is all that we actually need in what
follows.

It is now possible to obtain what one might refer to as a non-commu-
tative generalization of the classical ergodic theorem viz; the replacement
of time averages by space averages.

First we need a lemma. Let {π, 2tf } be a representation of a C*-algebra
A and M^(π) denote the Banach space of all σ-weakly continuous linear
functionals on π(A)" = M. Let V(π) denote the subspace ^(MXπ)) of A*
where fπ is the transpose of π. V(π) is an invariant subspace of A* and thus
there is a central projection z(π) in the universal enveloping von Neu-
mann algebra A such that V(π) = A*z(π). A subspace WQA* is said
to be invariant if for φ e Wand xε A,xφ and φx e W, where xφ(y) = φ(yx)
and φχ(y) = φ(χy).

Lemma 2. Let σ be on automorphism of A and π a representation of A.
Suppose that for each invariant subspace W^V(π)=>tσ(W)=W. There



States and Automorphism Groups 147

exists an automorphism σ of M, leaving the center of M elementwίse
fixed, such that σ'(π(x)) = π(σ(x)), x E A.

Proof. Let A be the universal enveloping von Neumann algebra of A.
Then σ extends to an automorphism σ of A and π extends to a represen-
tation π of A such that π(i(x)) = π(x) and π(A) = π(A)" where i is the in-
jection of A into A. The kernel of π is (/ — z(π)) Λ for if x 6 A and φ is a
normal linear functional on M = π(A)" one has

<φ, π((J - z(π)) x)> = <'π(φ), (I - z(π)) x> = <(/ - z (π))F(π), x> = 0

since fπ is an isometry of M^π) onto F(π). Moreover σ preserves the
kernel of π. If x e kerπ then with φ as above one sees

where ιp = tσtπ(φ)etσ(V(π))==V(π). Thus ιp(x) = 0 and π(σ(χ)) = 0. We
now conclude that there exists σ' extending σ on M.

By similar arguments, we can conclude σ'(z) = z for every central
projection in M.

Here T shall denote a map corresponding to εη for an automorphic
representation of the real line, R.

Theorem 3. Let A be a C*-algebra and φ a state on A satisfying the
KMS boundary condition with respect to the automorphism group σt\ 1 6 R.
Suppose σg\g&^ is another automorphism group commuting with σt. Let
bothg-^ψ(σg(x)) andt-*ψ(σt(x)) be continuous for each linear functional ψ.

Suppose that

(i) {A, σg} is η-asymptotically abelian,
(ii) Mφ = &and,

(iii) lσg(W) = W for each invariant W£Vφ and gε^ then f (x) = εη(x)
for each xe M = πφ(A)".

Proof. Let φ(x) = (πφ(x) ξφ\ξφ\ then ωξφ is a normal faithful state on M.
By condition (iii) and Lemma 2 σg extends to an automorphism of M
fixing its center. Theorem 1 applies and one has that ωξ ° σg — ωξφ one
immediately has that the projection f and sη are normal faithful maps
of M onto the respective fixed points of {σg : g e }̂ and {σt : t e R} in M.
By the ?/-abelianess we have M^ξ=&. Condition (iii) yields M^ = ̂ .
Thus the respective fixed points coincide. One could now appeal to [16]
to finish the proof. However, one knows that ε^(x)6 co[σ0(x)]~ and
Γ(x)6co[σf(x)]~ viz the weakly (strongly) closed convex hulls of

11 Commun. math. Phys., Vol. 19
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{σg(x)\ge&} and {σ f(x)|ίeR} respectively. Now let ξί,ξ2e^f then

where μη is the mean on ̂  corresponding to η. We have

KM*)) £i l£ 2 ) = ί (<W*) £ i l

= ( ε η ( x ) ξ 1 \ ξ 2 )

since M^ ς 3T - Mφ. Then if £ VJx)-* f (x) strongly, £ ̂  = 1. We have
i i

by the continuity of ε, that

the latter follows by assumption (ii) and the fact that M^ = 3£. However
the left hand side is by the previous remarks

also
εη(x) = f (x)

as desired. In the former case of course it is known that εη(x) — T(x) = ωξφ(x).

Theorem 4. Let Abe a C*-algebra and φ and ψ states on A satisfying
the KMS boundary condition for commuting one parameter automorphisms
groups σs and τt respectively. Suppose that Mψ= {λl}. If πφ and πψ are
quasi-equivalent, then φ = ψ.

Proof. Let πφ(A)ff = Ml and πip(A)" = M2 with the isomorphism Φ
mapping Mΐ onto M2 such that πψ = Φ πφ. Further let

ψ(x) = (πφ(x) ξφ\ξφ) and φ(x) = (πφ(x) ξψ\ξψ) .

Define a state of M2 by φ'(y) = ωξ ° Φ~ 1 (y\ yeM2. The automorphism
σs and τt extend to the modular automorphism of Mi and M2 respectively
so that φo σ s° Φ"1 defines an automorphism σs on M2 which is clearly
the modular automorphism for φ'. Further σs commutes with τt on M2.
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Then by Theorem 15.2 of [17], φ'(y) = (yhξψ\hξψ) where h is positive,
self-adjoint and affiliated with the fixed point algebra Mφ. However, this
is the scalars so that φ' = ψ on M2 and thus φ = ψ on A.

§ 2. Some Spectral Properties

We extend here results of [15] and [8] concerning the discrete spec-
trum of certain abelian unitary groups whose induced automorphism
group commutes with the modular automorphism group. More speci-
fically we have

Theorem. Let M be a von Neumann algebra with cyclic and separating
vector ξ0. Suppose g-^Ug is a strongly continuous representation of an
abelian group <& such that σg(x) = Ugx U~ * is an automorphism of M.
Further suppose Ugξ0 = ξQ. If , for a character χ of <&, Mχ = {x e M : σg(x)

Proof. We make M into a generalized Hubert algebra [17] by taking
x-*xξQ with multiplication (xξ0)(yξQ) = (xy) ξ0 and involution (xξof
= x*ξ0. Of course one now has the modular automorphism σt(x)
= AltxA~lt associated with the normal faithful state ωξo and by Theorem
1.1 σ, commutes with σg.

We apply the theory presented in [17] to our situation. Define for
each ξ e J^ two functional

φ'ξ(x') = ( x ' ξ \ ξ 0 ) xΈM'

and

Let ^(^) be the set of ξ e 9\Q)*} such that φ'ξ ^ Q(φξ ̂  0). ̂  and &°
are dual cones [17]. We note that Q)* = 9(Δ^) and & = 9(Δ~*) as
Hubert spaces.

We prove first that [M%] = {ξ e 3? : Ugξ = ξ} where M^
= {xe M:σg(x) = x}. Suppose now that for ξ1e^>9 and Ugξί = ξ1 we
shall show that ξί e [M^ξ0]. Then if ξ is any invariant vector in ffl we
form φ'ξ(xf) = (x ξ \ ξ 0 ) . φ'ξ has the polar decomposition φ'ξ = u'φf

ξl where
ξ t e 3P* and u' e M', since if φ'ξ = u'ψ in the usual polar decomposition,
then one has ψ = u'*φr

ξ = φ'u,*ξ. Defining ξl = u'*ξ, ξί e^ [17]. Now
φ'ξ is invariant under σ'g so by the unicity of the polar decomposition
i/eM'^, the fixed points in M' for {σg:ge^}, and Ugξί = ξί. Now
J = A~^S where S is ^-operation; so that J commutes with Ug,
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Then M'* = JM*J. Moreover ξ = u'ξί so that

It remains to show that if ξle^ and Ugξl = ξi then ^ e [M^ξ0].
We do this as follows: define the map h0 by: hQxfξQ = x/ξl. h0 is densely
defined and since ξ0 is separating it is well defined. Further hQ is a positive
map since:

h0 is thus a symmetric densely defined operator so we take its Friedrichs'
extension h. It is straightforward to verify that h is affiliated with M.
Moreover we see that Ugh U~ 1 = h so that h is affiliated with M^ or the
desired result ξί e

Now let K - (ξ e ̂ f : 17̂  - χ(0) £} and Mχ be as in the statement of
the theorem.

Clearly [Mχ£0] Q K. If ξ e K we form φξ and write φξ = uφξί its polar
decomposition. Then

hence

so that

) = σβ

 1 (")</>£/„->

Now t/"1^ 6^* so by the unicity of the polar decomposition we have
ξί = U~1ξl and σ~1(u) = χ(g)u. Then ^ e [M^£0] and ueMχ. This
completes the proof.

Jadcyck [8] has obtained the part of this theorem concerning the
fixed points of {Ug:g&^} by a different method. He obtains the full
theorem under more restrictive conditions.

Since ^ is amenable let μ be an invariant mean on &. The map εχ

defined by

exists by the continuity of g^>Ug. Moreover εχ is strongly continuous.
The matter follows because the map ε0 given by
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is the normal projection onto M^ and is thus strongly continuous.
Thus, about the subspace Mχ, we may conclude that ί £ Mχj~

vv/cnM;ίo

\χ*xo j
= (0). A closer analysis of these subspaces would likely yield information
concerning the various types of states defined in [3] and of course deter-
mine whether or not the discrete spectrum of {Ug} is a subgroup. The
latter is of course satisfied if in each Mχ one can find a unitary operator.

§ 3. The CAR-algebra

In order to support our hypothesis in § 1 we discuss, for the CAR-
algebra, gauge invariant generalized free states satisfying the KMS
condition and asymptotic abelianess with respect to time.

Example. Let j/ ' = j/(Jf) be the CAR-algebra over a separable,
complex Hubert space, 3f. That is the C*-algebra generated by the
identity and elements a(f) where /-»#(/) is a linear map of ffl satis-
fying the anti-commutation relation

* = I

(We follow the mathematical convention for the linearity of the inner
product in the first variable.)

We construct a time automorphism σt of s$. On the even subalgebra,
s$e, of j2/ this automorphism is asymptotically abelian in norm. Further
it is shown that one can find a gauge invariant generalized free state
ωA satisfying the KMS condition on j</.

The even subalgebra, s$e, is that subalgebra of stf generalized by
monomials in an even number of /'s, alternatively the fixed points for
the automorphism of j/ defined by #/(#(/)) — —a(f). An element x is
odd if α/(x) = — x.

Suppose now that Ut is a strongly continuous unitary representation
of the real line on $f with (Utf\g)-+Q as f-»αo for each /,#eJf. This
of course is satisfied in the particular case that the spectral measure of
Ut is absolutely continuous with respect to Lebesgue measure. We
define the quasi-free [10, 11] automorphism σt of s/ by σf(α(/)) = a(Utf).

Suppose that we have a fixed automorphism group σt of s/. Let
us say that x and y commute asymptotically if

lim || [σf(x), y] || = 0 where [z,y]=zy-yz.
r-> oo

For a set S £ j/ we write Sac = {x e £/\x commutes asymptotically with
all yeS}. One easily sees

Lemma 1. // S = S* then Sac is a C*-subalgebra of stf.
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Proposition 1. For arbitrary ytstf {y}ac 2 &0e

Proof. Since x e {y}ac iff y e {x}ac it suffices by Lemma 1 to suppose
that y is of the form a(h) or a(h)* and x is of the form a(f) a(g) or a(f) a(g)*.
One has the equality

where {z, w} = zw + wz.
This fact together with the canonical anticommutation relations

(CAR), (1), and the assumption that ([/t/|0)->0 shows that

whenever

X ι = a ( f ) , x 2 = a(g) or
and

y = a(h) or α(/ι)*.

For our KMS state we choose a gauge invariant generalized free
state ωA. That is one given by

ωA(a(fnΓ ... *(/!)* αfe^ ... a(gm)) = δnmdet(Agi\fj)

where 0 ̂  yl rg /. A state is defined by the above expression and ωA(I) = 1
[10, 1 1, 14]. The KMS condition for such states has been discussed in [10].
We do obtain a more specific form for the operator A satisfying the KMS
boundary condition for β = 1.

Let 3 be the analytic vectors viz; the manifold spanned by vectors
of the form $ φ(t) Utfdt where /e 3tf and φ(ί) (the Fourier transform
of φ) is infinitely differentiable with compact support. 3 is dense in ̂
and it suffices to define A there. Since Ut is assumed to be strongly con-
tinuous Ut = eitH. We claim A = e~H(I + e~H}~ 1 works. Clearly O^A^I.
Now

) = ω A ( a ( U t f ) * a ( f ) )

= (Af\UJ]

and thus (since /e 3)

F(t + i) = (Af\eitHePf).

{See axiom (v) page 3 of [17]}. Now the KMS condition implies that

ΐ) = ω A ( a ( f ) a ( U t f ) * )

= ( f \ U t f ) - ( A f \ U t f )
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Setting t = 0 and equating the two expressions, we obtain

eHA = (I-A)

so that

as stated. At this point one may appeal to [10] to show that this A does
indeed give a KMS state. We give an independent proof of this fact below.
The authors should like to express their thanks to Oscar Lanford for
suggesting the above example.

Suppose now that K = e~H. We verify the KMS condition on the
dense subalgebra J/0(3), where <£/0(3) is the subalgebra of j/(jf) gener-
ated algebraically by a(f\ and α(/)*,/e3. For each αe(C define an
automorphism σα of ̂ (3) by

σΛ:a(f)->a(Kl*f)

This is not, clearly, a ^-automorphism unless α is real.
To verify the KMS condition we show that if x,yej/0(3) then

<ΰA(χy) = ωA(yσi(χ)) Consider the set B = {x e ^Q(y)\ωA(xy) = ωA(yσi(x))
for all y e «s/0(3)}. This set is clearly an algebra. Therefore we will be done
if we verify the KMS condition for a dense set of elements, y, and arbitrary
fields a(f) and α(/)*. A dense set is given by linear combination of
elements of the form

y = a(f1)*...a(fn)*a(9l)...a(gm).

Note that in dealing with an expression such as αfT^) ... a(hj) one
may assume the {hk} to be linearly independent and conclude that
a^^ ... a(hJ) = (άQtγ)a(kί) ... a(kj) where {/cj is any other linearly in-
dependent set of vectors in [hί9 ..., hj] and /ιt — Σ y t j k j .

Let F = [/19 ...,/J and write g^g'i + g' where g eF and g eFλ.
Expanding and using the CAR one obtains linear combinations of terms
like αί/0* . . . α(/J* a(g% . . . a(g'k) a(g'k+ x) . . . a(g'β. Again we may assume
that g'ί9 ...,g'k are orthogonal. Then let 0'l5 ...,g'k be part of a basis for
F = [/i? •••?/«] so tnat by re-expressing α(/1)*... α(/n)* and re-labeling
our basic element becomes

where [/1? ...,/J, [gΊ,...,^], [ A ι , . . . , Λ / ] are orthogonal subspaces.
We now proceed with our proof. There are several cases to be considered
and we shall only work out one. The others can be carried through
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similarly. Consider then a(k\ fee 3. a(k) = a(k1)-{-a(k2)
where kί e [/1? ...,/fc] fe2

 e [0ι? •••>#/]> etc It suffices to deal with each
one separately. Suppose then for definiteness that fce[/l5...,/J and
we write our basic element

Since fee[/ι,...,/J we may assume k = fn. Consider the expression

and note that by form of ω^ this expression is zero unless π = /
Thus we have

ω>(/J α(/n)* . . . α(/ιn_ ,)) = ωA((l - a(fn)* a(fn)) α(/M_ J* . . . a(hn. ,)

which, after repeated application of the CAR yields

ω>(/*-1)^.α(/zπ_1))-ω>^^

This should equal ωA(a(fn)*... a^J^K'1 fn)}. The latter however
equals the determinant of the following matrix

(Aβl\gι)... ... (Ag,\fn)

Γ) 1 so AK 1=I-A,

so using the orthonormality of the vectors in question the bottom row
looks like

-(Afn\gΐ}...-(Afn\gj)..Λ-(Afn\fn).

Add to this the expression for ωA(a(f^*... a(hn-i)a(fn)). The only
difference in the two, occurs in the last row, where one has (Afn\g^
••• ( A f n \ g ) ... (A/„!/„). Thus the new matrix is the one displayed above
with all zeros in the last two except for one in the last column. Expansion
about the last row clearly gives us ω/1(α(/n_1)*... α(/ιn_1)) and so we
are done.
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Lemma 2. Suppose

-̂ V ί \(Utf\g)\2dt->0 as Γ->oo.
Z I _ τ

// ω is arc invariant state on <$/ for the induced automorphism σt then
ω(x) = 0 for all odd elements x in j/.

Proof. Let x be an odd element with ω(x) φ 0. We can suppose that x
is a monomial in the fields and that ω(x) = 1. Write x = a(f±)* . . . a(f2j+ι)>
Set X = max 1^ ί^ 2 < / + 1 | |/ ί | | and let ||χ|| =δ>0. If {et} is a basis for ̂
let ^n= [el5 ..., βj. From x we construct a sequence of elements {xn}
such that

(i) xn is odd for all n, xn 6

(iii) |ω(xj^i
This will be in contradiction with a result in [11] so ω(x) = 0. Since
this argument does not appear in print we reproduce it in the appendix.
With Jίn as above, consider that

^V ί Y Σ \(UJi\etfdt^
Ll -T i=l fc=l

so there exists a sequence ίm-^oo such that

lim |(l/ fm/ fkk)|->0 for i = l, ...,2; + l; fc = l, . . . , n .
ίw^ c» m

Now pick m so large that

where / = 2j + 1 and δ' = min {<), 1}. We have

Let Ut fi = g ί

j r g ' ί where gt (g^ is the projection of C/fm/f onto
^ (^TJ. Thus

σ fm(x) = αfefi)* . . . a(g2j+ x) + z1 = xn + zγ

Since ||σίm(x)|| = ||x|| = δ and ω(σίm(x)) = ω(x) by hypo thesis, the inequality
(t) guarantees that zx is small enough in norm so that (i), (ii) and (iii)
are satisfied. This completes the proof of the lemma.

Proposition 2. The CAR-algebra is weakly asymptotically abelian with
respect to the automorphism σt constructed above.
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Proof. We show, for any φ ε s$*, that

),j>])-»0 as ί->oo.

Writing x = xe + x0 (the even and odd parts of x respectively) we have

The first term goes to zero since ||[σt(xe), y]||->0 as we have shown
above. For the second term we write

(χo)» j>]) = φ(σt(χo) y) -
= yφ(σt(x0))-φy(σt(x0))

Thus it suffices to show for any ψ e $4* that tp(σt(x0))->0. We note that
this argument has its origins in [4]. The latter is accomplished by assuming
that there exists a sequence ίm->oo such that |tp(σίm(x0))|^<5>0. Since
(Utmf\g)-+Q we may apply the method of Lemma 2 to construct a
sequence {xn} satisfying the conditions (i), (ii) and (iii) of that lemma.

We can now state

Theorem 1. There exists a quasi-free automorphism σt of the CAR-
algebra j/(Jf ) and a gauge invariant generalized free state ωA on j/(Jf )
such that

(i) σt acts in a weakly asymptotically abelian fashion on s4(3tf).
(ii) ωA satisfies the KMS condition with respect to σt.

(iii) Ifσt(a(f)} = a(Utf) with Ut = eitH, then A = e~u(I + e~Hγl .

Corollary. There is a factor M, and a normal faithful state φ on M
such that Mφ= {λl}.

Proof. Let M = πωA(*/)" and φ = ωξo where ωA(x) = (πωΛ(x) β0\ξQ)
= ωξQ o πω^(x). M is a factor [14]. Since σt acts in asymptotically abelian
fashion Mφ = {x e M\σt(x) = x} = {λl}.

In our example we assumed that (Utf\g)-+Q as f-»oo. This statement
is stronger than saying that the spectral measure of Ut is non-atomic.
The latter is equivalent, by a theorem of Wiener, [22], to

-̂ Γ J l(l/J|flf) | 2dί->0 as T-^cx). (t)

We should like to thank P. Koosis for pointing out this fact to us. Under
this condition we show that the CAR algebra is fy-asymptotically abelian
[see § 1].
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Theorem 2. The spectral measure of Ut is non-atomic iff for every
ω E <$#* one has

lira ~ Jω([x,σ,(y)])dί = 0 for all x,ye^ί. (ft)
Γ-»oo 2, 1 _ j

Proof. Let y = ye + y0 and write

(1)
-r

T1
— J

_ Γ

Consider the second term. It equals

T 1 Γ

I ω(xσf()Ό)) dt - —- J ω^Cvo) x) dί
_ Γ z j _ Γ

1 Γ 1 τ

= y^r ί σίvj^o)- -2y J <>'t

where

tp2(z) = xω(z) = ω(z ω)

and σj denotes the transpose of σt.

1 Γ

It is well known that lim — — j crίψ(j;o)==:φ(};o) where φ is an in-
τ->oo 2 j _ j

variant element of <*/*. Thus by Lemma 2, φ(^0) = 0. Hence we need
only concern ourselves with the first term in (1).

Arguing as we have previously, it is clear that if (tt) holds for fixed y,
and x l 5 x2 e ̂  and all ψ 6 j/* that

limit -— — f ω([xx x2, σf (y)] dί = 0, for all ω e s/* .
r-^oo 2 j _ j

To complete the proof then we consider x = α(/) or α(/)* and y e s
We assume y is an even monomial i.e. y = y^y2 - y-i^ where y ̂ a(
or a(fj)*J= 1, ...,2n. One easily sees that

2n
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Thus
Γ

ω[x,σt(y)~\dt
£ 1 _Γ

2n

1 τ

TΓ ί i{*>
* -T

where ̂  is independent of t and depends only on the norms of the yt

i = l , . . . ,2n.
We now note that {x, σr(j/f)} is either zero or of the form (f\Utfj).

Thus as T->oo the terms in the summation go to zero by hypothesis,
hence the result.

The converse of the theorem is easily verified.

§ 4. The KMS States for Gauge Transformations

In this final section we point out the connection between Power's
result [12, 13] and the KMS condition on the CAR algebra.

As mentioned above the CAR algebra, is a UHF algebra of type {2n}.
If {e\"\ij = l92} are the matrix units for the factorization {Λ/J, then
the state introduced by Powers is ω where 0 < λ < \ and ω(e($) = δ^λi
with λl = λ, λ2 = 1 — λ. Moreover ω = ω\N±®ω\N2®

Suppose now that we construct the gauge invariant generalized free
state ωλ on the CAR algebra for 0 < λ < \. One sees that ωλ and ω are

the same states. Let y — In I — - — . According to the discussion in § 2,
Λ

ωλ is then a KMS (for /? = !) for the gauge transformation σ t a ( f )
= a(e^f) = e^a(f).

One can easily interpret the range of values of y to be those gotten
by letting the temperature (1/jδ) change and thus Powers result in this
case is

Theorem 1. Let s$ be the CAR algebra. Then there exists a continuous
family of KMS states for temperature 0 < T < oo giving rise to non-
isomorphic type III factor representation.

Appendix

We reproduce for the reader's reference a theorem of Powers [11]

Theorem. Let jtf = jtf(jΊ?) be the CAR algebra and suppose ρεs/*.
Let Jtγ ζ Jί2 ζ - g 2tf be an increasing sequence of subspaces with
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\jjln^#f. Then given ε>0, there exists π>0 such that \ρ(x)\ ^ε||x||
for all odd x e sf(J(^).

We shall need the following

Lemma 1. Let (xj be an infinite sequence of odd hermίtian elements
1 Λ

such that {xf, x7 } = 0. Then as H->OO. So if ω is a state on

one has that — Y Γωίx^l-^O asn-+co.

n ^
1 n

Proof. If zn = — Σxΐ compute the zπ||2 = ||zπz*|| and notice that the
n i

off-diagonal terms vanish.
Proof of Theorem. We assume ρ is hermitian and ||ρ|| gl. By contra-

diction we construct a sequence {xf, | |x f | = 1, ί = 1,2,...} such that xf = xf,
{xf, x7 } = 0, i Φ j and ρ(xi) ^ δ > 0 This contradicts Lemma 1.

Then suppose there is ε0 < 1, such that for each n we can find xe^(Jί^]
x odd with |ρ(x)| > ε0 ||x||. Since \jsί(M^ = ̂ (Jf7) there exists j; e «s/MU
with y odd and \ρ(y)\ > ε0/2 ||j;||. We multiply y if necessary by an appro-
priate scalar obtaining ρ(y)>B0/2\\y\\. Then let Xι=(y + y*)/\\y + y*\\.
We see that x1 is odd, Q(xί)>£0/2 and H x J I =1.

By hypothesis there exist ye$ί(Ji^ y odd such that |ρ(y)| > ε 0 11^11-
00

Noticing that \J (Jl^Jί^ is dense in Jί^ we repeat the above
./ = n ι+ 1

procedure obtaining x2. Continuing we obtain the desired sequence
since "orthogonal" odd elements anticommute.

Added in proof: Professor St0rmer, in a private discussion with the second author,
has pointed out that Jadczyk's method [8] extends to give a simpler proof of the Theorem
in §2.
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